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COURSE MATERIAL: ME/T3 FINITE ELEMENT ANALYSIS

UNIT-1
Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; Introduction
Name of the Topic : Historical background

1. Aim and Objectives:
e To familiarize on historical background of FEA.

e To understand the applications of FEA in various fields.

2. Pre-Test - MCQ type:
1. CAD stand for
(a) Computer Aided Design

(b) Computer Assisted Design
(c) Computer Aimed Design
(d) None of the above

2. CAE stand for

(a) Computer Aided Ergonomics
(b) Computer Aided Engineering
(c) Computer Aided Engine

(d) None of the above

3. Prerequisites
e The students should have a basic knowledge of computer aided design.

4. Theory behind — Historical background

Basic ideas of the finite element method originated from advances in aircraft
structural analysis.
e In 1941, Hrenikoff presented a solution of elasticity problems using the ‘frame
work method’.



e Courant's paper, which used piecewise polynomial interpolation over triangular
sub regions to model torsion problems, appeared in 1943.

e Turner derived stiffness matrices for truss, beam, and other elements and
presented their findings in 1956.

e The term finite element was first coined and used by Clough in 1960.

The finite element method (FEM), sometimes referred to as finite element analysis
(FEA), is a computational technique used to obtain approximate solutions of boundary
value problems in engineering. Simply stated, a boundary value problem is a
mathematical problem in which one or more dependent variables must satisfy a
differential equation everywhere within a known domain of independent variables and
satisfy specific conditions on the boundary of the domain. Boundary value problems are
also sometimes called field problems. The field is the domain of interest and most often
represents a physical structure. The field variables are the dependent variables of interest
governed by the differential equation. The boundary conditions are the specified values of
the field variables (or related variables such as derivatives) on the boundaries of the field.
Depending on the type of physical problem being analyzed, the field variables may
include physical displacement, temperature, heat flux, and fluid velocity to name only a
few.

The finite element analysis originated as a method of stress analysis in the design of
aircrafts. It started as an extension of matrix method of structural analysis. Today this
method is used not only for the analysis in solid mechanics, but even in the analysis of
fluid flow, heat transfer, electric and magnetic fields and many others. Civil engineers use
this method extensively for the analysis of beams, space frames, plates, shells, folded
plates, foundations, rock mechanics problems and seepage analysis of fluid through
porous media. Both static and dynamic problems can be handled by finite element
analysis. This method is used extensively for the analysis and design of ships, aircrafts,
space crafts, electric motors and heat engines.

Fig 1.1 Common 2D elements

Fig 1.1 shows the common 2D elements. Figure 1.2 (a) represents the finite element
model of the main load-carrying component of a prosthetic device. The device is intended

to be a hand attachment to an artificial arm. In use, the hand would allow a lower arm



amputee to engage in weight lifting as part of a physical fitness program. The finite
element model was used to determine the stress distribution in the component in terms of
the range of weight loading anticipated, so as to properly size the component and select
the material.

(a) (b)
Figure 1.2.(a) A finite element model of a prosthetic hand for weightlifting.(b)

Completedprototype of a prosthetic hand, attached to a bar Figure 1.2.(b) shows a
prototype of the completed hand design.
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Figure 1.3. Comparison of Exact solution with Approximate solution



Examples of FEA Models

Figure 1.4. FEA Model of floor panel of an automobile

Figure 1.5. FEA Model of floor panel of an automotive engine cylinder block



5. Applications/ Simulation/ related Laboratory example

The FEA concept widely applied in all fields such as design of ships, aircrafts, space
crafts, electric motors and heat engines.

6. MCQ- Post Test

1. FEA means
(a) Finite Element Analysis
(b) Finite Edge Analysis
(c) Finite Extended Analysis
(d) None of the above
2. In which year, the concept of FEA is coined
(a) 1985
(b) 1974
(c) 1960
(d) 1970
3. The Applications of FEA is applicable to
(a) Design of ships,
(b) Design of aircrafts
(c) Design of Heat engines

(d)All of the above

7. Conclusions
e The concept of FEA is applicable in all fields of applications.

e The primary advantage is to validate the with exact solutions.
8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private Limited,
India.

9. Video

https://www.youtube.com/watch?v=3E82-fluSxg
https://www.youtube.com/watch?v=QbrqUjCWxb4

10.  Assignments
1. Write briefly about the application of FEA in various fields.


https://www.youtube.com/watch?v=3E82-fIuSxg
https://www.youtube.com/watch?v=QbrqUjCWxb4

UNIT-1

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Introduction
Name of the Topic : Matrix approach

1. Aim and Objectives:
e To apply knowledge on Matrix properties.

e To develop the matrices based on theory of elasticity
2. Pre-Test-MCQ Type

1. Deformation per unit length in the direction of force is known as
(@) Strain
(b) Lateral strain
(c) Linear strain
(d) Linear stress

2. 'Young's modulus is defined as the ratio of

(@) Volumetric stress and volumetric strain

(b) Lateral stress and lateral strain

(c) Longitudinal stress and longitudinal strain
(d) Shear stress to shear strain

3. Strain is defined as the ratio of

(a) Change in volume to original volume
(b) Change in length to original length
(c) Change in cross-sectional area to original cross-sectional area

(d) Any one of the above

3. Prerequisites
The basics of theory of elasticity is required.

4, Theory behind — Matrix approach

Though mathematicians, physicists and stress analysts worked independently in the
field of FEM, it is the matrix displacement formulation of the stress analysts which
lead to fast development of FEM. Infact till the word FEM became popular, stress
analyst worked in this field in the name of matrix displacement method. In matrix
displacement method, stiffness matrix of an element is assembled by direct approach
while in FEM though direct stiffness matrix may be treated as an approach for



assembling element properties (stiffness matrix as far as stress analysis is concerned),
it is the energy approached which has revolutionized entire FEM.

The standard form of matrix displacement equation is,
[K] {u} = {F}

Where, [K] is stiffness matrix
{ u} is displacement vector and
{F} is force vector in the coordinate directions

The element k;; of stiffness matrix maybe defined as the force at coordinate i due to
unit displacement in coordinate direction j.

Example for Bar/Line Element:

Common problems in this category are the bars and columns with varying cross
section subjected to axial forces as shown in Fig. 6.
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Figure 1.6. Stepped Bar subjected to axial force
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Figure 1.7. Stepped Bar subjected to axial force
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For such bar with cross section A, Young’s Modulus E and length L (Fig. 7 (a))
extension/shortening J is given by

o =PL/AE

By giving unit displacement in coordinate direction 1, the forces development in the
coordinate direction 1 and 2 can be found (Fig. 7 (b)). Hence from the definition of
stiffness matrix,



EA EA
kll = Tandk21 = —T

Similarly giving unit displacement in coordinate direction 2 (refer Fig. 7 (c)), we get,

EA EA
k12 = —Tandk22 = T

-2

5. Applications/ Simulation/ related Laboratory example
The matrix approach is applied stepped and tapered bars with structural load

6. MCQ- Post Test

1. The standard form of matrix displacement equation

(@) [k] {u} <{F}
(b) [k] {u} >{F}
(c) [k] {u} {F}=0
(d) [k] {u} = {F}
2. The extension of stepped bar mathematically represented as

(@) 6 =PL-AE
(b) 6 =PL+AE
(c) 8 =PL/AE
(d) None of the above
6. Conclusions
e The matrix displacement method is successfully applied in stepped bar.
7. References
e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.
e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India
e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private Limited,
India.
8. Video

https://www.youtube.com/watch?v=JFiBcVhAgMM

9. Assignments
1. Derive the stiffness matrix for stepped bar.


https://www.youtube.com/watch?v=JFiBcVnAqMM

UNIT-1

Name of the Course ; FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; Introduction
Name of the Topic : Application to the continuum

1. Aim and Objectives:
e To understand the basics of continuum in three dimensional space
2. Pre-Test-MCQ type
1. Degrees of freedom means
(a) Number of dependent coordinates required to describe a body
(b) Number of independent coordinates required to describe a body
(c) Force required to move a body in x-direction
(d) None of the above
2. The point load acting
(a) Atasurface area
(b) Along a line
(c) Ata point
(d) None of the above
3. Prerequisites
The basics of engineering mechanics is required

4. Theory behind — Application to the continuum

A three —dimensional body occupying a volume V and and having a surface S is shown
in Fig.1.8. points in the body are located by x,y,z co-ordinates. The boundary is
constrained on some region, where displacement is specified, On part of the boundary,
distributed force per unit area T, also called traction, is applied. Under the force, the
body deforms. The deformation of a point x(=[x,y,z]" given by the three components of
its displacement.

u=1[uv,w]"
The distributed force per unit volume, for example. the weight per unit volume, is the
vector f given by

f =[f,,f, f1
The body force acting on the elemental volume dV is shown in Figl. 8. The surface
traction T may be given by its component values at points on the surface:

_ T

T=[T,,T,T,1]
Examples of traction are distributed contact force and action of pressure. A load P acting
at a point i is represented by its three components:

P=[P.P,RT



Figure 1.8. Three Dimensional body

5. Applications/ Simulation/ related Laboratory example
The application of continuum is applicable for all field of engineering.
6. Post Test- MCQ
1. The definition of Traction force is
(a) distributed force per unit line
(b) distributed force per unit area
(c) distributed force per unit volume
(d) none of the above
2. Example for traction force
(a) Pressure
(b) Temperature
(c) Resistance
(d) All of the above
3. The minimum number of dimensions are required to define the position of a point
in space is:
(a) one
(b) two
(c) three
(d) four



7. Conclusions
In a three dimensional body, the various forces acting in a body is discussed.

8. References
e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.
e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India
e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private Limited,
India.

9. Videos
https://www.youtube.com/watch?v=JDJtrUXzxck

10.Assignments
Write a short notes on application of continuum used in FEA approach.


https://www.youtube.com/watch?v=JDJtrUXzxck

UNIT-1

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; Introduction
Name of the Topic ; Discretisation

1. Aim and Objectives

2.

To learn about the continuum Discretisation
Pre-Test-MCQ type
1. Initial conditions are used for problems.
(a) time-dependent problems
(b) boundary value problems
(c) control volume problems
(d) finite difference problems
2. Which of these is the best practice regarding outlet boundaries?
(@) Outlet boundaries should be at the exact outlet of the geometry
(b) Outlet boundaries should be set as close as possible to the inlet
boundaries
(c) Outlet boundaries should be set as far as possible to the physical
geometry
(d) Outlet boundaries should be set as close as possible to the physical
geometry
Pre-Requisites
The knowledge of various mechanical structures is required.
Theory behind — Discretisation
The process of modeling a structure using suitable number, shape and size of the
elements is called discretization. The modeling should be good enough to get the
results as close to actual behavior of the structure as possible.
Nodes at Discontinuities
In a structure we come across the following types of discontinuities:
(a) Geometric
(b) Load
(c) Boundary conditions
(d) Material.
(a) Geometric Discontinuities
Wherever there is sudden change in shape and size of the structure there should be a
node or line of nodes.
Figure 1.9(a&b). shows some of such situations.
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(b)
Figure 1.9. (a) Bar subject to axial forces (b) Plate with varying

(b) Discontinuity of Loads

Concentrated loads and sudden change in the intensity of uniformly distributed loads are
the sources of discontinuity of loads. A node or a line of nodes should be there to model
the structure. Some of these situations are shown in Fig1.10.
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Figure.1.10 (a) FEM model (b) Slab with different UDLs

(c)Discontinuity of Boundary conditions

If the boundary condition for a structure suddenly change we have to discretize such
that there is node or a line of nodes. This type of situations are shown in Fig. 11
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Figurel.11 Slab with intermediate wall and columns

(d) Material Discontinuity
Node or node lines should appear at the places where material discontinuity is seen.

L
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Figurel.12 Material Discontinuity
Example for irregular domain
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(a) (b)

Figurel.13. (a) Arbitrary curved-boundary domain modeled using square elements.
Stippled areas are not included in the model. A total of 41 elements is shown. (b)
Refined
finite element mesh showing reduction of the area not included in the model. A
total of 192 elements is shown.

The process of representing a physical domain with finite elements is referred to as
Discretisation, and the resulting set of elements is known as the finite element mesh. As
most of the commonly used element geometries have straight sides, it is generally



impossible to include the entire physical domain in the element mesh if the domain
includes curved boundaries. Such a situation is shown in Figure 1.13a, where a curved-
boundary domain is meshed (quite coarsely) using square elements. A refined mesh for
the same domain is shown in Figure 1.13b, using smaller, more numerous elements of
the same type. Note that the refined mesh includes significantly more of the physical
domain in the finite element representation and the curved boundaries are more closely
approximated.

S.

6.

Applications/ Simulation/ related Laboratory example
The discretisation is mainly used as a beginning procedure for FEA problems.

MCQ-Post test

1.

The art of subdividing a structure into convenient number of smaller components
is known as

(@) global stiffness matrix

(b) force vector

(c) discretization

(d) none

All the calculations are made at limited number of points known as
(@) Elements

(b) Nodes

(c) Discretization

(d) Mesh

Domain is divided into some segment is called
(a) Element

(b) Node

(c) Segment

(d) Points

Finite element is -------------------

(a) Small unit having definite shape and nodes
(b) Small unit having definite shape and no nodes
(c) Small unit only

(d) Only nodes

Conclusion
The discretization of different mechanical structure were discussed.

References

CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private Limited,
India.



9. Video
https://www.youtube.com/watch?v=ambbGRqMeJU

10.Assignments
Explain the Nodes at Discontinuities With suitable number of examples


https://www.youtube.com/watch?v=ambbGRqMeJU

UNIT-1

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Introduction
Name of the Topic ; Matrix algebra

1. Aim and Objectives
To familiarize about the Matrix algebra
2. Pre Test-MCQ type
The determinant of identity matrix is?
(a) 1
(b) 0
(c) Depends on the matrix
(d) None of the mentioned
2. Which of the following property of matrix multiplication is correct?
(@) Multiplication is not commutative in general
(b) Multiplication is associative
(c) Multiplication is distributive over addition
(d) All of the mentioned

3. If A is a lower triangular matrix then AT is a
(@) Lower triangular matrix
(b) Upper triangular matrix
(c) Null matrix
(d) None of the mentioned
3. Pre-Requisites
The knowledge of basics of matrix operations is required.

4. Theory behind — Matrix algebra

The study of matrices here is largely motivated from the need to solve systems of
simultaneous equations of the form

1%, + ily2Xo + e+ O Xy = bl

a21.¥1 + ﬂzzxz 4+ i+ ﬂznxn = bz

--------------------------------

i1t apx +-+a,x, = b

where Xx3,X, ...x, are the unknowns. The above can be conveniently expressed in matrix
form as
Ax=b
where A is a square matrix of dimensions (n x n), and x and b are vectors of dimension
(n x1), given as



41 @2 o oay, X, i by )
idyy & a
A= 22 2n _J)x b
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3 F

From this information, we see that a matrix is simply an array of elements. The
matrix is simply an array of elements. A is also denoted as [A]. An element located at
the ith row and jth column of A is denoted by a;;.

The analysis of engineering problems by the finite element method involves a
sequence of matrix operations, This fact allows us to solve large-scale problems
because computers are ideally suited for matrix operations.

Row and Column Vectors

A matrix of dimension (1 xn) is called a row vector, while a matrix of dimension (m
x1) is called a column vector. For example,

D=[1 -1 2]

is a (1x3) row vector, and

NN

e=15 IS a (4x1) column vector.

o

Addition and Subtraction
Consider two matrices A and B, both of dimension (mxn). Then, the sum C=A+B is
defined as

Cij=aij+Djj

That is, the (ij)th component of C is obtained by adding the (ij)th component of A to
the (ij)th component of B. For example,

EHRiANER]

Subtraction is similarly defined.

Matrix Multiplication
The product of an (m xn) matrix A and an (n x p) matrix Bresults in an (m x p)
matrix C. That is,

A B = C
(mxn) (nxp)  (mxp)

The (ij)th component of C is obtained by taking the dot product

cij = (ith row of A) . (jth column of B)



For example,

EHEENM
(2x3) (3x2)  (2x2)

Square Matrix
A matrix whose number of rows equals the number of columns is called a square
matrix.

Diagonal Matrix
A diagonal matrix is a square matrix with nonzero elements only along the principal
diagonal. For example,

5. Applications/ Simulation/ related Laboratory example
In general, the applications of matrix is widely applied in many fields.
6. Post Test- MCQ
1. The transpose of a column matrix is
(a) zero matrix
(b) diagonal metrix
(c) column matrix
(d) row matrix
2. Two matrics Ana dB are multiplied to get AB if
() both are rectangular
(b) both have same order
(c¢) no of columns of A is equal to columns of B
(d) no of rows of A is equal to no of columns of B
3. LetA=[0100], Atisequal to
(@) Null matrix
(b) Identity matrix
(c) Does not exist
(d) None of the mentioned
7. Conclusion
The knowledge of matrix algebra is effectively familiarized.

8. References
e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.
e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

9. Video
https://www.youtube.com/watch?v=tVckr5GiUek

10.Assignments
1. Write the basic matrix operations with suitable examples.


https://www.youtube.com/watch?v=tVckr5GiUek

UNIT-1

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Introduction
Name of the Topic : Gaussian elimination

1. Aim and Objectives
To understand the a method of Gaussian elimination
2. Pre-Test-MCQ type
1. What is the order of a matrix?
(2) number of rows X number of columns
(b) number of columns X number of rows
(c) number of rows X number of rows
(d) number of columns X number of columns
2. Matrix A when multiplied with Matrix C gives the Identity matrix I, what is C?
() Identity matrix
(b) Inverse of A
(c) Square of A
(d) Transpose of A

3. Prerequisites
The basics of matrix operation must be known

4. Theory behind — Gaussian elimination

Consider a linear system of simultaneous equations in matrix form as

Ax=b
where Ais (n X n) andband xare (n X 1). Ifdet A # 0, then we can premultiply both
sides of the equation by A”! to write the unique solution for xas & = A”'b. However, the
explicit construction of A™', say, by the cofactor approach, is computationally expensive
and prone to round-off errors. Instead, an elimination scheme is better. The powerful
Gaussian elimination approach for solving Ax = b is discussed in the following pages.

Gaussian elimination is the name given to a well-known method of solving
simultaneous equations by successively eliminating unknowns. We will first present
the methodby means of an example, followed by a general solution and algorithm.
Consider the simultaneous equations

Xy — 212 + 613 =0 (IJ
2%, + 2%, + 3%, =3 (1) 2.23)
—x, + 3x; =2 (I

The equations are labeled as I, I1, and 111. Now, we wish to eliminate x, from I and Iil.
We have, from Eq.1, x;, = +2x, — 6x;. Substituting for x, into Eqs. 11 and 11 yields



5.

6.

0+ 6x, — 9% =3 (II'") (2.24)
0+ x,+6x;=2 (V)

It is important to realize that Eq.2.24 can also be obtained from Eq.2.23 by row oper
ations. Specifically, in Eq. 2.23, to eliminate x, from II, we subtract 2 times I from 1I, and
to eliminate x, from I1I we subtract --1 times [ from IIT. The result is Eq. 2.24. Notice the
zeroes below the main diagonal in column 1, representing the fact that x, has been elim-

inated from Eqs. Il and II1. The superseript (1) on the labels in Egs. 2.24 denotes the fact
that the equations have been modified once.

We now proceed to eliminate x, from I11 in Eqs. 2.24. For this, we subtract % times
II from IIi.The resulting system 1s
-2 +6x=0 (I)
0+6x,—9x:=3| (1IN (2.25)
0 0 Fx=3] (¥
The coefficient matrix on the left side of Egs. 2.25 is upper triangular. The solution now
is virtually complete, since the last equation yields x; = &, which, upon substitution into

the second equation, yields x, = %, and then x, = § from the first equation. This process
of obtaining the unknowns in reverse order is called hack-substitution.

'Ihese_opcrations can be expressed more concisely i matnx_ fﬁ;l;l _ais follows. Work-
ing with the augmented matrix [A, b], the Gaussian elimination process is
1 -2 6 0 1 -2 6 0 1 -2 6 O
2 23 31—={0 6 -9 3|0 6 -9 3 (226)
-1 3 0 2 0 1 6 2 0 0 152 372
which, upon back-substitution, yields

— | _
A3 =3 X =

L N
Al

X = (2.27)

Applications/ Simulation/ related Laboratory example
The main application is element model description in all FEA problems.
MCQ-Post test

1. Find the values of x, y, z in the following system of equations by gauss
elimination method.

(@) 2x+y-3z2=-10
(b) -2y +z=-2
(c)z=6

(d) x+y-z=9

2. In Gaussian elimination method, original equations are transformed by using



(a) Column operations

(b) Row Operations

(c) Mathematical Operations
(d) Subset Operation

7. Conclusion
The element model based gauss elimination is interpreted.

8. References

e CHANDRUPATLA T.R.,, AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private Limited,
India.

9. Video
https://www.youtube.com/watch?v=NogBkHNzDrE

10.Assignments

1. Solve this system of equations and comment on the nature of the solution using
Gauss Elimination method.
X+y+z=0
-X-y+3z=3
X—-y—-2=2
2. Solve the below equation using Gauss-Elimination method.
3X+y—-z=3
2Xx—-8y+z=-5
X—-2y+9z=8

UNIT-1


https://www.youtube.com/watch?v=NoqBkHNzDrE

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)

Name of the Unit : Introduction

Name of the Topic ; Governing equations for continuum

1. Aim and Objectives
To familiarize on the Governing equations for continuum
2. Pre-Test-MCQ type
1. Resilience can also be termed as
(a) Stress energy
(b) Strain energy
(c) Modulus
(d) Tenacity

2. When a body falls freely towards the earth, then its total energy

(a) Decreases

(b) Increases

(c) First increases and then decreases
(d) Remains constant

3. Prerequisites
To know about the fundamentals of engineering mechanics

4. Theory behind — Governing equations for continuum

Potential Energy, 11

The total potential energy IT of an elastic body, is defined as the sum of total strain
energy (U') and the work potential:

[T = Strain energy + Work potential
() (WP) (1.24)

For linear elastic materials, the strain energy per unit volume in the body is o7 e. For
the elastic body shown in Fig. 1.1, the total strain energy &/ is given by

U= 1]::7:&1! (1.25)
2 N



The work potential WP is given by

WP =— fuTl'dV - fuTTcES - > u'P (1.26)
¥ ¥ i

‘the total potential for the general glastic body shown in Fig. 1.1 is

= % f cledV - f u'fdv — f W'Tds — ¥ u'P, (1.27)
¥V W 5 Il

We consider conservative systems here, where the work potential is independent

of the path taken. In other words, if the system is displaced from a given configuration
and brought back to this state, the forces do zero work regardless of the path. The po-
tential energy principle is now stated as follows:

Principle of Minimum Potential Energy

For conservative systems, of all the kinematically admissible displacement fields,
those corresponding to equilibrium extremize the total potential energy. If the
extremum condition is a minimum, the equilibrium state is stable.

5. Applications/ Simulation/ related Laboratory example
The Governing equations for continuum is mainly used in all FEA problems
6. MCQ-Post test

1.

N

Total potential energy is equal to
(a) strain energy -work potential
(b) strain energy /work potential
(c) strain energy xwork potential
(d) strain energy +work potential

. The spring will have maximum potential energy when

(a) it is pulled out
(b) it is compressed
(c) both (a) and (b)
(d) neither (a) nor (b)
Conclusion

The Governing equations for continuum based on principle of potential energy is
discussed.

References

CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private Limited,
India.



9. Video
https://www.youtube.com/watch?v=xZUYnld5rU

10.Assignments
1. Write short notes on potential energy application with some examples.


https://www.youtube.com/watch?v=xZUYjnld5rU

UNIT-1

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)

Name of the Unit ; Introduction

Name of the Topic : Classical Techniques in FEM (weighted residual
method)

1. Aim and Objectives
To understand the weighted residual method for numerical approximation

2. Pre-Test-MCQ type

1. The differential equation 2 gy

—2 +x?y=2x+3, y(0)=5is
X

(a) linear

(b) nonlinear

(c) linear with fixed constants

(d) undeterminable to be linear or nonlinear

2. A differential equation is considered to be ordinary if it has
(a) one dependent variable
(b) more than one dependent variable
(c) one independent variable
(d) more than one independent variable

3. Prerequisites
The basic knowledge of engineering mathematics is required.

4. Theory behind —
Classical Techniques in FEM (weighted residual method)

It is a basic fact that most practical problems in engineering are governed by
differential equations. Owing to complexities of geometry and loading, rarely are
exact solutions to the governing equations possible. Therefore, approximate
techniques for solving differential equations are indispensable in engineering
analysis. Indeed, the finite element method is such a technique. However, the finite
element method is based on several other, more-fundamental, approximate
techniques, one of which is discussed in detail in this section and subsequently
applied to finite element formulation.

The method of weighted residuals (MWR) is an approximate technique for solving
boundary value problems that utilizes trial functions satisfying the prescribed
boundary conditions and an integral formulation to minimize error, in an average
sense, over the problem domain. The general concept is described here in terms of
the one-dimensional case but, as is shown in later chapters, extension to two and
three dimensions is relatively straightforward. Given a differential equation of the
general form



Dly(x).x]=0 a<x<»>b (3.1)
subject to homogeneous boundary conditions
yla)=y(b) =0 (5.2)

the method of weighted residuals seeks an approximate solution in the form

n
yH(x) = Y ciNi(x) (5.3)
i=1
where y* is the approximate solution expressed as the product of ¢; unknown,
constant parameters to be determined and N;(x) trial functions. The major
requirement placed on the trial functions is that they be admissible functions;
that is, the trial functions are continuous over the domain of interest and satisfy
the specified boundary conditions exactly. In addition, the trial functions should
be selected to satisfy the “physics™ of the problem in a general sense. Given these
somewhat lax conditions, it is highly unlikely that the solution represented by
Equation 5.3 is exact. Instead, on substitution of the assumed solution into the
differential Equation 5.1, a residual error (hereafter simply called residual)
results such that

R(x) = D[y*(x), x] #0 (5.4)

where R(x) i1s the residual. Note that the residual is also a function of the
unknown parameters ¢;. The method of weighted residuals requires that the
unknown parameters ¢; be evaluated such that

b
fw;(x]R(x]dx =0 i=1.n (5.5)

a

where w;(x) represents n arbitrary weighting functions. We observe that, on
integration, Equation 3.5 results in n algebraic equations, which can be solved for
the n values of ¢;. Equation 5.5 expresses that the sum (integral) of the weighted
residual error over the domain of the problem is zero. Owing to the requirements
placed on the trial functions, the solution is exact at the end points (the boundary
conditions must be satisfied) but, in general, at any interior point the residual
error is nonzero. As is subsequently discussed, the MWR may capture the exact
solution under certain conditions, but this occurrence is the exception rather than
the rule.

Several variations of MWR exist and the techniques vary primarily in how
the weighting factors are determined or selected. The most common techniques
are point collocation, subdomain collocation, least squares, and Galerkin’s



method [1]. As it is quite simple to use and readily adaptable to the finite element

method, we discuss only Galerkin’s method.

In Galerkin’s weighted residual method, the weighting functions are chosen

to be 1dentical to the trial functions; that is,

w;(x) = N;(x) i=1.n (5.6)
Therefore, the unknown parameters are determined via
b b
fw;(x}R(x}dx = fN,—(x]R(x] =0 i=1,n (5.7)

again resulting in n algebraic equations for evaluation of the unknown param-

eters. The following examples illustrate details of the procedure.

Example on Galerkin’s Problem

Use Galerkin’s method of weighted residuals to obtain a one-term approximation to the
solution of the differential equation
d’y

—+y=4x 0=<x =<1
dxs -~

with boundary conditions y(0) = 0, y(1) = 1.

B Solution

Here the boundary conditions are not homogeneous, so a modification is required. Unlike
the case of homogeneous boundary conditions, it is not possible to construct a trial solu-
tion of the form ¢, N,(x) that satisfies both stated boundary conditions. Instead, we as-
sume a trial solution as

yvE=aNix)+ f(x)

where N,(x) satisfies the homogeneous boundary conditions and f(x) is chosen to
satisfy the nonhomogeneous condition. (Note that, if both boundary conditions were
nonhomogeneous, two such functions would be included.) One such solution is

y¥=cx(x —1)+x

which satisfies y(0) = 0 and v(1) = 1 identically.
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Figure 5.3 Solutions to Example 5.3.

Substitution into the differential equation results in the residual

d*y* 2
R(x;c,) = nix, +y¥F—dx =20, 4 xt —ex+x —4dx = xt —ex +2¢, — 3x

7

and the weighted residual integral becomes
1 1
f Ni(x)R(x: ;) dx =fx[x — 1){611’2 +cix — 2 —3x)dx =0
0 0

While algebraically tedious, the integration is straightforward and yields
cp=5/6

so the approximate solution is
*(x) > ( 1)+ 22y ]
X)) = —XIlX — X=—=-X —X
! 6 6 "6
As in the previous example, we have the luxury of comparing the approximate solution

to the exact solution, which is
y(x) =4x — 3.565 sin x
The approximate solution and the exact solution are shown in Figure 5.3 for comparison.

Again, the agreement is observed to be reasonable but could be improved by adding a
second trial function.



5. Applications/ Simulation/ related Laboratory example
The galerkin’s method is applicable to solve all non-structural problems(Exmple:
fluid and heat transfer applications)

6. MCQ-Post test

1. For Non-structural problems, which method is commonly preferred
(a) Rayleigh-Ritz Method
(b) Galerkin Method
(c) Runge kutta Method
(d) None of these

N

. Which function mainly considered in Galerkin approach

(a) Polynomial Function
(b) Trial function
(c) Polynomial and Trial function
(d) None of these
3. The Trial function in Galerkin approach contains a;, a; and so on. Therefore the
name of aj, a,...an refers

(a) Galerkin parameter
(b) Ritz parameter
(c) Both Galerkin & Ritz parameters
(d) None of these
4. For solving of fluid mechanics problems, the essential boundary conditions are

(a) Compulsory
(b) Not Compulsory
(c) Partially Compulsory
(d) None of these
5. The examples for non-structural problems
(a) Heat flow
(b) Fluid flow
(c) Both heat and fluid flow
(d) None of these

7. Conclusion
The Galerkin’s method and related example are effectively discussed.

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private Limited,
India.



9. Video

https://www.youtube.com/watch?v=SAgCB3JIw0M

10.Assignments

1. The following differential equation is available for a physical phenomenon:

d’y
dx?
The boundary conditions are: y(0)=0 and y(1)=1. By using Galerkin’s method of
weighted residuals to find an approximate solution of the above differential equation and
also compare with exact solutions.
2. The differential equation of a physical phenomenon is given by,

—10x* =5:0<x<1

2

9, 500x2 =5,0< x<1.
dx

Use the Trial function, y=a;(x-x*). The boundary conditions are: y(0)=0 and y(1)=0.
Calculate the value of the parameter a; by the Galerkin’s approach.


https://www.youtube.com/watch?v=SAqCB3JIw0M

UNIT-1

Name of the Course ; FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; Introduction
Name of the Topic : Rayleigh-Ritz method

1. Aim and Objectives:
e To understand the theory of elasticity including strain and displacement
e To analyze solid mechanics problems using classical methods and energy
methods

2. Outcomes
At the end of the topic, a student will be able to

e apply the Rayleigh-Ritz method to solve structural problems and outline the
requirements for convergence.

3. Pre-Requisites
e The students should have a basic knowledge of mathematics, and mechanics

of solids.
e |t is assumed that the student has knowledge about basic calculus and
differential equations.

1. 1-cos®A is equal to:
(a)sin’A

(b)tan’A
(c)1-sin’A
(d)sec’A

2. A partial differential equation has
(a) one independent variable
(b) two or more independent variables
(c) more than one dependent variable
(d) equal number of dependent and independent variables

3. Strain energy is the
(a) energy stored in a body when strained within elastic limits
(b) energy stored in a body when strained upto the breaking of a specimen
(c) maximum strain energy which can be stored in a body
(d) proof resilience per unit volume of a material



4. A beam is loaded as cantilever. If the load at the end is increased, the failure will
occur
(@) In the middle

(b) At the tip below the load
(c) At the support
(d) Anywhere

5. A simply supported beam of span ‘I’ meters carries a UDL of ‘w’ per unit length
over the entire span, the maximum bending moment occursat
(@) At point of contra flexure
(b) Centre
(c) End supports
(d) Anywhere on the beam
6. is a horizontal structural member subjected to transverse loads

perpendicular to its axis.

(a) Strut
(b) Column
(c) Beam
(d) Truss

7. Units of U.D.L?
(a) KN/m
(b) KN-m
(c) KN-mxm
(d) KN

8. In simply supported beam deflection is maximum at
(a) Midspan

(b) Supports
(c) Point of loading
(d) Through out

9. Which of the following is a differential equation for deflection?
(a) dy/dx=(M/EI)
(b) dy/dx=(MI/E)
(0)d?y/dx? =(MIEI)
(d) d°y / dx? = (ME/N)

10. Macaulay's method is used to determine
(a) deflection
(b) strength
(c) toughness
(d) all of the above



4. Theory behind — Rayleigh-Ritz Method

The Rayleigh—Ritz method of expressing field variables by approximate method clubbed
with minimization of potential energy has made a big breakthrough in finite element
analysis. In 1870 Rayleigh used an approximating field with single degree of freedom for
studies on vibration problems. In 1909 he used approximating field with several functions,
each function satisfying boundary conditions and associating with separate degree of

freedom. Ritz applied this technique to static equilibrium and Eigen value problems.

The procedure for static equilibrium problem is given below:

Consider an elastic solid subject to a set of loads. The displacements and stresses are
to be determined. Let u, v and w be the displacements in X, y and z coordinate directions.

Then for each of displacement component an approximate solution is taken as

= za}- O (x, v,z) for i =1tomy
v = 2{?{; ¢ (x, v, z) for j=m+1tom, ...(9.12)

w= Zm( Op(x, v, z) for k=my+1tom
The function ¢; are usually taken as polynomials satisfying the boundary conditions. ‘a’ are
the amplitudes of the functions. Thus in equation 9.12 there are n number of unknown ‘@’
values. Substituting these expressions for displacement in strain displacements and stress

strain relations, potential energy expression 9.16 can be assembled. Then the total potential

energy
Im=1TI (ﬁl’ Aoy o s gy - T2 Aoy - nm_)

From the principle of minimum potential energy,

dn

=0 fori=1tom 922
da. . ...(9.22)

From the solution of m equation of 9.22, we get the values of all ‘a’ . With these values of
‘a’s and @; ’s satisfying boundary conditions, the displacements are obtained. Then the

strains and stresses can be assembled.



The Rayleigh — Ritz procedure is illustrated with structural problems below:

Example 9.5: Using Ragleigh-Ritz method determine the expressions for deflection and bending moments in
a simply supported beam subjected to uniformly distributed load over entire span. Find the deflection and
moment at midspan and compare with exact solutions.

(24
. . . . . omnx . . . .
Solution: Figure 9.8 shows the typical beam. The Fourier series y = z a; sin is the ideal function
m=1,3
N . d?y . L
for simply supported beams since y =0 and M = EI—;- = 0 atx=0and x=/are satisfied. For the simplicity
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wiunit length
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< / >
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let us consider only two terms in the series i.e. let
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Thus the deflection is almost exact.

5 =

d*y T
Now, M, = EIS Y = E1| —q,
dx~ /

dwl? | wx  4wl’x9 | 37mx
= EI| — “35111—— e Y?’sm1
Elrm [ 243FEIw [

2 2 .
u{ il | v 9} i

EIr®  243EI7° |~ 305

2

owl
we know the exact value is —— .
8

By taking more terms in Furier series more accurate results can be obtained.

5. MCQ- Post Test

1. Total potential energy is equal to
(a) strain energy -work potential
(b) strain energy /work potential
(c) strain energy xwork potential
(d) strain energy +work potential
2. Rayleigh Ritz Method is applicable for
(a) Structural problems
(b) Fluid mechanics problems
(c) Both Structural and Fluid mechanics problems
(d) None of These
3. Convergence is a process of
a. Dividing the domain
b. Converting local coordinates into natural coordinates
c. Arriving at a solution that is close to the exact solution
d

. Arriving at a solution that is far from the exact solution

4. A cantilever beam subjected to uniformly distributed load problems solved by
(a) Galerkin Method
(b) Rayleigh-Ritz Method
(c) Both Galerkin and Rayleigh-Ritz Method
(d) None of these




5. In Rayleigh-Ritz Method, which series is considered for approximating function
(a) Laplace series
(b) Inverse Fourier series
(c) Inverse laplace series
(d) Fourier series

6. Finding of Ritz parameter for structural problems is
(a) Essential
(b) Not essential
(c) Partially essential
(d) Partially not essential
7. Conclusions

e The Rayleigh—Ritz method is a direct method to find an approximate solution for
boundary value problems.

e Useful for solving Structural mechanics problems
e Itisalso known as variational approach

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e BHAVIKATTI S.S."Finite Element Analysis”, New Age International Publishers,
2005, India

9. Video

https://www.youtube.com/watch?v=-g8mb9ihXHO0

10.  Assignments

e A simply supported beam subjected to uniformly distributed load over entire span.
Determine the bending moment and deflection at mids-span by using Rayleigh- Ritz
method and compare with exact solutions.

wilumit knglh

e A beam AB of span ‘I’ simply supported at ends and carrying a concentrated load W at
the centre ‘C’ as shown in Figure. Determine the deflection at midspan by using
Rayleigh- Ritz method and compare with the exact solutions.


https://www.youtube.com/watch?v=-g8mb9ihXH0




UNIT-2

Name of the Course ; FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : One Dimensional Problems
Name of the Topic : Finite element modeling

1. Aim and Objectives
e Tounderstand the use of FEM to a range of Engineering Problems
e To apply one dimensional finite element method to solve bar and truss type
problems

2. Pre-Test-MCQ type

1. The Force required to produce unit displacement is
(a) Pressure
(b) Traction
(c) Stiffness
(d) None

2. The materials having same elastic properties in all directions arc called

(a) Ideal materials
(b) Uniform materials
(c) Isotropic materials
(d) Paractical materials
3. The ultimate tensile stress of mild steel compared to ultimate compressive
stress is
(a) Same
(b) More
(c) Less

(d) More or less depending on other factors

4. Prerequisites
The knowledge of strength of materials is required.

5. Theory behind — Finite element modeling

The total potential energy and the stress-strain and strain-displacement relationships are
now used in developing the finite element method for a one-dimensional problem. The
basic procedure is the same for two- and three-dimensional problems discussed later in
the book. For the one-dimensional problem, the stress, strain, displacement, and loading
depend only on the variable x. That is, the vectors u,c,¢, T, and f expressed as

u=u(x) o=o(x) e=u(x) T=T(x) and f=f(x)



Furthermore, the stress-strain and strain-displacement relations are
o =E ¢ and e=du/dx

For one-dimensional problems, the differential volume dV can be written as
dV=Adx

The loading consists of three types: the body force f, the traction forte T, and the
point load p;;. These forces are shown acting on a body in Fig. 2.1. A body force is a
distributed force acting on every elemental volume of the body and has the units of
force per unit volume. The self-weight due to gravity is an example of a body force.
A traction force is a distributed load acting on the surface of the body. For the one-
dimensional problem considered here, however, the traction force is defined as force
per unit length. This is done by taking the traction force to be the product of the force
per unit area with the perimeter of the cross section. Frictional resistance, viscous
drag, and surface shear are examples of traction forces in one-dimensional problems.
Finally, P;; is a force acting at a point i and u, is the x displacement at that point.

X
Figure 2.1 One-dimensional bar loaded by traction, body, and point loads.

Consider the bar in Fig. 2.1. The rust step is to model the bar as a stepped shaft,

consisting of a discrete number of elements, each having a unifonn cross section.

Specifically, let us model the bar using four finite elements. A simple scheme for
doing this is to divide the bar into four regions, as shown in Flg. 3.2a. The average



cross-sectional area within each region is evaluated and then used to define an
element with uniform cross section. The resulting four-element, five-node finite
element model is shown in Fig. 2.2b. In the finite element model, every element
connects to two nodes. In Fig. 2.2b, the element numbers are circled to distinguish
them from node numbers. In addition to the cross section, traction and body forces
are also (normally) treated as constant within each element. However, cross-
sectional area, traction, and body forces can differ in magnitude from element to
element. Better approximations are obtained by increasing the number of elements. It
is convenient to define a node at each location where a point load is applied.
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Figure 2.2. Finite element modeling of a bar.

5. Applications/ Simulation/ related Laboratory example
Lab Name: ME7P8/ Simulation & Analysis Laboratory

1. Find the maximum deflection caused by the weight of the beam itself. This beam
is to be made of steel with a modulus of elasticity of 200 GPa. p=7.86%10-6
kg/mm?



. MCQ-Post test

1. Finite element analysis deals with
(a) approximate numerical solution
(b) non-boundary value problems
(c) partial differential equations
(d) laplace equations

2. FEM also operates the parameters like
(a) heat transfer
(b) temperature
(c) Potential
(d) All of the above

3. Inone dimensional, the stress and strain relation is given by
(@ o=E€
(b) c=E /€
(c) o=€/E
(d)o=E-€

. Conclusion

The one dimensional problem of finite element modeling is discussed.

. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,
1989

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.



9. Audio/Video-If any

https://www.youtube.com/watch?v=C6X9Ry02mPU

10.Assignments
1. For a given taper bar, do the finite element modelling with suitable number

of elements

> P32 1r

[ 4m :!

Thickness = 0.2 m, E = 506 Nim?


https://www.youtube.com/watch?v=C6X9Ry02mPU

UNIT-2

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; One Dimensional Problems
Name of the Topic ; Coordinates and shape functions

1. Aim and Objectives
To understand the Coordinates and shape functions for one dimensional problems

2. Pre-Test-MCQ type

1. Finite element analysis is not used for
(a) Complex problem solution
(b) Non-homogeneous material solution
(c) Anisotropic material solution
(d) Exact solution

2. Finite element is ---------=--=------

(a) Small unit having definite shape and nodes

(b) Small unit having definite shape and no nodes

(c) Small unit only

(d) Only nodes
3. Prerequisites

The realize the concept of Coordinates and shape functions for 1D element
4. Theory behind — Coordinates and shape functions

Consider a typical finite element e in Fig. 2.3a. In the local number scheme, the first
node will be numbered 1 and the second node 2. The notation x;= x-coordinate of
node 1, x,=x-coordinate of node 2 is used. We define a natural or intrinsic coordinate
system, denoted by &, as

——r Fed
E= -1 £= 1

} %
(a) ®)

1 @ 2 1 2
|




£ ——(x-x) - 1 34)

n=—x

From Fig. 3.5b, we see that £ = —1 at node 1 and £ = 1 at node 2. The length of an
element is covered when £ changes from —1 to 1. We use this system of coordinates in
defining shape functions, which are used in interpolating the displacement field.

Naow the unknown displacement field within an element will be interpolated by a
linear distribution (Fig, 3.6). This approximation becomes increasingly accurate as mere
clenents are considered in the model. To implement this linear interpolation, linear
shape functions will be introduced as

M(§) = —— (3-5)

Ni(&) = =5 (3.6)

The shape functions N, and N, are shown in Figs. 3.7a and b, respectively. The graph of
the shape function N, in Fig. 3.7a is obtained from Eq. 3.5 by noting that &, = 1 at
£= ~1,Ny = 0at £ = 1,and N, is a straight line between the two points. Similarly, the
graph of N; in Fig. 3.7b is obtained from Eq. 3.6. Once the shape functions are defined,
the linear displacement field within the element can be written in terms of the nodal
displacements g, and o, as

u = Ng, + N (3.7a}
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FIGURE 3.6 Linear interpolation of the displacement ficld within an clement,
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FIGURE 3.7 (a) Shape function N, (b) shape function A, and (c) lincar interpolation using

Nyand N,

of, in matrix notation, as

w = Ngq (3.7b)
where

N=LN] and g = [g,,q,]" (38

In these equations, q is referred to as the ¢je ' ) . :
ment displacem ly ver
ficd from Eq. 3.7a that iz = g, at node 1 P ent vector It is readily

(Fig. 3.7¢). »# = g; at node 2, and that u varies linearly

It may be noted that the transforma; _ o
ation
terms of Ny and N, as from x to ¢ in Eq. 3.4 can be written 12

= Naxj + Nox, 39



. Applications/ Simulation/ related Laboratory example
For all one dimensional problems the Coordinates and shape functions widely
applicable.

. MCQ-Post test

1. The points in the entire structure are defined using coordinates system is known
as
(a) Local coordinates
(b) Natural coordinates
(c) Global coordinate system
(d) None of the above
2. The minimum number of dimensions are required to define the position of a point
in space is:
(a) one
(b) two
(c) three
(d) four
3. Sum of shape functions =
(@1
(b) 2
(c) 3
d)o
4. Shape functions are called as
(a) Shape size functions
(b) FEM Functions
(c) Interpolation functions
(d) Meshing functions
. Conclusion
The Coordinates and shape functions is constructively studied.
. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,
1989
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9. Audio/Video-If any

https://www.youtube.com/watch?v=rb4A0Tm tBA

10.Assignments
1. Plot the shape function of bar element with neat sketch.


https://www.youtube.com/watch?v=rb4AOTm_tBA

UNIT-2

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : One Dimensional Problems
Name of the Topic : Potential energy approach and Galerkin approach

1. Aim and Objectives
To study on Potential energy and Galerkin approaches for 1D problems
2. Pre-Test-MCQ type

1. Differentiate y = sec (x* + 2)
() 2x cos (x* + 2)
(b) —cos (x? + 2) cot (X? + 2)
(c) 2x sec (X°+ 2) tan (x* + 2)
(d) cos (x? +2)

2. Differentiate (x* + 2)1/2

(a) ((x*+2)1/2) /2
(b) x / (X* +2)1/2
() (2x)/ (x* +2)1/2
(d) (x*+ 2)3/2

3. Differentiate the equation y = x*/ (x +1)

(@) (x> +2x)/ (x +1)2
(b) x / (x + 1)

(c) 2x

(d) (2x2) / (x +1)

3. Prerequisites
The proficiency knowledge on differential calculus is needed.

4. Theory behind — Potential energy approach and Galerkin approach
Potential energy approach

The gencral expression for the potential encrgy given in Chapter 1 is

11
M=~ T - T - T -
2.[0 €A dx fLHfAdx ‘/Lvu T dx Euiﬂ (3.17)
The quantitics o e, #, f, and T in Eq. 3.17 are discussed at the beginning of this
chapter. In the !ast terma, P represents a force acting at point 4, and u, is the x displace-
ment at that point. The summation on{ gives the potential energy duc to all point foads.

Since the continuum has been discretized into finite elements, the expression for
[T becomes



The last term in Eq. 3.18a assumes that point lpads P
assumption malfes the present derivation simpler with t
common modeling practice. Equation 3.18a can be wril

1 . .
“=21L“m““2/“““‘szwﬂ—zgﬂ (3.152)

; are applied at the nodes. This

espect 10 notation and is also @
ten as

= ;ur - 2 [u’fAdx -~ quTde -y or (3.18b)

where

U, =

f oTeAdx

)~

is the element strain energy.

Galerkin’s approach

Following the concepts introduced in Chapter 1, we introduce a virtual displacement field

¢ = ¢(x) (3.37)
and associated virtual strain
)
e(d) = - (3.38)

where ¢ is an arbitrary or virtual displacement consistent with the boundary conditions.

Galerkin’s variational form, given in Eq. 1.43, for the one-dimensional problem consid-
ered here, is

T - T _ T — —
i::qmaa;; ﬁtﬁfAdx £¢,de ;¢fﬁ-n (3.3%)

This equation should hold for every ¢ consistent with the boundary conditions. The first

term represents the internal virtual work, while the load terms represent the external
virtual work.

On the discretized region, Eq.3.3%a becomes

2.:’ IJE:@}AJx - E I¢TfAm -3 fngde ~ Ecpf.f:. =0 (3.39b)



Note that ¢ is the strain due to the actual loads in the problem, while €(&) is a virtal
strain. Similar to the interpolation steps in Eqs. 3.7b, 3.14, and 3.16, we express

$ = Ny
€(¢) = By (3.40)

where ¢ = [#;, ] " represents the arbitrary nodal displace
i i t .Also, the
global virtual dispiacements at the nodes are I‘“‘Pl‘mrﬁ od bm;n sof element e. Als

T = [lb’,lﬁz,...,lﬁﬁ]-r {3-41}

5. Applications/ Simulation/ related Laboratory example

To Potential energy and Galerkin approaches is used extensively used in 1D
problems

6. MCQ-Post test
1. The value of ¢ is equal to
(@ ¢<Ny
(b) >N
(c) $=Nw
(d) None of the above
2. The expression of strain energy U,

@)U, :%jaTAde
(b)U, :% [ o Adx

©U, =%jo-T5Adx

(d)one of the above

7. Conclusion
The Potential energy and Galerkin approaches were discussed.
8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,
1989

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.



9. Video

https://www.youtube.com/watch?v=sOvHM-L7e O

10.Assignments

1. Briefly explain about Potential energy approach with examples.
2. Briefly explain about Galerkin approach with examples.


https://www.youtube.com/watch?v=sOvHM-L7e_Q

UNIT-2

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; One Dimensional Problems
Name of the Topic ; Assembly of stiffness matrix and load vector —

Finite element equations

1. Aim and Objectives
e To understand the Assembly of stiffness matrix and load vector
e To make out the knowledge on finite element equations

2. Pre-Test-MCQ type

1. The energy possessed by a body due to its position is called its
(a) heat energy
(b) kinetic energy
(c) potential energy
(d) chemical energy

2. When a body is lifted through a height h, the work done on it appears in the form
of its
(a) kinetic energy
(b) potential energy
(c) chemical energy
(d) geothermal energy

3. The energy present in a body due to its height is called

(a) gravitational kinetic energy

(b) gravitational potential energy
(c) altitude energy

(d) gravitational energy

4. If A and B be real symmetric matrices of sizen n x n, then
(a) AAT=1
(b)y A=A
(c) AB=BA
(d) (AB)" = BA



3. Prerequisites

The comprehension knowledge of fundamentals of engineering science is required.

4. Theory behind

Assembly of stiffness matrix and load vector

3.6 ASSEMBLY OF THE GLOBAL STIFFNESS MATRIX AND LOAD VECTOR

We noted earlier that the total potential energy written in the form

1
=250k - 2q't - T4 - 3 PO,

can be written in the form

[T =3Q°KQ - Q'F
by taking element connectivity into account, This ste
element stiffness and force matrices. The assembly

from element stiffness matrices k* will first be shown here.
Referring to the finite element mode] in ¥ig. 3.20, let us consider the strain ener-

gy in, say, element 3. We have
Us = 1q"kq
or, substituting for k7,
U, = lq-r EAl 1 -1
27§ -1

For element 3, we have q = (s,

U, = 101.0:.0,.0,, 0]

o
0
0

0
0

0
0
0
0
0

0

i
LA,

£,
-E 1y

€

0

]‘]

Q4] Thus, we can write U, as

1

0
0
—E5A 3
£
E,Ag
£
0

IQL\
U

o |

Qs

LQSJ

p nvolves assembling K and F from
of the structural stiffness matrix K

(3.52a)

(3.52h)

(353

From the previous equations, we see that elements of the matrix k* occupy the third and
fourth rows and columns of the K matrix. Consequently, when adding element-strain
energies, the elements of k° are placed in the appropriate locations of the global K ma-
trix, based on the element connectivity; overlapping elements are simply added. We can

denote this assembly symbolicaily as

K 3K

#

(3.54a)

Similarly, the global load vector F is assembled from element-force vectors and

point loads as



The Galerkin approach also gives us the same assembly procedure. An example is now
given to illustrate this assembly procedure in detail. In actual computation, K is stored
in banded or skyline form to take advantage of symmetry and sparsity. This aspect is
discussed in Section 3.7 and in greater detail in Chapter 4.

Sample problem

Consider the bar as shown in Fig. E3.2, For each clement i, A, and £, are the cross-sectional
area and length, respectively. Each element | is subjected to a traction force T, per unit
length and a body force f per unif volume. The units of T;, £, 4, and s0 on are assumed to
be consistent. The Young’s modulus of the material is £, A concentrated load P, is applied
at node 2. The structural stiffness matrix and nodal load vector will now be assembled.

w 7
\ T 1
1 !
1
1

T| ‘ Al' L'l
12
{
Tz * le ‘42- L'?
! {13
{ !
LER J A by
{ i4
Ty . AuLy
1 2 E, f = constant
X
FIGURE E3.2

The element stiffiness matrix for each clement / is obtained from Eq. 3.26 as

EA| 1 -1
m — =
& == 11 1]



The element connectivity table is the following:

Element

[

o L bk =

g b bt e

hopowe pa bRk

The element stiffncss matrices can be “expanded” using the connectivity table and then
summed (or assembled) to obtain the structural stiffness matrix as follows:*

1 =1

00 0] 0 0 00 0
-1 1000 0 1 -10 0
EA EA
K-—{,—'nuuﬁa+T§u~11uu
19 0000 1o 0 o0 0 D
0 0000 0 0 0 0 0]
00 ¢ 0 0] (000 0 0
00 0 Do D00 0 ¢
EA
""'E—J'[}ﬂ 1 -1 0 +%ﬂﬂu 0 0
100 -1 10 ‘“looo 1 —
00 0 0 o 000 -1 1
which gives
*ﬂ A, ]
2 2 0 0 0
A, Al A; A
el e _
K=E 0 —ﬂz fl.}ﬂ __{!'_5 0
‘Ei FI Eﬂ .E']
0 0 - (f_a:J,ﬁ _As
£ 4G4 £,
0 0 0 _A A
| £ €




The global load vector is assembled as

(AbS 6% 0
2 2

A€ &1 A £, T
(11f+_u)+(ﬁ+£) P
2 2 2 2

At £5T; Al £

e (z_lf+_ﬂ_3)+( HHE&) L]0 !

2 2 2 2

(Asfsf ‘Ea'fi) (mw e:n)
—_ ] + 0
2 2 2 2

Ak €47,

f | GL 0
2 2 J

Finite element equations

THE FINITE ELEMENT EQUATIONS; TREATMENT OF 8
CONDITIONS OUNDARY

Finite clement equations are now develop
ary conditions,

Types of Boundary Conditions

After using a discretization scheme to model
expression for the total potential energy in the body as

T=2Q%Q - Q'F
where K is the structural stiffness mattix, F i5 tha

displacement vector. As discussed previously,
ness and force matrices, respectively,

um, from which we can determine nodal dis
reactions. Placemeats,l

ed after a consistent treatment of the bound-

the continuum, we have obtained an

global load vector, and  is the global
K and F are assembled from element stiff-
We now must arrive at the equations of equilibri-
ement siresses, and suppott

The minimum potential-energy theorem {Chapter 1) is now invoked. This theorem
is stated as follows: Of all possibie displacements that satisfy the boundary conditions of
a structural system, those corresponding to equilibrium configurations make the total po-
tential energy assume a minimum valie. Consequently, the equations of equilibrium can
be obtained by minimizing, with respect to Q, the potential energy I1 = 1 Q'KQ — Q'F

subject to boundary conditions. Boundary conditions are usually of the type

Op, = a1,0p, = a2..., @y, = a,



That is, the displacements along dofs p,, p,..., p, are specified to be equal to a,,
{dy, ..., d,, respectively. In other words, there are r number of supports in the structure,
with each support node given a specified displacement. For example, consider the bar
in Fig. 3.2b, There is only one boundary condition in this problem, Q;, = 0.

It is noted here that the freatmeni of boundary conditions in this section is applicable
te two- and three-dimensional problems as well. For this reason, the term dof is used
here instead of node, since a two-dimensional stress problem will have two degrees of
freedom per node. The steps described in this section will be used in all subsequent chap-
ters. Furthermore, a Galerkin-based argument leads to the same steps for handling
boundary conditions as the energy approach used subsequently.

There are multipoint constratnts of the type

BiQp, T B2y, = Bo (3.57)

where Bg, B, and 8, are known constants. These types of boundary conditions are used
in modeling inclined roller supports, rigid connections, or shrink fits.

5. Applications/ Simulation/ related Laboratory example
The assembly of stiffness matrix and load vector and associated finite element
equations for applying the boundary conditions are more useful while solving all one
dimensional problems.

6. MCQ-Post test

1. Which one of the following has the main property of a stiffness matrix?
(a) The sum of elements in any column must be equal to zero
(b) The sum of elements in any column must be not equal to zero
(c) The sum of elements in any column must be equal to zero
(d) None of these

2. In a particular axial deformation of bar problem, if one end is subjected by an
axial load and it is specified, then the type of boundary condition is
(a) Natural type
(b) Mixed type
(c) Essential type
(d) Cauchy's type

3. A bar is modelled as 1-D element only if its
(a) area of cross section is small
(b) M.1 is small
(c) length is very large compared to cross sectional area
(d) all of the above

4. Stiffness matrix contains information on
(a) geometry
(b) material properties
(c) both
(d) none



7. Conclusion
The assembly of stiffness matrix and load vector and finite element equations are
discussed.

8. References
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McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,

1989
e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.
9. Video

https://www.youtube.com/watch?v=e6FKKR2hwLc
https://www.youtube.com/watch?v=aU8SScEGneE

10.Assignments

1. Consider the bar shown in Figure. An axial load P=200x10°N is applied as shown.
Find the nodal Displacements, stress in each material and reactions forces.

|-——300 mm ——s+———400 mm ——
V
7 4
Z P 7
é»——- - > - - r/ﬁ - X

17 @ v
2 O
Aluminum Steel
Ay= 2400 mm? A= 600 mm*

E,= 70 X 10°Nim?  E;= 200 X 10° Nrm’


https://www.youtube.com/watch?v=e6FKKR2hwLc
https://www.youtube.com/watch?v=aU8SScEGneE

UNIT-2

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; One Dimensional Problems
Name of the Topic ; Quadratic shape functions

1. Aim and Objectives

2.

To know the knowledge on development of Quadratic shape functions
Pre-Test-MCQ type

2
1. The order of the differential equation 2x* % —33—y+ y=0is
X X
() 2
(b) 1
()0

(d) not defined

2. The solution of the differential equation x°+ Yy’ (Cji_y =4is
X

(@) X*+Yy°>=12x+cC
(b) X*+y*=3x+cC
) x*+y°*=3x+cC
(d) X*+y*=12x+c
Prerequisites

The knowledge of differential calculus required.

Theory behind
So far, the unknown displacement field was interpolated by linear shape functions

within each element. In some problems, however, use of quadratic interpolation leads
to far more accurate results. In this section, quadratic shape functions will be
introduced, and the corresponding element stiffness matrix and load vectors will be
derived. The reader should note that the basic procedure is the same as that used in
the linear one-dimensional element earlier.

Consider a typical three-node quadratic element, as shown in Fig. 3.11a. In the local
numbering scheme, the left node will be numbered 1, the right node 2, and the
midpoint 3. Node 3 has been introduced for the purposes of passing a quadratic fit
and is called an internal node. The notation x; = x-coordinate of node i, j= 1, 2, 3, is
used. Further, q = [g1,0203]" , where g1,92 and g3 are the displacements of nodes
1,2,and 3, respectively. The x-coordinate system is mapped onto a &-coordinate
system, which is given by the transformation



_2{-"‘ X3)
) A= X%

¢ (3.56)

From Eq. 3.86, we sce that £ = —1,0,and +1 at nodes 1,3, and 2 (Fig. 3.11b).
Now, in £-coordinates, quadratic shape functions N, , N, and N, wili be introduced a$

Ni(&) = -1¢(1 - (3.872)
N(8) =1g(1 4 ) (3.57b)
NlE) = (1+6)(1-¢ (3.87¢)

The shape function N, is equal to unity at node 1 and Zero at nodes 2 and 3. Similarly.
N, equals unity at node 2 and equals zero at the other W0 nodes: A equals unity al
node 3 and equals zero at nodes | and 2.The shape functions Ny, N, and N, are graphed
in Fig, 3.12. The expressions for these shape functions can be written down by inspet-

tion. For example, since N, = 0 at £ =0and N, = 0 g € = 1. we know that N, must
contain the product £(1 ~ £). That 18, M, is of the form

M= (1 - g) (339
1 3 2 3 2
e e e ————]
T .
] =
é £=0 |
= _1 = 1
(a) {b) o
FIGURE 3.11 Quadratic efemeng in x- and £-coordinates
N 5
1
. T w=leat+
N=-lea-o] e
i B
11 |
: s
' -
' 3 — ¢ ? 3 2
§= L { =0 f:: +1
N,

T v=tt+6)1-9

1

| ¥

X 3 2
FIGURE 3.12 Shape functions Ny, Ny, and N;.




The constant ¢ is now cbtained from the condition N, = 1 at £ = —1, which vyields
¢ = —} resulting in the formula given in Eq. 3.87a. These shape functions are called

Lagrange shape functions.
Now the displacement field within the element is written in terms of the nodal

displacements as
u=Ngq + Mg + N (3.89a)

or
u = Ng (3.89b)

where N = [Ny, N3, Ns]isa {1 X 3) vector of shape functions andq = (41, ¢, 2] isthe
(3 X 1) element displacement vector. At node 1, we see that ¥, = 1, M, = Ny = 0,and
hence i = ¢,. Similarly,u = gy at node 2 and # = ¢, at node 3, Thus, u in Eq.3.8%ais a

quadratic interpolation passing through 4, ¢, and ¢; (Fig. 3.13).
The strain ¢ is now given by

= % (strain—displacement relation)
- du df (chain rule)
d§ dx
__2 du (using Eq. 3.86) (3.90)
X~ % df
2| dN; ah, aN ing Eq. 3.89
IR PP D

u
1

]

u=Nygy = Noga + Naga

g1

Ul
f :

1 3 ¢

FIGURE 3.13  Interpoiation using quadratic shape functions.

Using Eqs. 3,87, we have

Ez

2 1-2¢6 1
[— 1+ —2¢|(q (3.91}

Xz — X 2 o2
which is of the form

e = Hq (3.92)



where B is given by

_____9__2__, _26 (3.93)

Using Hooke's law, we can write the stress as

= EBy (3.94)

. Applications/ Simulation/ related Laboratory example
The quadratic bar element is mainly used for complex profile of 1D problems

. MCQ-Post test

. The characteristics of the shape functions is/are

(a) the shape function has unit value at one nodal point and zero value at the
other nodes

(b) the sum of the shape function is equal to one

(c)a&hb

(d) none

. Primary variable in FEM structural analysis is

(a) force

(b) Displacement

(c) Stress

(d) Strain

. Each node of a quadratic 1-D beam element has degrees of freedom
a. 2

w b~

b.
C.
d.

. Why polynomial type of interpolation functions are mostly used in FEM analysis

(a) Itis easy to formulate and computerize the finite element equations

(b) Itis easy to perform differential or integration

(c) The accuracy of the results can be improved by increasing the order of the
polynomial

(d) All of these

. Conclusion
The quadratic shape function of 3 noded 1D bar element is discussed.
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9. Video

https://www.youtube.com/watch?v=XYbyuaYVQOh8

10.Assignments

1. For the vertical rod shown in Figure, find the deflection at A and the stress
distribution. Use E= I00MPa and weight per unit volume = 0.06N/cm? Comment
on the stress distribution.

~———— Area = 2500 cn2?



https://www.youtube.com/watch?v=XYbyuaYVQb8

UNIT-2

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : One Dimensional Problems
Name of the Topic : Applications to plane trusses

1. Aim and Objectives
To expertise in finite element analysis of plane truss analysis

2. Pre-Test-MCQ type

1. The finite element methods can be applied in areas.
(@) Thermal
(b) Soil and rock mechanics
(c) Noise Problems

(d) All
2. Determinant of assembled stiffness matrix before applying boundary conditions
is
@ <0
(b)=0
(©0
(d) depends on the problem
3. is/are the phase/s of finite element method
(a) Preprocessing
(b) Solution

(c) Post Processing
(d) All of these

3. Prerequisites
The basics of finite element analysis is required.

4. Theory behind- Applications to plane trusses

The finite element analysis of truss structures is presented in this chapter. A typical
plane truss is shown in Fig. 4.1. A truss structure consists only of two-force
members. That is, every truss element is in direct tension or compression (Fig. 4.2).
In a truss, it is required that all loads and reactions are applied only at the joints and
that all members are connected together at their ends by frictionless pin joints. Every
engineering student has, in a course on statics. analyzed trusses using the method of
joints and the method of sections. These methods. while illustrating the fundamentals
of statics. become tedious when applied to large-scale statically indeterminate truss
structures. Further, joint displacements are not readily obtainable. The finite element
method on the other hand is applicable to statically determinate or indeterminate



structures alike. The finite element method also provides joint deflections. Effects of
temperature changes and support settlements can also be routinely bandied.

€12 (LI 216 T

P] PZ Pj'

FIGURE 4.1 A two-dimensional truss.

A

~

FIGURE 4.2 A two-force member,

r

A typical plane-truss element is shown in local and global coordinate systems in Fig.
4.3. In the local numbering scheme, the two nodes of the element are numbered 1 and
2. The local coordinate system consists of the x' -axis, which runs along the element
from node 1 toward node 2. All quantities in the local coordinate system will be
denoted by a prime (*).The lobal x-,y-coordinate system is fixed and does not depend
on the orientation of the element. Note that x,y, and z form a right -handed coordinate
system with the z-axis coming straight out of the paper. In the global coordinate
system every node has two degrees of freedom (dofs).A systematic numbering
scheme is adopted here: A node whose global node number is j has associated with it



dofs 2j - 1 and 2j. Further, the global displacements associated with node j are Q-1
and Q.;, as shown in Fig. 4.1.

Let g1 and g5 be the displacements of nodes 1 and 2, respectively, in the locat
coordinate system. Thus, the element displacement vector in the local coordinate system
is denoted by

q = [qha:] (a.1)

The clement displacement vector in the giobal coordinate system is a (4 X 1) vec-
tor denoted by

q = [‘111QZt '?3! Q'4]T (4-2)

The relationship between q' and q is developed as follows: In Fig. 4.3b, we see that g]
equals the sum of the projections of ¢, and g, onto the x'-axis. Thus,

g1 = gy 058 + gysin f (4.3a)
Similarly,
g; = qacosf + gysin 8 {4.3b)

At this stage, the direction cosines £ and m are introduced as { = cosfandm = cosé
(= sin ). These direction cosines are the cosines of the angles that the local x’-axis
makes with the global x-, y-axes, respectively. Equations 4.3a and 4.3b can now be writ-
ten in matrix form as

q =14 (4.4)
where the transformation matrix L is given by
£ m 0 0
= 4.5
L [n 0 ¢ m:| “3)

Formulas for Calculating ¢ and m

Simple formulas are now given for calculating the direction cosines £ and m from nodal
coordinate data. Referring to Fig. 4.4, let (x,, y,) and (x;, ) be the coordinates of nodes
1 and 2, respectively. We then have

(%20 ¥2) P
§=cod =

14

(= rv m = cosr= }'z;)ﬁ(: sing)
4

te =V, — ) + (-9

(x1, 11) 1

(2~}
FIGURE 4.4 Direction cosines.

Xy — X h o0
=12 71 = 4.6
4 ‘. m € (4.6)

where the length £, is obtained from
£ = V(xz —x) + (n - ny {4.7)




Element Stiffness Matrix

An important observation will now be made: The wruss element is @ one-dimensional
element when viewed in the local coordinate system, This observaiton allows us 1o use pre-
viously developed results in Chapter 3 for one-dimensional elements. Consequently,
from Eq. 3.26, the element stiffness matrix for a truss element in the local coordinate sys-

tem is given by
EA, 1 -1
k=——
£, [—l 1] (4.8)

where A, is the element cross-sectional area and E, is Young’s modulus. The problem
at hand is to develop an expression for the element stiffness matrix in the global coor-
dinate system. This is obtainable by considering the strain energy in the element. Specif-
ically, the element strain energy in local coordinates is given by

U, =3q"k'q (4.9)
Substituting for " = Lqinto Eq.4.9, we get
U, = 1{"[L'K'L]q (4.10)

The strain energy in global coordinates can be written as

U, = 3q"kq (4.11)

where k is the element stiffness matrix in global coordinates, From

. - . the previous equa-
tion, we obtain the element stiffness matrix in giobal coordinates as i

k=L%L (4.12)

Substituting for L from Eq. 4.5 and for k’ from Eq. 4.8, we get

£ tm —-&  —fm

K= E.A, E;n m —tm
ee -£ —€m 82 £

~tm —-mt

(4.13)

The element stiffness matrices are assembled in the wsual manner to obtain the struc-

tural stiffness matrix. This assembly is illustrated in Example 4.1. The computer logic

for directly placing element stiffness matrices into glob : -
line solutions is explained in Section 4.4. Blobal matrices for banded and sky

5. Applications/ Simulation/ related Laboratory example

The main application of plan truss element used in mechanical truss problems.



Lab Name: ME7P8/ Simulation & Analysis Laboratory

Determine the nodal deflections, reaction forces, and stress for the truss system
shown below (E = 200GPa, A = 3250mm?).

/
11 |
280 kN A 30N 3q18m

6. MCQ-Post test

1. is a structure made of slender members which are joined together
at their end points.
(@) Truss
(b) Beam
(c) Pillar
(d) Support
2. trusses lie on a plane.
(a) Planar
(b) 2D
(c) Linear
(d) 3D

3. To design the trusses which of the following rules is followed?
(@) All the loads are applied by the use of cables
(b) The loads are applied at the joints
(c) All the loads are not applied at the joints
(d) The loads are not applied at all to the joints

4. In truss analysis, the reactions can be found by using the equation
(a) R=KQ+F

(b) R=KQ-F

(c) R=K+QF

(d) R=K-Q



7. Conclusion
The application of truss element suitably applied in plane truss problems.

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,

1989
e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.
9. Video

https://www.youtube.com/watch?v=m5Ng0C5ZFJ8

10.Assignments
1. For the two-bar truss shown in Figure, determine the displacements of node 1
and the stress in element 1-3.

12 kN
SO0 mm —————+
I
-\i P

1
1
:
E=T0GPa 1 forboth g0y, |
|
|
I
1

A =200 mm?] members

2.For the three-bar truss shown in Fig. P4.7, detennine the displacements of node |
and the stress in element 3.

Area of cross @

section of

each member = 250 mm?
E =200 GPa



https://www.youtube.com/watch?v=m5Ng0C5ZFJ8

UNIT-3

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Two Dimensional Continuum
Name of the Topic : Introduction — Finite element modelling
1. Aim and Objectives
To understand the Finite element modeling of Two Dimensional Continuum
2. Pre-Test-MCQ type
1. Number of displacement polynomials used for an element depends on
(a) Nature of element
(b) Type of an element
(c) Degrees of freedom
(d) Nodes
2. At fixed support, the displacements are equal to
(@1
(b) 2
(c) 3
(d)0
3. What is the traction force of a 2D body?
(a) Force per unit area
(b) force per unit length
(c) force per unit volume
(d) none of these
3. Prerequisites
e The vital information of one dimensional FEA problems is required.
e The basics of engineering mechanics is required.
4. Theory behind

Introduction

The two-dimensional finite element formulation in this chapter follows the steps used
in the one-dimensional problem. The displacements, traction components, and
distributed body force values are functions of the position indicated by (x, y). The
displacement vector u is given as

u=[u,v]"

where u and v are the x and y components of u, respectively. The stresses and strains
are given by



T

o=[ oy, Oy, ;]
T

e=[ &, &y, &)

From Fig 5.1, representing the two-dimensional problem in a general setting. the
body force, traction vector, and elemental volume are given by

f=[ff,] T=[T,,T,] and dv=tda

where t is the thickness along the z direction. The body force f has the units
force/unit volume, while the traction force T has the units force/unit area. The strain-
displacement relations are given by

t = thickness at (x, v)
Ju:f; = body foree components
- Per unit volume at {x. y)

FIGURE 5.1 Two-dimensional problem.

Stresses and strains are related by

o=D¢
The region is discretized with the idea of expressing the displacements in terms of
values at discrete points.



Finite element modelling

The two dimensional region is divided into straight-sided triangles. Figure 5.2 shows
a typical triangulation. The points where the comers of the triangles meet are called
nodes, and each triangle formed by three nodes and three sides is called an element.
The elements fill the entire region except a small region at the boundary.1his unfilled
region exists for curved boundaries, and it can be reduced by choosing smaller
elements or elements with curved boundaries.1be idea of the finite element method is
to solve the continuous problem approximately, and this unfilled region contributes
to some part of this approximation. For the triangulation shown in Fig. 5.2, the node
numbers are indicated at the corners and element numbers are circled.

it

FIGURE 5.2  FHiite slement discretization.

In the two-dimensional problem discussed here, each node is permitted to displace

in the two directions x and y. Thus, each node has two degrees of freedom (dofs).As
seen from the numbering scheme used in trusses, the displacement components of
node j are taken as Q.1 in the x direction and Qy; in the y direction. We denote the
global displacement vector as

Q=[Q1,Q2,....Qn]"

where N is the number of degrees of freedom.



Computationally, the information on the triangulation is to be represented in the form
of nodal coordinates and connectivity. The nodal coordinates are stored in a two
dimensional array represented by the total number of nodes and the two coordinates
per node. The connectivity may be clearly seen by isolating a typical element, as
shown in Fig. 5.3. For the three nodes designated locally as 1,2, and 3, the
corresponding global node numbers are defined in Fig. 5.2. This element connectivity
information becomes an array of the size and number of elements and three nodes per
element. A typical connectivity representation is shown in Table 5.1. Most standard
finite element codes use the convention of going around the element in a counter
clockwise direction to avoid calculating a negative area.

Table 5.1 establishes the correspondence of local and global node numbers and the
corresponding degrees of freedom. The displacement components of a local node j in
Fig. 5.3 are represented as 0. and d; in the x and y directions, respectively. We
denote the element displacement vector as

9=[01.G2,..-,06]"

TABLE 5.1 Element Connectivity

Three nodes
Element namber
c 1 2 3
1 1 2 4
2 4 2 i
H 6 7 10
20 13 16 15

a4

T (xh}'.?]

9.

Lo
T
(eny)
—x

FIGURE 5.3 Triangular elemen,



Note that from the connectivity matrix in Table 5.1, we can extract the q vector from
the global Q vector, an operation performed frequently in a finite element program.
Also, the nodal coordinates designated by (x1,y1), (X2,y2), and(xsys) have the global
correspondence established through Table 5.1. The local representation of nodal
coordinates and degrees of freedom provides a setting for a simple and clear
representation of element characteristics.

5. Applications/ Simulation/ related Laboratory example

The finite element modeling of two dimensional problems as applicable for sheet
metal problems

6. MCQ-Post test

1. On gathering stiffness and loads, the system of equations is given by
(a) KQ=F
(b) KQ#F
(c) K=QF
(d) K#QF
2. To solve the FEM problem, it subdivides a large problem into smaller, simpler
parts that are called
(a) finite elements
(b) infinite elements
(c) dynamic elements
(d) static elements
3. The applications of finite element method in two dimensional analyses are:
(a) gravity of dams
(b) axi-symmetric shells
(c) stretching of plates
(d) all
7. Conclusion
The two dimensional domain of finite element modeling effectively interpreted.

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,
1989

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.



9. Video

https://www.youtube.com/watch?v=z8gGx0MQbzQ

10. Assignments

1. Discretize the Mechanical bracket using plane element.



https://www.youtube.com/watch?v=z8gGx0MQbzQ

UNIT-3

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Two Dimensional Continuum
Name of the Topic : Scalar valued problem — Poisson equation —

Laplace equation

1. Aim and Objectives

e To provide knowledge in 2D elements

e To study heat conduction problems using finite element method
2. Pre-Test-MCQ type

1. The quantity which has the only magnitude is called
a) A scalar quantity
b) A vector quantity
c) A chemical quantity
d) A magnitude quantity

2. The equation is said to be Laplace equation if the Laplacian of a scalar filed
resultsinto
(a) zero
(b) positive value
(c) negative value
(d) infinity

3. A Laplace Transform exists when

A. The function is piece-wise continuous
B. The function is of exponential order
C. The function is piecewise discrete

D. The function is of differential order

() A&B
(b) C&D
() A&D
d)B&C

3. Prerequisites
The knowledge of Laplace transform and basics of poission equation is required.



4. Theory behind

We consider second-order partial differential equations which involve the scalar-
valued dependent variable u = u(z, y). A simple example of the equations of this
type is the Poisson’s equation. We will present some examples of solving Poisson’s
and Laplace equations using the linear triangular and bilinear rectangular element.

6.1. Single Dependent Variable Problems

The finite element analysis of two-dimensional boundary value problems involves

the following steps:

1. The boundary value problem is defined in a given domain §2 by a second-order
partial differential equation that is subject to prescribed boundary and initial

values, and

2. The boundary 962 of the domain €2 is a closed curve in most problems.

Thus, the finite elements for the domain €2 are two-dimensional figures, such as
triangles, rectangles, or quadrilaterals. A mesh of these elements covers the given
domain, and the solution of the boundary value problem is approximated over this
finite element mesh. Obviously, such a solution contains the discretization as well
as approximation errors; the former error is because of the approximation of the

domain, and the latter because of the approximation of the numerical solution.

We consider the general second-order equation

__f._..___-—--}-cu—f =0, in £, (6.1)

where c and f are known functions of = and y, subject to the prescribed boundary
conditions: u = @onI'y,and —(Gy nz+Gany) = gn on 'y, where T UL, = 90
andFlr‘]FE:@,and

du du du du
GIE{IH——F&M— GEEGEI._‘+‘

oz dy’ oz 2oy (6.2)

with a;; (i, 7 = 1, 2), are known functions of x and y. Note thatif a;; = a = ags,
a12 = 0 = agy, and ¢ = 0, then Eq (6.1) reduces to the Poisson’s equation

0 du d s Ou .
—% (ﬂa) —é';(ﬂugg;)—f in §2. (63)



A mesh of quadrilateral elements in the region 2 is shown in Fig. 6.1. This mesh
consists of different geometric figures of triangular, rectangular, or quadrilateral
shapes. A typical element is denoted by Q(¢), and the discretization error is
represented as the portions of the region (shaded in Fig. 6.1) between its boundary
I' = 99 and the boundaries of the elements that lie toward the boundary I'.

Discretization Error

Fig. 6.1. Finite Elements.

6.1.3. Evaluation of Stiffness Matrix and Load Vector. We
assume that the coefficients a;; and ¢ and the function f are constant. Then the
matrix K and the vector f are evaluated as described below.

FOR A TRIANGULAR ELEMENT (¢), the matrix K(®) is composed of four
double integrals

(e} a {E} (e (e)
HII /f a¢ (’ﬁ Hl? ]f 6¢ ¢' —L _dr {iy,
e« 0z 8z Qle) Ay

B(f?{-B) a¢_(e} ]
HZ = i 775 dedy, H,--:f/ (©) 5(¢) 4o dy.
the} dy Oy v ? nle ¢1 ¢J T

Thus,

(6.9)

K© = ap HY + apnH? 4 ay (H?) +apH? +cH (6.10)

The vector £(¢) is defined by

7O = / [ oydady (6.11)



Note that the integrals in (6.10) and (6.11) are of the type

Ipn = f/ z™y" dx dy. (6.12)
Qe

Using formula (5.18) the integrals I, for m,n = 0,1,2, have the following
values:

3
!
— Ale) = e} e}l Io=A®% &= 3 ;ﬂn

k=1 k=1
Al ( S, gn2 © (&, 2
20 = Z%"‘gﬂf )! Ipy = (ZykJrgy)
2 \i= 12 \i3 (6.13)

Then, using the results in (5.3)«5.4) we have 3;." = b, and —éy‘—— = ¢,

which, in view of formulas (6.9), yield

HI = A© b,
H? = A© bl '[.‘33',
H22 = A, [e [EJ

ij H
Hi; = A [agela{-c} + (aie}b(.e] + a[-e)bm) T+ (EL ,{B) + r{e) EE}) y]

+ 8 Ioo + (607 + 57 ) Ty + ¢l Lo
f (e) gle) Q{e} B an{e}.

(e} _
A (6.14)

The values of K(¢) and £(¢) are then evaluated for each element 2(¢) from the data
(coordinates) of the nodes.

5. Applications/ Simulation/ related Laboratory example

The application of triangular elements is constructively useful for 2D problems



6. MCQ-Post test

1. In free space, the Poisson equation becomes
(a) Maxwell equation
(b) Ampere equation
(c) Laplace equation
(d) Steady state equation

2. Suppose the potential function is a step function. The equation that gets satisfied is
(a) Laplace equation
(b) Poisson equation
(c) Maxwell equation
(d) Ampere equation
3. Poisson equation can be derived from which of the following equations?
(a) Point form of Gauss law
(b) Integral form of Gauss law
(c) Point form of Ampere law
(d) Integral form of Ampere law

4. Poisson's and Laplace equations can be easily derived from
(@) Coulomb's law
(b) Gauss law
(c) Ampere's law
(d) Faraday's law
7. Conclusion
The implementation of Poisson and Laplace equations were discussed with
2D domain.
8. References
e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.
e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,

1989
e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.
9. Video

https://www.youtube.com/watch?v=nnc6HBvyxel

10.Assignments
1. Write short notes on effectiveness of Poisson and Laplace equations for two
dimensional problems.


https://www.youtube.com/watch?v=nnc6HBvyxeI

UNIT-3

Name of the Course ; FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Two Dimensional Continuum
Name of the Topic : Triangular elements — Element stiffness matrix —

Force vector

1. Aim and Objectives
e To understand the use of 2D Triangular elements
e To familiarize the Element stiffness matrix and Force vector for 2D domain.

2. Pre-Test-MCQ type

1. As the number of elements is increased, the problem converges to
(a) Exact solution
(b) Partial exact solution
(c) Approximate solution
(d) All of these
2. Convergence is a process of
a. Dividing the domain
b. Converting local coordinates into natural coordinates
c. Arriving at a solution that is close to the exact solution
d. Arriving at a solution that is far from the exact solution

3. Prerequisites
The technical information of engineering mathematics is needed.

4. Theory behind
The displacements at points inside an element need to be represented in terms of the
nodal displacements of the element. As discussed earlier, the finite element method
uses the concept of shape functions in systematically developing these interpolations.
For the constant strain triangle. the shape functions are linear over the element. The
three shape functions N;. N, and N3 corresponding to nodesl, 2, and 3, respectively.
are shown in Fig. 5.4. Shape function Nt is 1 at node 1 and linearly reduces to O at
nodes 2 and 3. The values of shape function N; thus define a plane surface shown
shaded in Fig. 5.4a. N, and N3 are represented by similar surfaces having values of 1
at nodes 2 and 3, respectively, and dropping to O at the opposite edges. Any linear
combination of these shape functions also represents a plane surface. In particular, N,
+ Ny + N3 represents a plane at a height of 1 at nodes 1,2, and 3, and, thus, it is
parallel to the triangle 123. Consequently, for every Ni. N2, and Ns.

N1+ No+ Na=1

N, Ny, and N, are therefore not linearly independent; only two of these are indepen-
dent. The independent shape functions are conveniently represented by the pair £, 7 as

M=¢ N=7 N=1-§f—-1n (5.10)



where £, 7 are natural coordinates (Fig. 5.4). At this stage, the similarity with the one-
dimensional element (Chapter 3) should be noted: in the one-dimensional problem the
x-coordinates were mapped onto the £ coordinates, and shape functions were defined
as functions of £. Here, in the two-dimensional problem, the x-, y-coordinates are mapped
onto the é-, y-coordinates, and Shape functions are defined as functions of £ and .

The shape functions can be physically represented by area coordinates. A point
(x, y) in a triangle divides it into three areas, 4, A, and A3, as shown in Fig 5.5.The
shape functions N, N,, and N; are precisely represented by

HAGURE 5.4 Shape functions.



FIGURE 55 Arsa coordinates,

A Ay A

M= M=y M=
where A is the area of the element. Clearly, Ny + N, + N; = 1 at every point inside
the triangle. :

(5.11)

Efement Stiffness

We now substitnte for the strain from the ¢lement strain—displacement relationship in
Eq. 5.25 into the element strain energy U, in Eq. 5.28b, to obtain

U, = % f € Det dA {5.293)
[

= % [ q"B'DBq dA

2

Taking the element thickness t, as constant over the element and remembering that all
terms in the D and B matrices are constants, we have

U, = %qTBTDBtE( / dA)q (5.29b)
Now, [ dA = A,,where A, is the area of the element. Thus,
U, = 5q"1,A,B"DBq (5.25¢)
ar
U, = 3q"kqy (5.294)

where k° is the clement stiffness matrix given by

k* =1 ABDB (5.30)



Force Terms

The body force term [ u”ft d.A appearing in the total potential energy in Eq. 5.28b is con-
sidcred first. We have

/qurdA =1, f (uf + vf,) dA

Using the interpolation relations given in Eq. 5.12a, we find that

[wnan = afes, | an) + fus, [ ran)

va(ef, [ Man) +a(uh, [ Maa) (533)

+ qs(t,f,-[NgdA) + qﬁ(t,,f,,/;N;dA)

From the definition of shape functions on a triangle, shown in Fig. 5.4, /. N, dA represents
the volume of a tetrahedron with base area A, and height of corner equal to 1 {nondi-
mensional). The volume of this tetrahedron is given by x Base area X Height (Fig. 5.6)

f NdA = A, (5.34)
Similarly, f N,dA = [ N;dA = { A,, Bquation 5.33 can now be written in the form

f w'ltdA = q'f (5.35)

3

. Applications/ Simulation/ related Laboratory example

The application of constant strain triangular element is widely used in various plane
stress and strain problems.

. MCQ-Post test

1. When thin plate is subjected to loading in its own plane only, the condition is
called
(a) Plane Stress
(b) Plane strain
(c) Zero stress
(d) Zero strain



2. ldentify the sequence of steps in Finite Element Method:
1. Solving for primary variables
2. Imposition of boundary conditions
3. Post processing
4. Finite Element Discretization
5. Assemblage.
6. Deriving element equations

(a) 1-2-3-4-5-6
(b) 2-1-4-3-6-5
(C) 4-1-5-2-6-3
(d) 4-6-5-2-1-3

3. A 2-D structural element is a
(@ Truss Element
(b) Beam element
(c) CST element
(d) All of them

4. Number of displacements for 3-noded CST element is
@7
(b) 6
(c) 4
(d) 5
5. The determinant of an CST element stiffness matrix is always
(@) One
(b) zero
(c) depends on size of [K]
(d) Two

6. Example for plane stress problem is
(a) Strip footing resting on soil mass
(b) A thin plate loaded in a plane
(c) A long cylinder
(d) A gravity dam



7. Conclusion

The 3 noded CST element and associated shape functions were interpreted.

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.
e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.

McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International

Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,

1989

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private

Limited, India.

9. Video

https://www.youtube.com/watch?v=m6u4lOK6RyY

https://www.youtube.com/watch?v=DCGm0gglXcs

10.Assignments

1. For the CST element shown in Figure, find the element stiffness matrix. Take t=

20mm and E= 2x10° N/mm?.

y A

(%3, ¥a)
(200, 400)

nmﬁml
(%1, ¥q)

(400, 100)
(12, ¥2)
B e o


https://www.youtube.com/watch?v=m6u4lOK6RyY
https://www.youtube.com/watch?v=DCGm0qgIXcs

UNIT-3

Name of the Course ; FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Two Dimensional Continuum
Name of the Topic : Galerkin approach - Stress calculation —

Temperature effects
1. Aim and Objectives

e To learn the formulation of stiffness matrix for CST element using galerkin
approach
e To find the stress and temperature for 2D problems.

2. Pre-Test-MCQ type

1. The elastic stress strain behaviour of rubber is
(@) Linear
(b) Non-linear
(c) Plastic
(d) No fixed relationship
2. Effect of a force on a body depends upon
(a) Magnitude
(b) Direction
(c) Position or line of action
(d) All of the above

3. The value of Poisson's ratio for steel is between

(@)0.01to 0.1
(0)0.23t0 0.27
(€)0.25t0 0.33
(d)0.4t0 0.6

3. Prerequisites

1. The knowledge of engineering mechanics, strength of materials, Materials
science and engineering are required.
2. The fundamental knowledge of basics of engineering mathematics



4. Theory behind

Galerkin Approach
Following the steps presented in Chapter 1, we introduce

¢' = [d’xn ‘bfv]‘ll (5‘46)
and

od, 9, a4 b IV

x5y oy * (5.47)

where ¢ is an arbitrary (virtual) displacement vecto i i
. L Lc -
ditions. The variational form is given by onsistent with the boundary cor

£ a'e(b)rdA ~ (/;ilerdA + j;qﬂ"n d+ 3, ¢fg) =0 (548

where the first term represents the internal virtual work
ses represents the external virtual work, On the discretj '
tion hecomes

; [!I'DE(d‘]ldA - (iE, ld])’[ffiﬁ + ['#'TT! dé + Ed:;]’r{) =0 (5_49)

The expression in parenthe-

Using the interpolation steps of Eqs. 5.12-5.14, we express

P = Ny (5.50)
e(d) = By (5.51)

where
* = [‘I’I: ‘I’Io ll’:h"-'d; '-I'St l['ﬁ]-r (552)

represents the arbitrary nodal displacements of element e. The global nodal displacement
variations ¥ are represented by

¥ = [q’la ’!’2:--- ' qu]T (5*53)
The element intemnal work term in Eq. 5.4% can be expressed as
/ e De(d)tdA = / 9 B DBt dA
[ [

Noting that all terms of B and D are constant and denoting 1, and A4, as thickness and
arca of element, respectively, we find that

¢ed region, the previous equa-



[ e'De(d)t dA = q'B'DB, [ dA ¢

= g L, A B DB (5.54)
= g k'

where k* is the element stiffness matrix given by
k* =14 B DB (5.55)

Stress Calculations

Since strains are constant in a constant-strain triangle (CST) element, the correspond-
ing stresses are constant. The stress values need to be calculated for each element. Using
the stress-strain relations in Eq. 5.6 and element strain—displacement relations in
Eq.5.25, we have

o =DBg (5.60)

The connectivity in Table 5.1 is once again needed to extract the ¢lement nodal dis-
placements g from the global displacements vecter Q. Equation 5.60 is used to calculate
the element stresses. For interpolation purposes, the calculated stress may be used as the
value at the centroid of the element.

Principal stresses and their directions are calculated using Mohr's circle relation-
ships. The program at the end of the chapter includes the principal stress calculations.

Detailed calculations in Example 5.6 illustrate the steps involved. However, it is ex-
pected that the exercise problems at the end of the chapter will be solved using a computer.

Temperature Effects

If the distribution of the change in temperature AT'(x, y) is known, the strain due to
this change in temperature can be treated as an initial strain €,. From the theory of me-
chanics of solids, &, can be represented by

€ = [aAT, aAT,0]7 (5.61)
for plane stress and
€ = {1 + v}[aAT,aAT,0|" (5.62)
for plane strain.The stresses and strains are related by
o =Dle - ¢) (5-63)

The effect of temperature can be accounted for by considering the strain eneIrgy
term. We have



The effect of temperature can be accounted for b

y considering the strain energy
term. We have &

1
U=3 [ (e~ &Pl - g

1 .
=5 f (e'De — 2e"De; + e{{n;u]f dA (5.64)

The first term in the Previous expansion gives the stiffness matrix derived earlier. The
last term 15 a constant, which has no cffect on the minimization process. The middle

term, which yields the temperature load, is now considered in detail. Using the strain-
displacement relationship € = By, '

[ eDeidn = 3 DA, (5.65)

This stepTis directly obtained in the Galerkin approach where € will be e™(¢) and g7
will be .
It is convenient to designate the element temperature load as

©° = 1,A,B"De, (5.66)
where .
a° = [91, Bg, B;, Bd,, 95, 95]T (5.67)

The vector & is the strain in Eq. 5.61 or 5.62 due to the average temperature change in
the element. ©° represents the element nodal load contributions that must be added
to the global force vector using the cormectivity.

The stresses in an element are then obtained by using Eq. 5.63 in the form

o = D(Bq — &) (5.68)

5. Applications/ Simulation/ related Laboratory example
The 2D FEA simulations are widely applicable for plane stress and strain
problems(i.e. sheet metals processing)

6. MCQ-Post test

1. When a thin plate is subjected to loading in its own plane only, the condition is
called
(a) plane stress
(b) plane strain
(c) zero stress
(d) zero strain



2. In CST element is constant
(a) Stress
(b) Strain
(c) shape function
(d) All

3. Stiffness matrix for 2D CST element
(a) B'DBA-t
(b) B'D- BAt
(c) B'DB+At
(d) B'DBAt

4. A three noded triangular element has a stiffness matrix of order

@2x2
(b)y4x4
(c)6x6
(dy1x1
5. Stress — Strain relationship matrix for two dimensional plane stress

(@) 5x5(b)4x4(c)6x6(d)3x3

6. In 2D finite element analysis, when thickness is very small as compared to the size
of the domain, which of the following condition should be considered?

a. Serendipity conditions
b. Plane strain conditions
c. Axis-symmetric conditions
d. Plane stress conditions
7. A 2D CST strain-displacement matrix[B] of order
a) 2x2
b) 4x4
c) 3x6
d) 3x4
8. A 2D CST strain-displacement matrix[B] of order
a) 2x2
b) 4x4
c) 3x6

d) 3x4



9. Conclusion
The evaluation of Stress calculation and Temperature effects were discussed.
10.References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,
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11.Video

https://www.youtube.com/watch?v=yWRgyWBtnAc
https://www.youtube.com/watch?v=3WtCixoFHIY

12.Assignments
1. Find the element stresses for CST element shown in Figure.

i
(15, 10)
3

1

| (10, 7.5)
2

|
| (15, 5)
———————P &
2. Solve the plane stress problem in Figure using three different mesh divisions.
Compare your deformation and stress results with values obtained from elementary

beam theory.
10 KN

E=T01GPa
v =033
Thickness = 1) mm

)

|
|


https://www.youtube.com/watch?v=yWRqyWBtnAc
https://www.youtube.com/watch?v=3WtCixoFHIY

UNIT-4

Name of the Course ; FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Axisymmetric Continuum
Name of the Topic : Axisymmetric formulation

1. Aim and Objectives

e To focus on the Axisymmetric formulation for a Axisymmetric Continuum
2. Pre-Test-MCQ type

1. Global axes are
(a)defined for the entire system.
(b) defined for co-ordinates
(c)defined for both entire system and co-ordinates
(d)none of these
2. Characteristic of shape function is
(@) It has unit value at one nodal point and zero value at other nodal points
(b) The sum of shape function is equal to one.
(c) Both (a) and(b) correct
(d) Both (a) and(b) incorrect

3. Prerequisites
The engineering mathematics and engineering skill on axisymmetric domain
required.

4. Theory behind

Problems involving three-dimensional axisymmetric solids or solids of revolution,
subjected to axisymmetric loading, reduce to simple two-dimensional problems. Because of
total symmetry about the z-axis, as seen in Fig. 6.1a, all deformations and stresses are
independent of the rotational angle 6. Thus, the problem needs to be looked at as a
twodimensional problem in rz, defined on the revolving area (Fig. 6.1b). Gravity forces can
be considered if acting in the z direction. Revolving bodies like flywheels can be analyzed
by introducing centrifugal forces in the body force term. We now discuss the axisymmetric

problem formulation.



z w = [u,w|T z
T=[7, T,
' f=[f, fz]T
P=[p,P]"

P; distributed P;
on circle

: Revolving
_____ area A
% dA
T ‘ Boundary
_________ (r.z) L
el N
R
d —y > T
f
a)
( (b)

FIGURE 6.1 Axisymmetric problem.

6.2 AXISYMMETRIC FORMULATION

Considering the elemental volume shown in Fig. 6.2, the potential energy can be writ-
ten in the form

2n 2w 2er
= l/ /cTerdA ae - / /ller dAdo — f /u'pl‘r dtds — 3 wP
2 /s Ja o Ja o JL i

(6.1)

where r d¢ df is the elemental surface area and the point load P; represents a line load
distributed around a circle, as shown in Fig. 6.1.

All variables in the integrals are independent of 6. Thus, Eq. 6.1 can be written as

M= 2«(% f oTerdA — f u'trda - f u"‘Trde) -SuP (62
A A L i

where
u=[uw (63)
t=[f.£]" (6.4)
T=(71,T,]" (6.5)



From Fig. 6.3, we can write the relationship between strains € and displacements u as

€= [Er! €, 7rz!€91-r

T
The stress vector is correspondingly defined as
o=le, 0,7, 0 (6.7)
The stress—strain relations are given in the usual form, viz.,
o = De (6.8)

dv=rd6drdz
o =l"d6 dA

FIGURE 6.2 Elemental volume.

5. Applications/ Simulation/ related Laboratory example
The application of axisymmetric used in many engineering disciplines.

6. MCQ-Post test
1. A symmetric structure can be analyzed by modeling one symmetric part

(@ Depending on applied loads

(b) Depending on boundary conditions

(c) Always yes

(d) Depending on applied loads & boundary conditions



2. The example of cooling tower is considered as
(@) Plane stress
(b) Plane strain
(c) Axisymmetric
(d)  none of the these
3. Open ended thin cylinder is considered as
(a) Axisymmetric
(b) Plane strain
(c) Plane stress
(d) All of the these

7. Conclusion

The axisymmetric formulation and relative forces and, boundary conditions were
discussed.

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,

1989
e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.
9. Video

https://www.youtube.com/watch?v=sZQ pX Lus4

10.Assignments

1. Write short notes about the formulation of axisymmetric condition


https://www.youtube.com/watch?v=sZQ_pX_Lus4

UNIT-4

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Axisymmetric Continuum
Name of the Topic : Element stiffness matrix and force vector

1. Aim and Objectives
e To Evaluate the element stiffness matrix and force vector

2. Pre-Test-MCQ type

1. Global stiffness matrix size is calculated by
(a) Number of nodes x Degrees of freedom per node
(b) Number of nodes + Degrees of freedom per node
(c) Number of nodes -Degrees of freedom per node
(d) None of these
2.  What are the conditions for a problem to be axisymmetric?
(a) The problem domain must be symmetric about the axis of revolution All
(b) Boundary condition must be symmetric about the axis of revolution All
(c) Loading condition must be symmetric about the axis of revolution
(d) All of these
3. Prerequisites
The engineering mathematics and engineering skill on axisymmetric domain
required.
4. Theory behind

FINITE ELEMENT MODELING: TRIANGULAR ELEMENT

The two-dimensional region defined by the revolving area is divided into triangular
elements, as shown in Fig. 6.4. Though each element is completely represented by the area
in the rz plane, in reality, it is a ring-shaped solid of revolution obtained by revolving the
triangle about the z-axis. A typical element is shown in Fig. 6.5.

'The definition of connectivity of elements and the nodal coordinates follow the
steps involved in the CST element discussed in Section 5.3. We note here that the - and
z-coordinates, respectively, replace x and y.

Using the three shape functions N, N,, and N;, we define

u = Nq (6.13)
where u is defined in (6.3) and
A A
N [0 N O N O N3:| (6.14)
q= [qls g2, 43, Q4. dgs, q&]T (6.15)

If we denote N; = £ and N, = 7, and note that ¥y = 1 ~ £ — 5, then Eq. 6.13 gives

u=¢q +nmg:+ (1 — € — n)gs
w=¢g+tng+ (1 - € g (6.16)



@2j-1

FIGURE 6.5 Axisymmetric triangular element.



By using the soparametric representation, we find
r=én+nn+(1-£-qn
2= g7+t (1 - £ — )z (6.17)

The chain rule of differentiation gives

du du
3 ar
=] 6.1%
u| =Y o (618)
on 8z
and
ow]  (aw
0 or
= 19
dw " ow (6
n 9z
where the Jacobian is given by
J=[m m] (6.20)
23 23

In the definition of J earlier, we have used the nota

: tonr, =p —r.andz.. = 2, — &
The determinant of J is ; LT i

detd = 7,203 — ryzy, (6.21)

Recall that |det J| = 24,. That is, the absolute value of the determinant of J equals twice
the area of the element. The inverse relations for Eqs. 6.18 and 6.19 are given by

du au aw 3w

or . ot ar ) 8
= d =J1! 6.22
du[ T You[ ™9 Yow 3w €2

2z an a8z on

where
- 1 Zz3 13

J'= 6,23
detJ [_fzs £13 ] ( )

Introducing these transformation relationships into the strain—displacement relations
in Eq. 6.6 and using Eqs. 6.16, we get

rlza(f}t —gs) — i3(q — gs)

detJ
—r3(g — 4s) + 1s(3 — 46)
detJ
€= (g — qs) + nial@ — Gs) T 223(@ = ge) — 213(q, — @) r

det]
Mg, + Nygy + Nygs

. ¥ /




This can be written in the matrix form as
€ = Bq (6.24)
where the element strain—-displacement matrix, of dimension (4 X 6), is given by

B Z33 Zat Zy2 i
detJ 0 detJ 0 detJ 0
Taz K] 21
0 0 0
B = detJ det] der J (6.25)
3 L33 f13 i3 g Z12
detd detd detJ detJ detJ detl]
o -
| r r r |
Potential-Energy Approach

The potential energy I1 on the discretized region is given by

M= 2 [%(ZWJETDerdA) - ZﬁfuTlrdA — 2w/u'r'l‘rd€]
4 £ 4 ¢

- X uP {6.26)

The element strain energy U, given by the first term can be written as

U, = -;-qT(Zﬂ' / B'DB dA)q (6.27)

The quantity inside the parentheses is the element stiffness matrix,
k° = 21m / B'DBr dA (6.28)
¢
The fourth row in B has terms of the type N, /r. Further, this integral also has an additionat

rinit.As a simple approximation, B and » can be evaluated at the centroid of the trian-
gle and used as representative values for the triangle. At the centroid of the triangle,

N=N=N=1 (6.29)
and
;- htrh+rn
3

where 7 is the radius of the centroid. Denoting B as the clement strain—displacement ma-
trix B evaluated at the centroid, we get

kK’ = 2#7B'DB / dA
ar

k' = 277AB"DB (630)



5. Applications/ Simulation/ related Laboratory example
The application of 3 noded axisymmetric triangular element is widely used in
axisymmetric applications.

6. MCQ-Post test

1. How many nodes have in a Axisymmetric element
@2
(b)6
(c)3
(d)4
2. Axis-Symmetric element is Element
(@ 1D
(b)2D
(c)3D
(d)4D
3. Axisymmetric triangular element has a stiffness matrix of order
(@ 2x2
(b) 4x 4
(c) 6x6
(d)1x1

7. Conclusion
The 3 noded axisymmetric element stiffness and body force terms were addressed.

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,

1989
e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.
9. Video

https://www.youtube.com/watch?v=sZQ pX Lus4
https://www.youtube.com/watch?v=VAJ3-4iCvFw



https://www.youtube.com/watch?v=sZQ_pX_Lus4
https://www.youtube.com/watch?v=VAJ3-4iCvFw

10.Assignments

1. Determine the stiffness matrix for the axisymmetric element shown in figure. Take E
as 2.1 x 10° N/mm? and Poisson’s ratio as 0.3 . All dimensions are in mm.

A

3(0, 50)

v

(0, 0) (50, 0)



UNIT-4

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)

Name of the Unit : Axisymmetric Continuum

Name of the Topic : Galarkin approach — Body forces and temperature
effects

1. Aim and Objectives
e To learn about on Galarkin approach and effects of body forces and
temperature effects.

2. Pre-Test-MCQ type

1. The displacement function for r direction
(@) N1ul-N2u2-N3u3

(b) N1ul-N2u2+N3u3
(c) N1ul+N2u2-N3u3
(d) N1ul+N2u2+N3u3

2. From below, choose the correct condition for the axisymmetric element.
(a) Symmetric about axis
(b) Boundary conditions are symmetric about an axis
(c) Loading conditions are symmetric about an axis
(d) All the above

3. In FEA, the use of smaller-sized elements will lead to computation
time
(@) less
(b) more
(c) depends on other factors

(d) can't say

3. Prerequisites
e The engineering mathematics and engineering skill on axisymmetric
domain required.



4. Theory behind

Galerkin Approach
In the Galerkin formulation, the consistent variation ¢ in an element is expressed as
¢ = N (6.42)
where
U= U, T (6.43)
The corresponding strain €(¢) is given by
€($) = By (6.44)
The global vector of variations ¥ is represented by
¥ o= [W,, ¥y, ¥, ... W] (6.45)

We now introduce the interpolated displacements into the Galerkin variational
form {Eq. 6.10). The first tcrm representing the internal virtual work gives

Internal virtual work = 27 / oTe(p)rdA
A

= / q"B"DBYr dA
[ L4
= > QY (6.46)
where the element stiffness k° is given by
k* = 2nFA BTDR (6.47)

We note that k° is symmetric. Using the connectivity of the elements, the internal virtual
work can be expressed in the form

Internal virtual work = 3, 'k = D, ¥'k‘q
¢
= ¥TKQ (6.48)

where K is the global stiffness matrix. The external virtual work terms in Eq. 6.10
involving body forces, surface tractions, and point loads can be treated in the same way
as in the potential-energy approach, by replacing g with Jr. The summation of all the
force terms over the elements then yields

External virtual work = ¥'F (6.49)

Body Force Term

We first consider the body force term 2+ J.ufr dA. We have

Zq/u"'fr dA = 211’[[&)", + wf.irdA

= 2 _[ (Mg + Nogy + MNags)f, + (Mg, + Nogy + Nogo)f2)r dA



Once again, approximating the variable quantities by their values at the centroid of the
triangle, we get

2w f v'frdA = q'F (6.32)
where the element body force vector I° is given by
27FA, = = = = = =
= 3 (s fos ks Fos £ fx]r (6.33)

The bar on the fterms indicates that they are evaluated at the centroid. Where body force
is the primary load, greater accuracy may be obtained by substituting r = Nir, +
Nory + Nyryinto Eq.6.32 and integrating to get nodal loads.

Temperature Effects
Uniform increase in temperature of AT introduces initial normal strains &, given as

€ = [cAT, AT, 0, oAT|" (6.51)
The stresses are given by

| o = D{e — &) (652)
whete e is the total strain.

On substitution into the strain energy, this vields an additionat term of —"De, in
the potential energy IT. Using the element strain—displacernent relations in Eq. 6.24, we

find that
27 f e Dey dA = 3 qF (2774 BDE,) (6.53)
A €

The consideration of the temperature effect in the Galerkin approach is rather
simple. The term €” in Eq. (6.53) is replaced by €'(¢).

The expression in parentheses gives element nodal load contributions. The vector
&, is the initial strain evaluated at the centroid, representing the average temperature rise
of the element. We have

6° = 2a7rAB™Dg, (6.54)

where
a° = [ell BZ’ 931 eq: e:-_- BQ]T . (555)



5. Applications/ Simulation/ related Laboratory example
e The application of 3 noded axisymmetric triangular element is widely used in
axisymmetric applications.

6. MCQ-Post test

1. For axisymmetric element the strain is computed as
(a) e=Bu

(b) e =B-u
(c) e=B+u
(d) e=Blu

2. For thermal analysis, the field variable is
(@) stress

(b) strain
(c) displacement

(d) temperature

3. The equation for thermal stress in each element is
(@) o=E (Bq + a At)

(b) 0 =E (Bq - a At)

(c) o=E (B +aAt)

(d) c=E (B -aAt)
7. Conclusion

e The axisymmetric parameters are estimated by Galarkin approach and
evaluation of body forces and temperature effects were studied.

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,
1989

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.



9. Video
https://www.youtube.com/watch?v=TZ7HQm7jPxk

10.Assignments

1. Nodal values of the triangular element is shown in Figure. Evaluate element
shape functions and calculate he value of temperature at a point whose co-
ordinates are given(5,7)

'84°C




UNIT-4

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Axisymmetric Continuum
Name of the Topic ; Stress calculations — Boundary conditions

1. Aim and Objectives
e To calculate the element stress using the relevant Boundary conditions

2. Pre-Test-MCQ type

1. The triangular element stiffness metrics for axi-symmetric body is
(@2nrAB'DB

(b)2nrADB
(c)2nrBDB
(d) tr ABT

2. An circular section chimney with hot gases inside can be analyzed
using model

(a) full section

(b) one half of section
(c) one quarter of section
(d) 1/8 th of section

3. Prerequisites
e A knowledge on axisymmetric domain required.

4. Theory behind
Stress Calculations

From the set of nodal displacements obtained above, the element nodal displacements
q can be found using the connectivity. Then, using stress-strain relation in Eq. 6.8 and
strain—displacement relation in Eq. 6.24, we have

o = DBq (6.50)

where B is B, given in Eq. 6.25, evaluated at the centroid of the element. We also note

that & 18 a principal stress, The two principal stresses o and , corresponding to . 7
and 7, can be calculated using Mohr's circle,



In Fig. E6.2, a long cylinder of inside diameter 80 mm and outside diameter 120 mm snugly
fits in a hole over its full length. The cylinder is then subjected to an internal pressure of

2 MPa. Using two elements on the 10-mm length shows, find the displacements at the inner
radius.

[
S
w

ARRRERARR TR

s\

| D
~—=— 8 mm diam ——~ .

I a0mm

|

120 mm diam

I =200 GPa
v=103

FIGURE E6.,2

Example 6.3
Calculate the element siresses in the problem discussed in Example 6.2

Solutieon Weneedto findo®' = oy, o, 7)., 0,]

* for each el livit
established in Example 6.2, element. From the conneclivit

¢’ =[0.0140, 0, 0.0133, 0, o 0" % 1072
g’ =1[0.0133, 0, 0, o 0, 01" x 102

Uising the product matrices DB* and q in the formula
o* = DB‘g
we get
ol =[-166, —582, 54, -284]" X 102MPa
of =[-1693, —669, 0, —541]" X 10°MPa

5. Applications/ Simulation/ related Laboratory example
a. The various stress calculations on 3 noded axisymmetric triangular element
is widely used in axisymmetric applications.



. MCQ-Post test

Number of Stress components for 2D axi-symmetric element
(a) 3
(b) 4
(c) 5
(d) 6
Number of Strain components for 2D axi-symmetric element
(a) 3
(b) 6
(c) 4
(d) 5
In strain-displacement matrix[B], the mathematical value of B, is computed as
(a) z3-z1
(b) z3+z1
(c) z3-z2
(d) z1-z2

. Conclusion

The element stress calculation for 3 noded axisymmetric element is
effectively studied.

. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004. McGraw-
Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press, 1989

e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private Limited,
India.

. Video

https://www.youtube.com/watch?v=VAJ3-4iCvFw



https://www.youtube.com/watch?v=VAJ3-4iCvFw

10.Assignments

1. The Calculate the element stress for a triangular element shown in fig the nodal
displacement are u;= 0.001, u, = 0.002, uz = -0.003, w; = 0.002, w, = 0.001 and w3 =
0.004 all dimensions are in mm.

“ (6, 9)

(7, 6)
(4, 5)




UNIT-4

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Axisymmetric Continuum
Name of the Topic : Applications to cylinders under internal or external

pressures — Rotating discs

1. Aim and Objectives
e To encourage on studying of Axisymmetric based applications

2. Pre-Test-MCQ type

1. The co-ordinate of r is
(@) (ri+r2+r3)/3

(b) (r1-r2-r3)/3
(c) (r1+r2-r3)/2
(d) (r1-r2+r3)/3
2. The value of z coordinate is found by the which relationship
(@) (z1-z2-z3)/3
(b) (z1+z22+23)/2
(c) (z1+z2+z3)/3
(d) (z1-z2+23)/3

3. Prerequisites
e The engineering skill on axisymmetric domain required.

4. Theory behind

We have seen that the axisymmetric problem simply reduces to consideration of the re-
volving area. The boundary conditions need to be enforced on this area. ¢ independence
arrests the rotation. Axisymmetry also implies that points lying on the z-axis remain ra-
dially fixed. Let us now consider some typical problems with a view to modeling them.

Cylinder Subjected to Internal Pressure

Figure 6.7 shows a hollow cylinder of length L subjected to an intemnal pressure. One end
of the cylindrical pipe is attached to a rigid wall. In this, we need to model only the rec-
tangular region of the length L bound between 1, and ry. Nodes on the fixed end are
constrained in the z and r directions. Stiffness and force modifications will be made for

these nodes.



N

PR EE A NG T,

—— bz

FIGURE 6.7 Hollow cylinder under internal pressure.

Infinite Cylinder

[n Fig. 6.8, modeling of a cylinder of infinite length subjected to external pressure is
shown. The length dimensions ate assumed to remain constant, This plane strain ¢con-
dition is modeled by considering a unit length and restraining the end surfaces in the
z direction,

Press Fit on a Rigid Shaft

Press fif of a ring of length L and internal radius », onto a rignd shaft of radius r, + & iscon-
sidered in Fig. 6.9. When symmetry is assumed about the midplane, this plane is restrained
in the z direction. When we impose the condition that nodes at the internal radius have
to displace radially by 6, a large stiffness C is added to the diagonal locations for the ra-
dially constrained dofs and a foree €5 is added to the corresponding force components.
Solution of the equations gives displacements at nodes: stresses can then be evaltuated.

Z
|

AV

L
- ,.n.f”‘g}"g?/zg

Py

TTEFERH HH T

FIGURE 6.8 Cylinder of infinjte length under external pressure.



5. Applications/ Simulation/ related Laboratory example

In the plate with a hole under plane stress, find deformed shape of the hole and
determine the maximum stress distribution along A-B (you may use t = 1 mm). E
= 210GPa, t = 1 mm, Poisson’s ratio = 0.3, Dia of the circle = 10 mm, Analysis
assumption plane stress with thickness is used.

L 60 mm N
| ] I
T r N
|
—]
b
2000 N 40 mm
-+ »
- —
. | .
B!

6. MCQ-Post test

1. The order of stress components for axisymmetric element
(a) Radial stress, Longitudinal stress, Circumferential stress, shear stress

(b) Radial stress, Longitudinal stress, Circumferential stress, shear stress
(c) Radial stress, Circumferential stress, shear stress, Longitudinal stress

(d) Longitudinal stress, Radial stress, Circumferential stress, shear stress

2. The stress calculations for axisymmetric element by the following relation

(@) o=DB/u
(b) c=DB-u
(c) o=DBu
(d) o=-DBu

3. Open ended thin cylinder is considered as

(a) Axisymmetric
(b) Plane strain
(c) Plane stress
(d) All of the these



7. Conclusion
The various applications of Axisymmetric applications were studied.
8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004. McGraw-
Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press, 1989
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9. Video

https://www.youtube.com/watch?v=WIWh-BNmnAc
https://www.youtube.com/watch?v=AJa8sz\VOFM8

10.Assignments

The steel flywheel shown in Figure rotates at 3000 rpm. Find the deformed shape of
the flywheel and give the stress distribution.
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https://www.youtube.com/watch?v=WlWh-BNmnAc
https://www.youtube.com/watch?v=AJa8szV0FM8

UNIT-5

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)

Name of the Unit

Name of the Topic

1. Aim and Objectives

e Tounderstand the Isoparametric elements for two dimensional Continnum

e To acquire the effectiveness of shape function for isoparametric element

2. Pre-Test-MCQ type

1.

2.

From the following, which type of element is not two dimensional?
(a) Rectangle

(b) Quadrilateral
(c) Parallelogram
(d) Tetrahedron

The finite element method is mostly used in the field of
(a) structural mechanics

(b) classical mechanics
(c) applied mechanics

(d) engineering mechanics

Finite element analysis deals with
(a) approximate numerical solution

(b) non-boundary value problems
(c) partial differential equations
(d) laplace equations

3. Prerequisites

e The engineering mathematics and complex boundary based theoretical

knowledge required.

Isoparametric elements for two dimensional continnum

The four node quadrilateral — Shape functions



4. Theory behind

7.2 THE FOUR-NODE QUADRILATERAL

Comsider the general quadrilateral element shown in Fig. 7.1. The local nodes are numbered
as 1,2,3, and 4 in a counterclockwise fashion as shown, and {x,, y;} are the coordinates of
node i The vector q = [qy, ¢1,. .., ¢:]' denotes the element displacement vector. The dis-
placement of an interior point Plocated at (x, y) is represented asu = (u(x, y) ov(x Y e

Shape Functions

Following the steps in earlier chapters, we first develop the shape functions on a master
element. shown in Fig. 7.2. The master element is defined in &-.y-coordinates (or natural
coordmates) and is square shaped. The Lagrange shape functions where i = 1,2.3. and
4. are defined such that N, is equal to unity at node 7 and is Zero at other nodes. [n par
ticular, consider the definition of N

NI =1 at IIOCIE].
=0 atnodes2 3 and4 (7D

.
|

X
FIGURE 7.1 Four-node quadrilateral element.
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FIGURE 7.2 The quadrilateral element in £, » space (the master alement).

Now, the requirement that N, = 0 at nodes 2, 3, and 4 is equivalent to requiring that
N; = 0 along edges ¢ = +1 and n = +1 (Fig. 7.2). Thus, N, has to be of the form

N=cll-&(1—-m) (7.2)

where ¢ is some constant. The constant is determined from the condition N, = 1 at
node 1. Since ¢ = —1, 7 = —1at node 1, we have

1 = ¢(2)(2) {7.3)

which yields ¢ = 3. Thus,
M =Hl=-8(1 ) (7.-4)

All the four shape functions can be written as
N=i1-8(1-n)
Ny =31+ £){1-m) (7.5)
Ny =31+ &)1 +m)
N= 11 - (1 +7)

While implementing in a computer program, the compact representation of Eqs. 7.518
useful

No= (1 + &)(1 + ) (7.6)

where (£;,m;) are the coordinates of node {.

We now express the displacernent field within the elernent in terms of the nodal
values. Thus, if w = [u, v]" represents the displacement components of a point located
at (£,m), and q, dimension (8 X 1), is the element displacement vector, then



1

u=Naq + Nog; + Nygs + Nugs

v = Mgz + Nogs + Nigg + Nagy (7.7a)
which can be written in matrix form as
u = Ny (7.7b}
where
N o [N. 0O N, 0N 0 N, 0] 78
0N O0ON 0N 0 N

In the isoparametric formulation, we use the same shape functions N, to also €x-
press the coordinates of a point within the element in terms of nodal coordinates. Thus,

= M.Il + Nzxz -+ Ng.‘{g + N4I4
¥ = Niu+ Noyp + Noys + Ny (79)

Subsequently, we will need to express the derivatives of a function in x-
y-coordinates in terms of its derivatives in £-, p-coordinates. This is done as follows: A
function f = f(x, ), in view of Eqs 7.9, can be considered to be an imptlicit function of

¢ and g as f = f[x(£ n), v(£, )] Using the chain rule of differentiation, we have

o _9fax , ofay
of  dx 9t Ay at
of _ofax  afsy (7.10)
dn  dxon oy Iy
or
of) (o
o€ ax
= 7.11
of L L P (7.11)
on dy
where J is the Jacobian matrix
65 3y
_| 9§ 8f
J ax oy (7.12)
dn oy

In view of Egs. 7.5 and 7.9, we have

[]1 1 le]
hy

[—(l-ﬂ)xlﬂl-n)xz"-(l+ﬂ)x3—(1+'fr)x4 ~(I=my L)yt (1+n)y—(1+n)y
4L (=00~ +Hxt (L+E) s+ (1=E)xy | = (1-E)p— (1+E)pnH(1+8)y+(1-£)y,

(7.13a)

(7.13b)



Equation 7.11 can be inverted as

af 8f
ox | ;) 3¢
a_[ =] ﬁ {7.14a)
ay on
or
4 af
ox | _ 1 b —dis 13
of [ detJ[—J’z] J’,l] af (7.14b)
dy o7

These expressions will be used in the derivation of the element stiffness matrix.
An additional result that will be needed is the relation

dxdy = det}dédny (7.15)

The proof of this result, found in many textbooks on calculus, is given in the appendix.

5. Applications/ Simulation/ related Laboratory example
e The shape functions for 4 noded isoparametric element conceptually used in
irregular boundaries of the domain.

6. MCQ-Post test

1. Curved boundary is better modeled by using
(a) non-dimensional shape functions
(b) higher order elements
(c) more number of simple elements
(d) isoparametric elements
2. When fewer nodes are used to define the geometry than are used to define the
displacement, the element is called
(a) subparametric element
(b) isoparametric element
(c) superparametric element
(d) complex element
3. When same number of nodes are used to define the geometry and
displacement, the element is called
(a) subparametric element
(b) isoparametric element
(c) superparametric element
(d) simple element

7. Conclusion

The formulation of isoparametric elements for irregular boundaries and 4
noded quadrilateral element is deeply studied.
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9. Video
https://www.youtube.com/watch?v=4I1c7SY xJ9F8

https://www.youtube.com/watch?v=PhedVyx G8o

10.Assignments

1. Evaluate the Cartesian co-ordinate of the point P which has local co-oedinates &=
0.6 and n=0.8 as shown in Figure.

{3.2)



https://www.youtube.com/watch?v=4lc7SYxJ9F8
https://www.youtube.com/watch?v=PhedVyx_G8o

UNIT-5

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Isoparametric elements for two dimensional continnum
Name of the Topic : Element stiffness matrix and force vector

1. Aim and Objectives
e To assess the element stiffness matrix and force vector for isoparametric
element

2. Pre-Test-MCQ type

1. What is a matrix?
(@) Group of elements

(b) Array of elements
(c) Group of columns and rows

(d) Array of numbers

2. The vector g=[qy,02......... qs] T of a four noded quadrilateral denotes
(a) Load vector

(b) Transition matrix
(c) Element displacement vector

(d) Constant matrix

3. Prerequisites
e The basics of matrices and the irregular boundary based knowledge
domain is required.

4. Theory behind

Element Stiffness Matrix

The stiffness matrix for the quadrilateral element can be derived from the strain energy
in the body, given by

U= fga'fedv (7.16)
v

or

U= E;,,f%aTedA (7.17)

¢

where ¢, is the thickness of element e.



The strain—displacement relations are

du
ax
€ = :I = { a—v ’
¥ 3)’
Yy du  dv
ow L oY
8y  0x )
By considering f = uin Eq. 7.14b, we have
(9u ] (9u |
) ox $=_1__[«52 —J.z] 5 |
du | detd| -h, Uy 1 du
[ 9Y ) L9
Similarly,
ra_v\ 4 a_v‘ h'
Jox | =;[ I *-"12:|< o |
av detd| -4, J;, av
\ ay ’ \ an P,
Equations 7.18 and 7.19a,b yield
r@E\
€
du
e=al )
av
9
v
oy

where A 1s given by
1 by = 2 0 0
= detJ 0 0 -5 J
~hy 4y L by I,
Now, from the interpolation equations Egs. 7.7a, we have

4 3\
ou

3
Ju
n
dv
3
dv
Uy

A

(1.18)

(7.19a)

(7.19b)

(7.20)

(7.21)

(7.22)



where
-(1-%) 0 (1—1) 0 (L+g) 0 -(1+x O

c_1-1-8 o -+ o a+y o @-u o
4 0 -(1-w 0 1-2 0 (d+9) 0 —(1+q9)
0 -(1-§) 0 -1+¢) 0 (1+8 0 (1-8&
(7.23)
Equations 7.20 and 7.22 now yield
e =Bq - (7.24)
where |
B - AG (7.25)

The relation € = Bqis the desired result. The strain in the element is expressed in terms
of its nodal displacement. The stress ts now given by

where

o = DBq (7.26)
where Disa (3 X 3) material matrix. The strain energy in Eq. 7.17 becomes
t 1
u=>3 %qT|:t, /:1 '[1 BTDBdctJd.fdn]q (1.27a)
= 3 1d'kq (7.275)
1
K =1, f f BTDB det J d¢ dny (7.28)
=1 J-1

is the element stiffness matrix of dimension (8 X B}.

We note here that quantities B and det J in the integral in Eq (7.28) are involved

functions of £ and 5, and so the integration has to be performed numerically. Methods
of numerical integration are discussed subsequently.

Element Force Vectors

Body Force A body force that is distributed force per unit volume, contributes

to the global load vector F. This contribution can be determined by considering the body
force term in the polential-energy expression

£ u'tdv (729)

Using m = Ny, and treating the body foree I = [f;, 7,]F as constant within each ele-
ment, we get



f u'fdv = D, q'f¢ (7.30)
¥ &

where the (8 X 1) element body force vector is given by

£ = r,[ [ : /_ : NT det J dE dq]{;:} (7.31)

As with the stiffness matrix derived earlier, this body force vector has to be evaluated
by numerical intaegration.

5. Applications/ Simulation/ related Laboratory example
e The main applications of element stiffness matrix and force vectors are
useful for determining the nodal displacements, stress and strains.

6. MCQ-Post test

1. The Jacobian matrix is a
(@) single column matrix

(b) diagonal matrix
(c) matrix of any dimension
(d) square matrix

2. The shape function at Node 1 for four node rectangular element as
(@) N1=0.52(1-¢) (1-n)
(b) N1=0.52(1+&) (1+n)
(c) N1=0.25(1+&) (1-n))
(d) N1=0.25(1-¢) (1-n)
3. The value of J;; in the Jacobian Matrix is represented by
(8) J12=0.25[-(1- n)x1+(1- M) X2+(1- 1) Xs=(1+ 1) Xg]
(b) J12=0. 5[-(1- mx2+(1- n) Xo+(1+ M) X-(1+ M) Xg]
(€) J11=0.2 [-(1- n)xa-(1- n) Xo*+(1+ M) Xa-(1+ M) Xs]
(d) J12=0.25[-(1- m)X1+(1- M) Xo+(1+ M) Xs-(1+ 1) Xg]
4. lso-Parametric Elementis __ Element
(a) Regular
(b) Ir-regular
(c) Sub
(d) Super
5. Nodal points greater than geometry points is known as
(a) Isoparametric
(b) Subparametric
(c) Superperametric
(d) CST
6. Conclusion

The 4 noded quadrilateral element stiffness matrix and load vector were
studied well.
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8. Video

https://www.youtube.com/watch?v=6JKG2EvVIfA
https://www.youtube.com/watch?v=PhedVyx G8o

9. Assignments

1. A four node rectangular element is shown in Figure. Determine the following:
(a) Jacobian Matrix; (b) Starin- Displacement matrix and (c) Element stresses.

F 1
{0, 1) {2, 1)
4 3
1 2 -

{0,0) (2.0


https://www.youtube.com/watch?v=6JKG2EvvlfA
https://www.youtube.com/watch?v=PhedVyx_G8o

UNIT-5

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; Isoparametric elements for two dimensional continnum
Name of the Topic : Element stiffness matrix and force vector

1. Aim and Objectives
e To Evaluate the element stiffness matrix and force vector

2. Pre-Test-MCQ type

10 +10° log, 10|

1. Evaluate the integral | — =& e

(@) 10"+ x*°+C

(b) 100 —x'° +C

(c) logao (10" + x*%) +C
(d) loge(10* + x*°) +C

2. Integration of function is same as the
(a) Joining many small entities to create a large entity
(b) Indefinitely small difference of a function
(c) Multiplication of two function with very small change in value
(d) Point where function neither have maximum value nor minimum value

3. Prerequisites
e The basics of integration knowledge is required.

4. Theory behind
NUMERICAL INTEGRATION

Consider the problem of numerically evaluating a one-dimensional integral of the form

1
= 13
{ [l f€) dé (7.33)

The Gaussian quadrature approach for evaluating ! is given subsequently. This method
has proved most useful in finite clement work. Extension to integrals in two and three
dimensions follows readily.

Consider the n-point approximation

= -[I f(g) dE ~ wl'f{gl) + wlf{é?,) +oeeet wnf[fﬂ) (734)



where w, w, ..., and w,, are the weights and £,.£,,.. ., and £, are the sampling points
or Gauss points. The idea behind Gaussian quadrature is to select the # Gauss points 45
n weights such that Eq.7.34 provides an exact answer for polynomials Fl€) of as Jarge
a degree as possible. In other words, the idea is that if the 7z-point integration formula
is exact for all polynomials up to as high a degree as possible, then the formula will work
well even if fis not a polynomial. To get some intuition for the method, the one-point
and two-point approximations ar¢ discussed in the sections that follow.

One-Point Formula, Consider the formula with n = 1 as

[ ) d ~ wif (@) (7.35)

Since there are two parameters, w; and ¢,, we consider requiring the formuta in Eq. 7.35
to be exact when f(£) is a polynomial of order 1. Thus,if f(¢) = a; + a,£, then we require

1
Error = f1 (ap + ;&) dE — wif () =0 (7.36a)
Error = 2ay — wy(ay + a1£,) = 0 (7.36b)
or
Error = ag(2 — w) — w;a,&, = 0 {7.36¢)
From Eq. 7.36¢, we see that the error is zeroed if
w = 2 él = {} (7.37)
For any general £, then, we have
1
I = /l f(£)dg = 2f(0) (7.38)

which is seen to be the familiar midpoint rule (Fig. 7.3).

Two-Point Formula. Consider the formula with n = 2 as

[ 1@de = wse) ~ wie) (7.39)

We have four parameters to choose: w;, ws, &, and £;. We can therefore expect the for-
mula in Eq, 7.39 to be exact for a cubic polynomial. Thus, choosing f(§) = @, + a,& +
a & + a,& yields

Emror = [[1 (ay + af + axt® + a,8%) df} — [wnf(&) + waf(&)] (7.40)
- f fix)
Approximate 1~ ST L a4

area = 2f(0) — =

Exact area =J‘ fxydx ——= " & -
-1 i N

X




Requiring zero error yields
w +w, =2

wiE + wé, = 0 (7.41)

2 2 __ 2
wl] + W =3

wlﬁ? + wzfg =0
These nonlinear equations have the unigue solution
wy=w =1 —f£ =§=1/V3 = 05773502691 ... (7.42)

From this solution, we can conclude that n-point Gaussian quadrature will pro-
vide an exact answer if fis a polynomial of order (22 — 1) or less. Table 7.1 gives the val-
ues of w; and £; for Gauss quadrature formulas of orders # = 1 through n = 6. Note that
the Gauss points are located symmetricalty with respect to the origin and that symmet-
rically placed points have the same weights. Moreover, the large number of digits given
in Table 7.1 should be used in the calculations for accuracy (i.¢., use double precision on
the computer).

TABLE 7.1 Gauss Points and Weights for Gaussian Quadrature

L

[ revae = 3w

Numbei of points, # Location, £, Weights, 1,

1 0.0 29
? +1/v3 = 20.5773502692 10

3 +0.7745966692 (1.5555555556

0.0 (.BEBB3E8889

4 +0.8611363116 0.34785348451

+0.3399810436 0.6521451549

5 +0.9061798454 0.2369268851

+0.5384693101 0.47R6286T70S

6.0 0.3653388589

6 +£0.9324695142 0.1713244924

+0.6612093863 0.3607615730

+0.23861 91861 0.4679139346

5. Applications/ Simulation/ related Laboratory example
e The Gaussian quadrature approach used in many numerical method
applications

6. MCQ-Post test

1. In one point gauss quadrature problems, the w; is

(@) 2.0
(b) 1.5
(c) 1.8
(d) 2.9



2.In gauss quadrature problems, the f(x;) is
(a) values of the function at pre-determined sampling points
(b) values of the function at post-determined sampling points
(c) values of the function at post-determined nodal points
(d) values of the function at pre-determined nodal points
7. Conclusion

e The Numerical integration using gauss quadrature effectively studied.
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9. Video

https://www.youtube.com/watch?v=17w-NbjysCc
https://www.youtube.com/watch?v=El0o0 vCHL7Y

10.Assignments

1
1. Evaluate the integral by using 3 point Gaussion Quadrature _[(xS +2X% +4x)dx .
-1

1
2. Evaluate the integral, 1= I [x* +cos(x/ 2)Jdx using three point Gaussian Quadrature
-1

and compare with exact solutions.
3. Integrate the function f(r)= 1+r+r?+r® between the limits -1 and +1 using,
(1 Exact method
(i) Gauss integration method and compare the two results.


https://www.youtube.com/watch?v=17w-NbjysCc
https://www.youtube.com/watch?v=El0o_vCHL7Y

UNIT-5

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit ; Isoparametric elements for two dimensional continnum
Name of the Topic : Stiffness integration — Stress calculations

1. Aim and Objectives

2.

4.

e An attempt to study on stiffness integration and stress calculations
Pre-Test-MCQ type

1. Evaluate the integral of dx / (x + 2) from -6 to -10.

(a) 21/2
(b) 172

©) In3
(d)yIn2

2. What is the integral of sin5 x cos3 x dx if the lower limit is zero and the upper
limit is 7t/2?

(a) 0.0203

(b) 0.0307

(c) 0.0417

(d) 0.0543

Prerequisites
a. The engineering mathematics and engineering skill on axisymmetric domain
required.

Theory behind

Stiffness integration

To illustrate the use of Eq. 7.44, consider the clement stiffness for a quadrilateral element

13 1
k* = zl.f f BTDB detJ d¢ dn
-1 J-1

where B and det J are functions of £ and 5. Note that this integral actually consists of
the integral of cach clement in an (8 X 8) matrix. However, nsing the fact that k* is sym-
metric, we do not need to integrate elements below the main diagonal.

Let ¢ represent the jjth element in the integrand. That is, iet
¢(£.1) = t(B'DB detJ); (7.45)

Then, if we use a2 X 2 rule, we get

ki; = wid(€,m) + wnd(f, m)
+ wyw (&, M) + wid(ng, m) (7.46a)



where w, = w, = 1.0,§ = 9, = ~057735.. ,and £ =1, = +0.S7?3§ . .':.l"hc Gauss
points for the two-point rule used above are shown in Fig.7.4. Altenliatwely, if we label
the Gauss points as 1,2, 3, and 4, then &;; in Eq. 7.46a can also be written as

4
kij = IPZ] Wirdr {7.46b)

where ¢rp is the value of ¢ and W is the weight factor at integration point IP. We note
that W, = (1)(1) = 1. Computer implementation is sometimes easier usiog Eq. 7.46b.

n
L
- L
(EE q 3
ol 4 Wy =wr=1
—_ 1 1 y
T.h_ '\.I'-3- i =
1
§1=‘j§“ fz=:?:;-

fl J-_j]f(E,nJ dedn = wif(§m) + wony figam,) + whf(lmo) + wpe: f€1m))

FIGURE 7.4 Gaussian quadrature in two dimensions using the 2 % 2 rule.

We may readily follow the implementation of the previous integration procedure in
program QUAD provided at the end of this chapter,

The evaluation of three-dimensional integrals is similar. For triangles, however,
the weights and Gauss points are different, as discussed later in this chapter.

Stress Calculations

Unlike the constant-strain triangular element (Chapters 5 and 6), the stresses
o = DBq in the quadrilateral element are not constant within the element; they are
functions of £ and 9, and consequently vary within the element. In practice, the stress-
es are evaluated at the Gauss points, which are also the points used for numerical eval-
uation of k*, where they arc found to be accurate. For 3 guadrilateral with 2 X 2
integration, this gives four sets of stress values, For generatin g less data, one may eval-

uate stresses at one point per element, say,at ¢ = 0 and 1 = 0. The latter approachis
used in the program QUAD.



Example 7.2

Consider a rgctangular element as shown in Fig. E7.1. Assume plane stress condition,
E = 30 X 10°psi,» = 03,and q = [0, 0,0.002, 0.003, 0.006,0.0032, 0,0]" in, Evaluate J,B;
and oatfé = Dandn = 0.

Solution Referring to Eq.7.13a, we have

Jz_{[ 2(1 ~ ) + 2(1 + )
A =201+ &) + 21 + ¢)

___[] n}
¢ 3
I‘“ 495
]
4

(L+n)-(1+p
L+&+(1 -8

Jme G5
0,1) (1)
+
e C(1,0.5) Tq;
b T gz
1 2 - X
(0, 0) (2,0)
FIGURE E7.1
For this rectangular element, we find that 3 is a constant matrix. Now, from Eqs 7.21,
100 u]
A=— (0 001
lﬂ 1 1o
Evaluaﬁn;ﬂth.T.ﬂltftﬂ-ﬂandmmgl-=QG,ﬂget
- 0 F o0 jo0 -} o0
B=| 0 -3 0-303; 0 1}
~1 _1 _1r 11 i _1
7 Fl ] 4 7 4 ] 4
The stresses at £ = 5 = () are now given by the product
o' = DBy
For the given data, we have
1 03 0
n-% s 1 0
0 0 035
Thus,

o’ = [66 920. 23 080. 40 9601 nsi



5. Applications/ Simulation/ related Laboratory example
e The stiffness integration and stress calculations more useful for solving
irregular boundary problems

6. MCQ-Post test

1. Gaussian points are used for
(a) Numerical integration

(b) displacement calculation
(c) Stress calculation
(d) strain calculation

2. In 3 point gauss quadrature , the assumed weights values (w1 and w2) are
(a) 0.888888 and 0.555555

(b) 5.555555 and 8.888888
(c) 0.888888 and 0.444444
(d) 0.555555 and 0.888888

3. Conclusion

e The stiffness integration and stress calculations are studied..
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Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,
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e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.
5. Video

https://www.youtube.com/watch?v=3HeOQrE5Arrs

6. Assignments

1. Write short notes on stiffness integration for isoparametric elements.


https://www.youtube.com/watch?v=3He0rE5Arrs

UNIT-5

Name of the Course : FINITE ELEMENT ANALYSIS (FEA)
Name of the Unit : Isoparametric elements for two dimensional continnum
Name of the Topic : Four node quadrilateral for axisymmetric problems

1. Aim and Objectives
e Tostudy about Four node quadrilateral for axisymmetric problems
2. Pre-Test-MCQ type

1.  Which of terms referred as local co-ordinates
(8) Sandn
(b) xand y
(c)randz
(d) none of these
2. Cartesian co-ordinates generally originated by
(@) x,y,0
(b) u,v
(c) xy
(d) None of these

3. Prerequisites
e The engineering mathematics and engineering skill on axisymmetric
domain required.

4. Theory behind
FOUR-NODE QUADRILATERAL FOR AXISYMMETRIC PROBLEMS

The stiffness development for the four node-quadrilateral fﬂr+axisymmetric pro_hlems
follows steps similar to the quadrilateral element presented earlicr. The x-, y-coordinates
are replaced by r. z. The main difference occurs in the development clf Fhe B matrix,
which telates the four strains to element nodal displacements. We partition the strain

vector as
E.r
€= | = [‘] (7.59)
Tr: EH
£y
where & = [€, €. %, o
Now in the relation € = Bq, we partition Bas B = [BC| such that B, isad X &

matrix relating € and g by



and B, is arow vector 1 X 8 relating €, and q by

& = By (7.61)

Moting that r .z replace x, y,itis clear that B, is same as the 3 % 8 matrix given in Eq. 7.24
for the four-node quadrilateral. Since €5 = w/r and ¥ = Nyg, + Ng + Mg, + Ng,.

B, can be written as
Bz:[ﬂ[}&ﬂﬁﬂﬁﬁ] a.2)
r r r

r

On introducing these changes, the element stiffness is then obtained by performing
numerical integration on

1 1
kK =27 / f rB'DB det 3 df dn (7.63)
=1 =1

The force terms (in Eq.7.31 and 7.32) are to be multiplicd by the factor of 2+ as in the
axisymmedtric triangle.

The axisymmetric quadrilateral element has been implemented in the pro-
gram AXIQUAD.

5. Applications/ Simulation/ related Laboratory example

e The isoparametric based axisymmetric triangular element is widely
used in axisymmetric applications.

6. MCQ-Post test

1. The matrix dimension of element stiffness matrix for 4 node quadrilateral
element as specified by
(a) 8 x8
(b) 7 x7
(c) 6 x6
(d) 5x5

2. The Cartesian co-ordinate x for isoparametric quadrilateral element is obtained
by
(a) N1y1+N2X2-N3X3+N4X4
(b) N1X1-N2y2+N3X3+N4X4
(C) N1X1-N2X2-N3X3-N4X4
(d) N1 X1+NoXo+N3X3+NgXs

3. The Jacobian matrix is a



(@) single column matrix
(b) diagonal matrix

(c) matrix of any dimension
(d) square matrix

7. Conclusion

e The application of axisymmetric triangular element (isoparametric)
for irregular boundary of axisymmetric condition is studied.

8. References

e CHANDRUPATLA T.R., AND BELEGUNDU A.D., “Introduction to Finite
Elements in Engineering”, Pearson Education 2002, 3rd Edition.

e DAVID V HUTTON “Fundamentals of Finite Element Analysis”2004.
McGraw-Hill Int. Ed.

e BHAVIKATTI S.S. “Finite Element Analysis”, New Age International
Publishers, 2005, India

e RAO S.S., “The Finite Element Method in Engineering”, Pergammon Press,

1989
e P.SESHU “Textbook of Finite Element Analysis”, PHI Learning Private
Limited, India.
9. Video

https://www.youtube.com/watch?v=g4uENUY oV8

10. Assignments
1. Write short notes with suitable axisymmetric condition using Four node
quadrilateral element.

*hkhkhkhhkhhkhkkkkhkhhkiihhhkhkkkhiikx


https://www.youtube.com/watch?v=q4uENUY_oV8

