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» Explicate the concept of binary operation and algebraic structures

» Explain about the semigroup, monoid and group by an example

» Explain about the abelian group




Learning Outcomes

Students can be able to identify

»Existence of binary operation
“»*About the algebraic structure

“» About the existence of identity element and inverse element




Introduction

“»In mathematics and abstract algebra, group theory studies the algebraic structures known as
groups.

“*The concept of a group is central to abstract algebra, other well known algebraic structures,
such as rings, fields and vector spaces, can all be seen as groups endowed with additional
operations and axioms.

“»Groups recur throughout mathematics, and the method of group theory have influenced
many parts of algebra.



History

_IThe term group was coined by Galois around 1830 to described sets of functions on finite
sets that could be grouped together to form a closed set.

_1The modern definition of group given by both Heinrich Weber and Walter Von Dyck in 1882,
it did not universal acceptance until the twentieth century.




Prerequisites

»~Set theory

> Relations

»Matrix Algebra




Binary Operation

Let G be a set. A binary operationon G is a function that assigns each order pair of elements of
G an element of G.

f:GxG=>G

It is customaryto denote binary operations by symbols such as +, -, x, /, etc.,

Remark:

o is a binary operationon Gifandonlyifao be G



Algebraic Structure:

A non empty set together with one or more than one binary operation is called algebraic
structure.

Examples:
1. (R, +,.)is an algebraic structure.

2. (N, +),(Z, +), (Q, +) are algebraic structures.




Examples with one binary operation:

Let N be the set of all natural number.

i.e N={0,1,2,3....}
(i) Let us consider the operation addition (+) on N

Clearly for any two element a,be N, a+b €N.

Therefore the addition '+' is a binary operation on the set N

{N,+} is called algebraic structure with one binary operation (+).
(i) Let us consider the operation multiplication(x) on N

Clearly for any two element a,b € N,thena*bh € N.

Therefore the "*'is a binary operation on the set N

{N,*}is viewed as algebraic structure with one binary operation



Example with two binary operations:

(i) Let S={1, -1, O}, then the operation addition (+) is not a binary operation on S.

Since 1+1=2is & S.

(ii) Let S={1,-1,0}, then the operation multiplication (x) is a binary operationon S

Since
X 0 1 -1
0 0 0 0
1 0 1 -1
= | 0 -1 1
Note:-
(i) From the above {N,+x} can be viewed as algebraic structure with two binary operations
(+,x).

(ii) A binary operation so called because it combines two elements.



Definition: Closure Property

Let {S,*, @ } be an algebraic system, then for any two elementa,b € S, a*b € S.

It is called closure property.

Example:-
Let {N, +, x} be an algebraic structure, where N is a natural number.
Ifa,b e N,thena+b e N
Ifa,b e N,thenaxb e N



Definition: Associative Property

Let {S,*, @} be an algebraic system, then for any three elementa,bandc € §,

(a*b)* c=a*(b*c) . It is called associative property.

-xample:-
Let {N, +, x} be an algebraic structure, where N is a natural humber.
Ifa,bandc e N,then(a + b)+c=a+ (b + ¢)

Ifa,bandc e N,then(a xb)xc=ax(bxc)



Definition: Commutative Property

Let {S,*, @} be an algebraic system,
For any two elementa,b € S, a*b=b*a
(ample:-
Let {Z, +, x} be an algebraic structure, where Z is set of all non negative integer.
| For any elementa, b € Z, a+b=b+a, The set Z is commutative with respect to the binary
reration '+'.
) For any elementa,b € Z, axb = b x a, therefore the set Z is commutative with respect to

e binary operation 'x'.



Definition: Existence of Identity Element

Let {S,*, @} be an algebraic system, then for any element 'a' €S, there exist an

distinguished element 'e' in S such that a*e=e*a=a, then the element 'e' is called identity element of

S with respect to the operation *

Example:-

Let {Z, +, x} be an algebraic structure, where Z is set of all non negative integer.
(i) For any element 'a' € Z, a+0=0+a=a, therefore 0 is an identity element of Z with respect to

the binary operation '+'. and '0' is also called additive identity of Z.

(ii) For any element'a’ € Z, ax 1 =1 x a=a, therefore 'a’ is an identity element of Z with respect

to the binary operation 'x'. and '1'is also called multiplicative identity of Z.



Definition: Existence of Inverse Element

Let {S,*, @} be an algebraic system, then for any element 'a' € S, there exist an element a’
in S such that a*a™ =a™ *a=e, where e is an identity element with respect to the operation (*). then
the element a~ is called inverse element of ' a' € S under the operation(*).

Example:-

Let {R, +, x} be an algebraic structure, where R is set of all real numbers.

(i) For any element 'a' € R, a+(-a)=(-a)+a=0, where '0' is an identity element of R with respect
to the binary operation '+'. and '-a' is the additive inverse element of 'a' € R.

(ii) For any element 'a’' in R, a x il 1, where '1'is an identity element of R with
respect to the binary operation 'x'. and 'a™'is called multiplicative inverse 'a' € R. but the element

'0' € R has no multiplicative inverse in R.



Definition: Distributive Property

Let {S,*, @} be an algebraic system. For any a, b and ¢ € S, a*(b@c¢)=(a*b) D (a*c), It is

lled distributive law. In this case the operation ' * ' is distributive over the operation' @".

cample:-
Let {R, +, x} be an algebraic structure, where R is set of all real numbers.
The multiplication operation ' x ' is distributive over the addition operation '+

i.e Foranya, bandc € R, a*(b+c)=a*b+a*c.



Cancellation Laws

Let {S,*, @ }be an algebraic system. Foranya, b, c € Sand a# 0, then
(i) a*b=a*c=>b=c (Left Cancellation Law) and

(ii) b*a=c*a=>b=c (Right Cancellation Law)

Example:-

Let {R, +, x} be an algebraic structure, where R is set of all real numbers.
(i) Since forany a, b, c € R, then

a+b=c+b=>a=c (Right Cancellation Law)

b+a=b+c=>a=c (Left Cancellation Law)

i.e Cancellation property hold for a, b, cin R under addition operation.



)efinition: Idempotent element

An element'a’ € Sis called an idempotent element with respect to the operation *,

L e ==

Example:-

Let {R, +, x} be an algebraic structure, where R is set of all real numbers.
(i) Since 0 + 0=0, where '0' € R. Therefore '0' is an idempotent element under the addition
operation (+).
(i) Since 1 x 1=1, where 'l' € R. Therefore '1' is an idempotent element under the
multiplication operation(*).
(iii) Since 0 x 0=0, where '0' € R. Therefore '0' is an idempotent element under the addition

operation(*).



Definition: Semigroup

If S is a nonempty set and * be a binary operation on S, then the algebraic system {S,*} is

called semi group, if the operation * is associative. i.e foranya, b, c € S, (a*b)*c=a*(b*c).




Definition: Commutative Semigroup

A semi group {S,*} is said to be semi group, if the binary operation * satisfies the

commutative property. i.e foralla,b € S, a*b=b*a.




Definition: Monoid

If a semi group {M,*} has an identity element with respect to the operation *, then {M,*} is
alled a monoid.
i.eforanyelement'a'e M,a*e=e *a=a, where'e' isanidentity element in M with

espect to the binary operation *,




Example:

Let N be the set of positive integers, then the algebraic system {N,+} is a semi group.
since the binary operation addition (+) on N satisfies associative property.

i.eforalla, b,c € N, (a+b)+c=a+(b+c)
Additionally fora, b € N a+b=b+a, therefore {N,+} is a commutative semi group

Alsoforalla € N,0O+a=a+0=a, where '0'is additive identity element, butitis notin N.

Hence {N,+}is not a monoid.



Example:

Let | be the set of all integers, then the algebraic system {l,-} is not a semi group.

Since the binary operation subtraction (-) on | does not satisfies the associative property.
For example consider the integers 12,-15, 2 in |

(12-(-15))-2=(12+15)-2=27-2=25, But 12-((-15)-2)=12-(-17)=12+17=29, Both are not same.
Since {l,-}is not a semi group,

Hence {l,-} is not a Monoid.



Example:

Let P(S) be the power set of s, then the algebraic system {P(S), U} is a semi group

Since the binary operation union (U) on P(S) satisfies the associative property.
i.eforallS;,S;, S3 € P(S), (S US;)US3=5,U(S,US;3)

Additionally for all §;, S; € P(S), SiU S;=5,U§;, {P(S),U}is called a commutative semi group.
Also forall §; € P(S), S,U {}={} U, =S,, where the element {} is an identity element in P(S).

Hence {P(S),U}is a monoid.,



Definition: Group

If G is a non empty set and * is a binary operation of G, then the algebraic system {G,*} is
alled a group if the following conditions are satisfied.

(i) Foralla, b, c € G, (a*b)*c=a*(b*c) (Associative Property)

(ii) There exists an element e in G such that, a*e=e*a=a, for any a € G (Existence of Identity)

(iii) For every a € G, there exist a* in G such that a*a'=a *a=e  (Existence of inverse)



Definition: Order of a Group

When G has finite number of element, the number of elements in G is called the order of G.

It is denoted by O(G) or |G].




Definition: Commutative Group (or) Abelian Group

Let {G,*} be a group with binary operation *, G is said to be commutative group if for every
a,b € G, ath=b+a.

It is also called Abelian group.




Example:

Let Z be the set of natural number,

since (a+b)+c=a+(b+c) ,for alla,b,c € Z.

The element '0' € Z is an additive identity

The element -a' € Zis an additive inverse for all a € Z.
Therefore the algebraic system {Z,+} is a group.

The order of the group is O(Z)=w=

Since a+bh=b+a, for all 'a' € Z. Therefore {Z,+} is a commutative group.



Example:

Let G={1,-1,i-i}, then {G,x} is a algebraic structure

X 1 -1 i -i
1 1 -1 i -i
-1 -1 1 -i i

i | -i -1 1
- - i ;| -1




From the above Cayley's table , it is clear that the operation x is binary and satisfies the
associative property.

The multiplicative identity is e=1
Since 1lxe=zexl=1l -l1xe=zex(-1)=-1, ixe=e xi=i, and -i xe=zex|(-i) =-i

Every element has its inverse in G
since the element 1is the inverse of 1, l1xl=1xl=e

the element -1 is the inverse of -1, -1x-1=-1 x -1=e



the element iis the inverse of -i, -ixizix-i =e
the element -i is the inverse of i, ix-iz-ixize
Therefore the algebraic structure {G,x} is a group

Also the operation x is commutative in G, therefore {G,x} is a abelian group.

The order of the group O(G)=4.



Definition: Order of an element

If the element 'a’' in G, where G is a group with identity 'e’, then the least positive integer 'm'
for which a"=e is called the order of the element 'a'.

It is denoted by O(a).




Examples:

(i) Let G={1,-1, i, -i} be a group, where e=1 is the multiplicative identity element.
Since (1)'ze, 0O(1)=1,
(-1)*=e, O(-1)=2
(i)’=e, Ofi)=4
(-i)*=e, O(-i)=4
(i) Let G={1, w, w’} be a group , where w’=1 and e=1 is the multiplicative identity element .
Since (1)'=1, O(1)=1
(w)’=1, O(w)=3
(w’)’=1, O(w?)=3



i) Let Z be a set of natural numbers, i.e z={0,1,2,3...} be a group and e=0 is additive identity

ement.
nce (0)'=0, 0(0)=1

O(a)=oofor all ain Z other than zero.

pte:-

If no such integer 'm' exists, then 'a’ is of infinity order



Properties of a group

The identity element of a group {G,*}is unique

oof:

We have to prove the identity element of a group {G,*} is unique,
Suppose if there are two identity element ey, e; are in G, we have to prove e;=e;
Since e; is an identity element in G, therefore a*e;=e ;*a=aforallain G
Clearly e;is an element of G, therefore e;*e =e;*e;=e;,-----(1)
Similarly e; is an identity element in G, therefore a*e;=e,*a=aforallain G
Clearly e;is an element of G, therefore e, *e,=e,*e;=e;,-----(2)
From equations, (1) and (2), we have
(1)=> e %er=e;
=> e =e, (Using equation (2) e;*e;=e,)

Hence the proof.



Properties of a group

The inverse of each element of {G,*} is unique

roof:

We have to prove the inverse of each element of a group {G,*}is unique,

Suppose if there are two inverse element b and c for an element 'a' in G,

we have to prove b=c

Since 'b'is an inverse element of 'a' in G, therefore a*b=b*a=e ---(1), where 'e' is an identity
element in G with respect to the operation *

Since 'c' is an inverse element of 'a’ in G, therefore a*c=c*a=e---(2), where 'e' is an identity

element in G with respect to the operation *



L.H.S=b=e*b (since a*e=e*a=a, e is identity element in G)
L.H.S=(c*a)*b ( using the equation (2))

L.H.S=c*(a*b) ( Using associative property of G)

L.H.S=c*e (using the equation (1))

L.H.S=c (since a*e=e*a=a, e is identity element in G)
Therefore L.H.S=R.H.S

Hence the proof.



Properties of a group

The cancellation laws are true in group.

roof:

Proof of left cancellation

Let a*b=a*c, we have to prove b=c

- a'l*{a*h)=a'1*{a*c) (multiply the element a" on left hands side and on both sides.

=> (a"*a)*b=(a"*a)*c ( using associative property of G)

=> e*b=e*c ( for any a in G, a*a=a*a=e, where a" is inverse of 'a' and 'e' is
identity element in G with respect to the operation *.)

=> b=c (since a*e=e*a=a, e is identity elementin G)



Proof of right cancellation

Let b*a=c*a, we have to prove b=c

=> (b*a)*a'=(c*a)*a’ (multiply the element a™ on right hands side and on both sides.

=> b*(a*a')=c*(a*a™) (using associative property of G)

=> b*e=c*e (for any a in G, a'*a=a *a=e, where a* is inverse of 'a' and 'e' is
identity element in G with respect to the operation *.)

=> b=c (since a*e=e*a=a, e is identity element in G)



Properties of a group

(a*b)'=b"*a™" foralla, binG

>roof:
We have to prove that (a*b)'=b"*a™ foralla,binG

i.e we have to prove that b**a™ is the inverse of a*b.

it is enough prove that (a*b)*{b'l*a'1)= (h'l*a'l)*(a*b)=e, where ‘e’ is the identity element
G with respect to the operation *.
Now (a*b)*(b™*a')=a*(b*b™)*a™ ( using associative property of G)

(a*b)*(b*a )= a*e*a™ (for any b in G, b*b=b™"*b=e, where b™ is inverse of

and 'e'is identity element in G with respect to the operation *.)



(a*b)*(b'*a')=a*a" (since a*e=e*a=a, where 'e' is identity element in G)

(a*b)*(b'*a')=e —(1) (for any a in G, a*a=a " *a=e, where a™ is inverse of 'a' and 'e' is
entity element in G with respect to the operation *.)
so  (b™*a™)* (a*b)= (b *a)* (a*b)

(b *a™t)* (a*b) =b ™' *(a'* a)*b ( using associative property of G)

(b'*a')* (a*b) = b *e*b (for any a in G, a'*a=a'*a=e, where a™ is inverse of 'a'
1d ‘e’ is identity element in G with respect to the operation *.)

(h’l*a'l)* (a*b)= b™*b (since b*e=e*b=b, where ' e ' is identity element in G)



(h'l*a'll* (a*b)= e-—(2) (for any b in G, b'l*b=b'1*b=e, where b is inverse of 'b'
and 'e' is identity element in G with respect to the operation *.)

From equations (1) and (2), we have(a*b)*(b™*a™)= (b *a™)* (a*b)=e

Thus (b**a™)is the inverse of (a*b)

Hence we have proved (a*b]'1=b'1*a'1



Multiple Choice Questions

1. A nonempty set A is termed as an algebraic structure
a. With respect to binary operation *
With respect to binary operation ?

b
c. With respect to binary operation +
d. With respect to binary operation -

Answer: a

2. An algebraic structure is called a semigroup.
a. [P,7¥)
b. (Q,+ %)
c. [P, ]
d

(+ %)

Answer: a



3. Condition for monoid is

a. [at+e)=a

b. [a*e]=(a+eg)

c. a={(a*a+e))

d. [a Fe)j=(e*a)=a

Answer: d

4. A monoid is called a group if
a. [a*a)j=a=(a+c)
b. [a*c)=(a+c)
c. [a+c)=a
d

[a*c)j=(c*a)=e

Answer: d



5. Agroup (M, *)is said to be abelian if
a. [x+y)=(y+x)
b. (x*y)=(y*x)
c. [x+y)=x
d. (y*x)=(x+y)

Answer: b
6. Matrix multiplication is a/an property
a. Commutative
b. Associative
c. Additive
d. Disjunctive
Answer: b



7. How many properties can be held by a group?
a. 2
b. 3
c. 4
i 5
Answer: c
& |If a*b=asuchthata*(b*c)=a*b=aand(a*b)*c=a*b=athen
a. *is associative
b. *is commutative
c. *isclosure

d. *is abelian
Answer: a



9. The set of rational numbers form an abelian group under
3. Associative
b. Closure
c.  Multiplication
d. Addition
Answer: c
10. is the multiplicative identity of natural numbers
a. D
b. -1
C:
d.
Answer: c



Assignment Questions

Let G=1{1,-1}. Prove that G is a group under usual multiplication.
Show that M3, the set of all 2 x 2 non — singular matrices over R is group under ususl matrix
multiplication. Is it abelian?

3. Show that the set of all non- zero real numbers is an abelian group under the
operation*defined bya *b=ab

4. Let5=0Qx Q be the set of ordered pairs of rational numbers and given that (a, b) *(x, y) =
ax, ay+b).
(i). Check (5, *) is a semigroup. Is it Commutative?
(ii}). Also find the identity and inverse element of 5.

3. Show that the set G=1{1, 2, 3, 4, 5} is not a monoid or semigroup or group under addition

modulo 6.



Thank you



