Basics of Group Theory

DR.E.GEETHA
ASSISTANT PROFESSOR OF MATHEMATICS
SCSVMV (DEEMED TO BE UNIVERSITY)

Outline

- **≻**Aim
- > Learning Outcomes
- **Introduction**
- **History**
- **Semigroup**
- **≻**Monoid
- **≻**Group
- > Abelian Group
- **≻**Cancellation Laws

AIM

- > Explicate the concept of binary operation and algebraic structures
- > Explain about the semigroup, monoid and group by an example
- Explain about the abelian group

Learning Outcomes

Students can be able to identify

- **Existence of binary operation**
- **♦** About the algebraic structure
- **❖** About the existence of identity element and inverse element

Introduction

- In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.
- ❖The concept of a group is central to abstract algebra, other well known algebraic structures, such as rings, fields and vector spaces, can all be seen as groups endowed with additional operations and axioms.
- Groups recur throughout mathematics, and the method of group theory have influenced many parts of algebra.

History

- ☐ The term group was coined by Galois around 1830 to described sets of functions on finite sets that could be grouped together to form a closed set.
- ☐ The modern definition of group given by both Heinrich Weber and Walter Von Dyck in 1882, it did not universal acceptance until the twentieth century.

Prerequisites

- **≻**Set theory
- **≻**Relations
- **≻**Matrix Algebra

Binary Operation

Let G be a set. A binary operation on G is a function that assigns each order pair of elements of G an element of G.

$$f: G \times G \rightarrow G$$

It is customary to denote binary operations by symbols such as +, -, x, /, etc.,

Remark:

o is a binary operation on G if and only if a o b $\in G$

Algebraic Structure:

A non empty set together with one or more than one binary operation is called algebraic structure.

Examples:

- 1. (R, +, .) is an algebraic structure.
- 2. (N, +), (Z, +), (Q, +) are algebraic structures.

Examples with one binary operation:

Let N be the set of all natural number.

```
i.e N={0,1,2,3....}
```

- (i) Let us consider the operation addition (+) on N
 - Clearly for any two element $a, b \in N$, $a+b \in N$.
 - Therefore the addition '+' is a binary operation on the set N
 - {N,+} is called algebraic structure with one binary operation (+).
- (ii) Let us consider the operation multiplication(x) on N
 - Clearly for any two element a, $b \in N$, then a * $b \in N$.
 - Therefore the '*' is a binary operation on the set N
 - {N,*} is viewed as algebraic structure with one binary operation

Example with two binary operations:

(i) Let S={1, -1, 0}, then the operation addition (+) is not a binary operation on S.

Since 1+1=2 is \notin S.

(ii) Let S={1,-1,0}, then the operation multiplication (x) is a binary operation on S

Since

Х	0	1	-1
0	0	0	0
1	0	1	-1
-1	0	-1	1

Note:-

- (i) From the above $\{N,+,x\}$ can be viewed as algebraic structure with two binary operations (+,x).
 - (ii) A binary operation so called because it combines two elements.

Definition: Closure Property

Let $\{S, *, \oplus\}$ be an algebraic system, then for any two element a , $b \in S$, $a*b \in S$. It is called closure property.

Example:-

Let $\{N, +, x\}$ be an algebraic structure, where N is a natural number.

If $a, b \in N$, then $a + b \in N$

If $a, b \in N$, then $a \times b \in N$

Definition: Associative Property

Let $\{S, *, \oplus\}$ be an algebraic system, then for any three element a , b and $c \in S$, (a*b)*c=a*(b*c). It is called associative property.

Example:-

```
Let \{N, +, x\} be an algebraic structure, where N is a natural number.

If a, b and c \in N, then (a + b) + c = a + (b + c)

If a, b and c \in N, then (a \times b) \times c = a \times (b \times c)
```

Definition: Commutative Property

Let $\{S, *, \oplus\}$ be an algebraic system,

For any two element a, $b \in S$, a*b=b*a

rample:-

Let $\{Z, +, x\}$ be an algebraic structure, where Z is set of all non negative integer.

For any element a , $b \in Z$, a+b=b+a, The set Z is commutative with respect to the binary peration '+'.

For any element a, $b \in Z$, a x b = b x a, therefore the set Z is commutative with respect to be binary operation 'x'.

Definition: Existence of Identity Element

Let $\{S, *, \oplus\}$ be an algebraic system, then for any element 'a' \in S, there exist an distinguished element 'e' in S such that a*e=e*a=a, then the element 'e' is called identity element of S with respect to the operation *

Example:-

Let $\{Z, +, x\}$ be an algebraic structure, where Z is set of all non negative integer.

- (i) For any element 'a' ∈ Z, a+0=0+a=a, therefore 0 is an identity element of Z with respect to the binary operation '+'. and '0' is also called additive identity of Z.
- (ii) For any element 'a' \in Z, a x 1 = 1 x a=a, therefore 'a' is an identity element of Z with respect to the binary operation 'x'. and '1' is also called multiplicative identity of Z.

Definition: Existence of Inverse Element

Let $\{S,^*, \oplus\}$ be an algebraic system, then for any element 'a' $\in S$, there exist an element a in S such that $a^*a^{-1} = a^{-1} * a = e$, where e is an identity element with respect to the operation (*). then the element a^{-1} is called inverse element of 'a' $\in S$ under the operation(*).

Example:-

Let $\{R, +, x\}$ be an algebraic structure, where R is set of all real numbers.

- (i) For any element 'a' \in R, a+(-a)=(-a)+a=0, where '0' is an identity element of R with respect to the binary operation '+'. and '-a' is the additive inverse element of 'a' \in R.
- (ii) For any element 'a' in R, a x a⁻¹ = a⁻¹ x a = 1, where '1' is an identity element of R with respect to the binary operation 'x'. and 'a⁻¹' is called multiplicative inverse 'a' \in R. but the element '0' \in R has no multiplicative inverse in R.

Definition: Distributive Property

Let $\{S,^*, \oplus\}$ be an algebraic system. For any a, b and $c \in S$, $a^*(b \oplus c)=(a^*b) \oplus (a^*c)$, It is alled distributive law. In this case the operation ' * ' is distributive over the operation ' \oplus '.

:«ample

Let $\{R, +, x\}$ be an algebraic structure, where R is set of all real numbers.

The multiplication operation 'x' is distributive over the addition operation '+'

i.e For any a, b and $c \in R$, $a^*(b+c)=a^*b+a^*c$.

Cancellation Laws

Let $\{S, *, \oplus\}$ be an algebraic system. For any $a, b, c \in S$ and $a \neq 0$, then

- (i) a*b=a*c=>b=c (Left Cancellation Law) and
- (ii) b*a=c*a=>b=c (Right Cancellation Law)

Example:-

Let $\{R, +, x\}$ be an algebraic structure, where R is set of all real numbers.

(i) Since for any $a, b, c \in R$, then

a+b=c+b=>a=c (Right Cancellation Law)

b+a=b+c=>a=c (Left Cancellation Law)

i.e Cancellation property hold for a, b, c in R under addition operation.

Definition: Idempotent element

An element 'a' \in S is called an idempotent element with respect to the operation *, if a*a=a.

Example:-

Let $\{R, +, x\}$ be an algebraic structure, where R is set of all real numbers.

- (i) Since 0 + 0=0, where '0' ∈ R. Therefore '0' is an idempotent element under the addition operation (+).
- (ii) Since 1 x 1=1, where '1' \in R. Therefore '1' is an idempotent element under the multiplication operation(*).
- (iii) Since 0 x 0=0, where '0' \in R. Therefore '0' is an idempotent element under the addition operation(*).

Definition: Semigroup

If S is a nonempty set and * be a binary operation on S, then the algebraic system $\{S,*\}$ is called semi group, if the operation * is associative. i.e for any a, b, $c \in S$, (a*b)*c=a*(b*c).

Definition: Commutative Semigroup

A semi group $\{S,*\}$ is said to be semi group, if the binary operation * satisfies the commutative property. i.e for all a, b \in S, a*b=b*a.

Definition: Monoid

If a semi group $\{M,*\}$ has an identity element with respect to the operation *, then $\{M,*\}$ is called a monoid.

i.e for any element 'a' \in M, a * e = e * a = a, where 'e' is an identity element in M with espect to the binary operation *.

Let N be the set of positive integers, then the algebraic system {N,+} is a *semi group*.

since the binary operation addition (+) on N satisfies associative property.

i.e for all a, b, $c \in N$, (a+b)+c=a+(b+c)

Additionally for a, b ∈ N a+b=b+a, therefore {N,+} is a *commutative semi group*

Also for all $a \in N$, 0 + a = a + 0 = a, where '0' is additive identity element, but it is not in N.

Hence {N,+} is not a monoid.

Let I be the set of all integers, then the algebraic system {I,-} is not a semi group.

Since the binary operation subtraction (-) on I does not satisfies the associative property.

For example consider the integers 12, -15, 2 in I

(12-(-15))-2=(12+15)-2=27-2=25, But 12-((-15)-2)=12-(-17)=12+17=29, Both are not same.

Since {I,-} is not a semi group,

Hence {I,-} is not a Monoid.

Let P(S) be the power set of s, then the algebraic system $\{P(S), U\}$ is a *semi group* Since the binary operation union (U) on P(S) satisfies the associative property. i.e for all S_1 , S_2 , $S_3 \in P(S)$, $(S_1 \cup S_2) \cup S_3 = S_1 \cup (S_2 \cup S_3)$ Additionally for all S_i , $S_j \in P(S)$, $S_i \cup S_j = S_j \cup S_i$, $\{P(S),U\}$ is called a *commutative semi group*. Also for all $S_i \in P(S)$, $S_i \cup \{\} = \{\} \cup S_i = S_i$, where the element $\{\}$ is an identity element in P(S). Hence $\{P(S),U\}$ is *a monoid*.

Definition: Group

If G is a non empty set and * is a binary operation of G, then the algebraic system $\{G,*\}$ is called a group if the following conditions are satisfied.

- (i) For all a, b, $c \in G$, (a*b)*c=a*(b*c) (Associative Property)
- (ii) There exists an element e in G such that, a*e=e*a=a, for any a ∈ G (Existence of Identity)
- (iii) For every a ∈ G, there exist a⁻¹ in G such that a*a⁻¹=a⁻¹*a=e (Existence of inverse)

Definition: Order of a Group

When G has finite number of element, the number of elements in G is called the order of G. It is denoted by O(G) or |G|.

Definition: Commutative Group (or) Abelian Group

Let $\{G, *\}$ be a group with binary operation *, G is said to be *commutative group* if for every $a, b \in G$, a+b=b+a.

It is also called Abelian group.

```
Let Z be the set of natural number,
```

since (a+b)+c=a+(b+c), for all $a,b,c \in Z$.

The element '0' \in Z is an additive identity

The element '-a' \in Z is an additive inverse for all a \in Z.

Therefore the algebraic system {Z,+} is a group.

The order of the group is $O(Z) = \infty$

Since a+b=b+a, for all 'a' \in Z. Therefore {Z,+} is a commutative group.

Let $G=\{1,-1,i,-i\}$, then $\{G,x\}$ is a algebraic structure

x	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	I	-i	-1	1
-i	-i	i	1	-1

From the above Cayley's table , it is clear that the operation x is binary and satisfies the associative property.

The multiplicative identity is e=1

Since $1 \times e = e \times 1 = 1$, $-1 \times e = e \times (-1) = -1$, $i \times e = e \times i = i$, and $-i \times e = e \times (-i) = -i$ Every element has its inverse in G

since the element 1 is the inverse of 1, $1 \times 1 = 1 \times 1 = e$ the element -1 is the inverse of -1, $-1 \times -1 = -1 \times -1 = e$ the element i is the inverse of -i, $-i \times i = i \times -i = e$

the element -i is the inverse of i, $i \times -i = -i \times i = e$

Therefore the algebraic structure {G,x} is a group

Also the operation x is commutative in G, therefore $\{G,x\}$ is a abelian group.

The order of the group O(G)=4.

Definition: Order of an element

If the element 'a' in G, where G is a group with identity 'e', then the least positive integer 'm' for which a^m=e is called the order of the element 'a'.

It is denoted by O(a).

```
(i) Let G={1, -1, i, -i} be a group, where e=1 is the multiplicative identity element.
```

Since
$$(1)^1 = e$$
, $O(1) = 1$,

$$(-1)^2$$
=e, O(-1)=2

$$(i)^4 = e$$
, $O(i) = 4$

$$(-i)^4 = e$$
, $O(-i) = 4$

(ii) Let $G=\{1, w, w^2\}$ be a group, where $w^3=1$ and e=1 is the multiplicative identity element.

Since
$$(1)^1=1$$
, $O(1)=1$

$$(w)^3=1$$
, $O(w)=3$

$$(w^2)^3=1$$
, $O(w^2)=3$

i) Let Z be a set of natural numbers, i.e z={0,1,2,3...} be a group and e=0 is additive identity ement.

nce $(0)^1=0$, O(0)=1

 $O(a) = \infty$ for all a in Z other than zero.

ote:-

If no such integer 'm' exists, then 'a' is of *infinity order*

Properties of a group

The identity element of a group {G,*} is unique

```
oof:
```

```
We have to prove the identity element of a group {G,*} is unique,
```

Suppose if there are two identity element e1, e2 are in G, we have to prove e1=e2

Since e1 is an identity element in G, therefore a*e1=e1*a=a for all a in G

Clearly e2 is an element of G, therefore e2*e1=e1*e2=e2,----(1)

Similarly e2 is an identity element in G, therefore a*e2=e2*a=a for all a in G

Clearly e_1 is an element of G, therefore $e_1*e_2=e_2*e_1=e_1,----(2)$

From equations, (1) and (2), we have

(1)=>
$$e_1^*e_2=e_2$$

=> $e_1=e_2$ (Using equation (2) $e_1^*e_2=e_1$)

Hence the proof.

Properties of a group

The inverse of each element of {G,*} is unique

roof:

We have to prove the inverse of each element of a group {G,*} is unique,

Suppose if there are two inverse element b and c for an element 'a' in G,

we have to prove b=c

Since 'b' is an inverse element of 'a' in G, therefore a*b=b*a=e ---(1), where 'e' is an identity element in G with respect to the operation *

Since 'c' is an inverse element of 'a' in G, therefore a*c=c*a=e---(2), where 'e' is an identity element in G with respect to the operation *

```
L.H.S=b=e*b (since a*e=e*a=a, e is identity element in G)

L.H.S=(c*a)*b (using the equation (2))

L.H.S=c*(a*b) (Using associative property of G)

L.H.S=c*e (using the equation (1))

L.H.S=c (since a*e=e*a=a, e is identity element in G)

Therefore L.H.S=R.H.S

Hence the proof.
```

Properties of a group

The cancellation laws are true in group.

roof:

Proof of left cancellation

```
Let a*b=a*c, we have to prove b=c

=> a<sup>-1</sup>*(a*b)=a<sup>-1</sup>*(a*c) (multiply the element a<sup>-1</sup> on left hands side and on both sides.

=> (a<sup>-1</sup>*a)*b=(a<sup>-1</sup>*a)*c (using associative property of G)

=> e*b=e*c (for any a in G, a<sup>-1</sup>*a=a<sup>-1</sup>*a=e, where a<sup>-1</sup> is inverse of 'a' and 'e' is identity element in G with respect to the operation *.)

=> b=c (since a*e=e*a=a, e is identity element in G)
```

Proof of right cancellation

```
Let b*a=c*a, we have to prove b=c
```

 $=> (b*a)*a^{-1}=(c*a)*a^{-1}$ (multiply the element a^{-1} on right hands side and on both sides.

 $=> b*(a*a^{-1})=c*(a*a^{-1})$ (using associative property of G)

=> b*e=c*e (for any a in G, a-1*a=a-1*a=e, where a-1 is inverse of 'a' and 'e' is

identity element in G with respect to the operation *.)

=> b=c (since a*e=e*a=a, e is identity element in G)

Properties of a group

(a*b)⁻¹=b⁻¹*a⁻¹, for all a, b in G

Proof:

We have to prove that $(a*b)^{-1}=b^{-1}*a^{-1}$, for all a, b in G

i.e we have to prove that b⁻¹*a⁻¹ is the inverse of a*b.

it is enough prove that $(a*b)*(b^{-1}*a^{-1})=(b^{-1}*a^{-1})*(a*b)=e$, where 'e' is the identity element

G with respect to the operation *.

Now $(a*b)*(b^{-1}*a^{-1})=a*(b*b^{-1})*a^{-1}$ (using associative property of G) $(a*b)*(b^{-1}*a^{-1})=a*e*a^{-1}$ (for any b in G, $b^{-1}*b=b^{-1}*b=e$, where b^{-1} is inverse of

and 'e' is identity element in G with respect to the operation *.)

```
(a*b)*(b<sup>-1</sup>*a<sup>-1</sup>)= a*a<sup>-1</sup> (since a*e=e*a=a, where 'e' is identity element in G)

(a*b)*(b<sup>-1</sup>*a<sup>-1</sup>)= e ---(1) (for any a in G, a<sup>-1</sup>*a=a<sup>-1</sup>*a=e, where a<sup>-1</sup> is inverse of 'a' and 'e' is lentity element in G with respect to the operation *.)

Iso (b<sup>-1</sup>*a<sup>-1</sup>)* (a*b)= (b<sup>-1</sup>*a<sup>-1</sup>)* (a*b)

(b<sup>-1</sup>*a<sup>-1</sup>)* (a*b) = b<sup>-1</sup>*(a<sup>-1</sup>*a)*b (using associative property of G)

(b<sup>-1</sup>*a<sup>-1</sup>)* (a*b) = b<sup>-1</sup>*e*b (for any a in G, a<sup>-1</sup>*a=a<sup>-1</sup>*a=e, where a<sup>-1</sup> is inverse of 'a' and 'e' is identity element in G with respect to the operation *.)

(b<sup>-1</sup>*a<sup>-1</sup>)* (a*b)= b<sup>-1</sup>*b (since b*e=e*b=b, where 'e' is identity element in G)
```

 $(b^{-1}*a^{-1})*(a*b)=e---(2)$ (for any b in G, $b^{-1}*b=b^{-1}*b=e$, where b^{-1} is inverse of 'b'

and 'e' is identity element in G with respect to the operation *.)

From equations (1) and (2), we have $(a*b)*(b^{-1}*a^{-1}) = (b^{-1}*a^{-1})*(a*b) = e$

Thus $(b^{-1}*a^{-1})$ is the inverse of (a*b)

Hence we have proved (a*b)⁻¹=b⁻¹*a⁻¹

Multiple Choice Questions

- A non empty set A is termed as an algebraic structure
 - a. With respect to binary operation *
 - b. With respect to binary operation?
 - c. With respect to binary operation +
 - d. With respect to binary operation -

Answer: a

- 2. An algebraic structure ______ is called a semigroup.
 - a. (P, *)
 - b. (Q, +, *)
 - c. (P, +)
 - d. (+, *)

Answer: a

3. Condition for monoid is _____

a.
$$(a + e) = a$$

b.
$$(a * e) = (a + e)$$

Answer: d

4. A monoid is called a group if _____

b.
$$(a * c) = (a + c)$$

c.
$$(a + c) = a$$

d.
$$(a * c) = (c * a) = e$$

Answer: d

5.	A group (1	M, *) is	said to be abelian i	f
----	-------------	----------	----------------------	---

a.
$$(x + y) = (y + x)$$

b.
$$(x * y) = (y * x)$$

c.
$$(x + y) = x$$

d.
$$(y * x) = (x + y)$$

Answer: b

6. Matrix multiplication is a/an _____ property

- a. Commutative
- b. Associative
- c. Additive
- d. Disjunctive

Answer: b

7. How many properties can be held by a group?

- a. 2
- b. 3
- c. 4
- d. 5

Answer: c

- 8. If a*b = a such that a * (b * c) = a * b = a and (a * b) * c = a * b = a then _____
- a. * is associative
- b. * is commutative
- c. * is closure
- d. * is abelian

Answer: a

	9.	The set of rational numbers form an abelian group under			
	a.	Associative			
	b.	Closure			
	c.	Multiplication			
	d.	Addition			
Answer: c					
	10.	is the multiplicative identity of natural numbers			
	a.	0			
	b.	-1			
	c.	1			
	d.	2			
Answer: c					

Assignment Questions

- Let G = { 1, -1 }. Prove that G is a group under usual multiplication.
- Show that M₂, the set of all 2 x 2 non singular matrices over R is group under ususl matrix multiplication. Is it abelian?
- Show that the set of all non- zero real numbers is an abelian group under the operation*defined by a * b = ab
- Let S = Q x Q be the set of ordered pairs of rational numbers and given that (a, b) *(x, y) = (ax, ay+b).
 - (i). Check (S, *) is a semigroup. Is it Commutative?
 - (ii). Also find the identity and inverse element of S.
- Show that the set G = {1, 2, 3, 4, 5} is not a monoid or semigroup or group under addition modulo 6.

Thank you