CURRICULUM & SYLLABUS

For

B.E. (Hons.) Mechanical Engineering with specialization in Electric Vehicles

(Choice Based Credit System) (With effect from 2018)

DEPARTMENT OF MECHANICAL ENGINEERING

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDYALAYA

SCSVMV

(Deemed to be University U/S 3 of UGC Act 1956)

Accredited with "A" Grade by NAAC

Enathur, Kanchipuram - 631 561

These regulations are applicable to the students admitted from the AY 2019-20 onwards.

1. PRELIMINARY DEFINITIONS AND NOMENCLATURE

- 1. "Degree" referred to as Under-Graduate (UG) Degree, i.e., B.E. Degree.
- "Honours Degree" referred to as Under-Graduate (UG) Degree specialization in emerging area of Home Discipline i.e., Mechanical Engineering to facilitate the students to choose additionally the specialized courses of their choice and to build their competence in special area. Students have to undergo additional courses and acquire more than required number of credits & maintaining CGPA – 8.0 during their period of study (4 years) and no history of arrears to obtain B. E (Hons).
- 3. "Minor **Degree**" referred to as Under-Graduate (UG) Degree specialization in emerging areas other than the chosen discipline of Engineering. Students have to undergo additional courses in their special areas of interest and earn additional credits to obtain B. E with Minor Specialization.
- 4. "Programme" referred to as discipline of B.E. Degree programme like Mechanical Engineering.
- 5. "Course" referred to as a theory/practical subject studied in a semester.

2. ELIGIBILITY FOR ADMISSION

1. Regular Admission

- Maximum age limit for the full-time course is 20 years.
- Students seeking admission to the first semester of the eight semester B.E.
 -Degree programme shall be required to have a pass in Higher Secondary Examinations (Academic 10+2) or its equivalent examinations in any State/CBSE/IGCSE board with Mathematics, Physics and Chemistry. Passed 10+2 examination with Physics and Mathematics as compulsory subjects along with one of the Chemistry / Biotechnology / Biology / Technical Vocational subject / Computer Science / Information Technology / Informatics Practices / Agriculture / Engineering Graphics / Business Studies.
- Obtained at least 50%, Marks (40% marks in case of candidates belonging to reserved category) in the above subject taken together.

2. Lateral Entry Admission

Students who possess the Diploma in Engineering (Mechanical/Automobile or its equivalent) awarded by the State Board of Technical Education, Tamil Nadu

or its equivalent board are eligible to apply for Lateral entry admission to the third semester of B.E. Programme.

3. COURSES OFFERED

-		
COURSE - I	:	B.E. – MECHANICAL ENGINEERING
COURSE – II	:	B.E. (HONS.) – MECHANICAL ENGINEERING in Specialization with 3D Printing
COURSE – III	:	B.E. (HONS.) - MECHANICAL ENGINEERING in Specialization with Electric Vehicles
COURSE – IV	:	B.E. (HONS.) - MECHANICAL ENGINEERING in Specialization with Robotics
COURSE – V	:	B.E MECHANICAL ENGINEERING with Minor degree in Cyber Security
COURSE – VI	:	B.E MECHANICAL ENGINEERING with Minor degree in Internet of Things (IoT)
COURSE – VII	:	B.EMECHANICAL ENGINEERING with Minor degree in Artificial Intelligence & Machine Learning
COURSE – VIII	:	B.EMECHANICAL ENGINEERING with Minor degree in Sensor Technology

A student may be offered admission to any one of the programmes of study. The recommended credit range for the above programmes are in between 170 to 192.

4. STRUCTURE OF PROGRAMMES

1. Categorization of Courses

Each B.E., programme will have a curriculum with syllabi comprising of Theory and Practical courses with well-defined Program Outcomes and Programme Educational Objectives (PEO) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses of a programme are categorized as follows:

- **1. Basic Science Courses (BSC)** include Mathematics, Physics, Chemistry, Biology, Environmental Sciences, etc.
- **2. Engineering Science Courses (ESC)** include Engineering Practices, Engineering Graphics, Basics of Electrical / Electronics / Mechanical / Computer Engineering, Instrumentation etc.
- **3. Professional Core Courses (PCC)** include the core courses relevant to the Mechanical Engineering & chosen specialization.
- **4. Professional Core Elective Courses (PCEC)** include the elective courses relevant to the chosen specialization.
- **5. Professional Specialised Courses (PSC)** include the specialised courses relevant to the chosen specialization.
- 6. Humanities and Social Sciences including Management courses (HSMC) & Open Electives Courses (OEC) provide an opportunity to study a course from any discipline that includes the courses relevant to the chosen specialization. The student can choose from the curriculum of other B.E. / B. Tech. programmes and the courses offered by the Departments under the Faculty of Science and Humanities.
- 7. Project Mechanical Engineering courses (PROJ-ME)
- 8. Mandatory Courses (MC) non-credit courses such as Environmental Sciences, Induction Program, Indian Constitution, Essence of Indian Traditional Knowledge

2. Mandatory Two-Week Induction Programme

The students are expected to undergo a mandatory two-week induction programme comprising of physical activity, creative arts, universal human values, proficiency modules, lectures by eminent people, visits to local areas and familiarization to department/branch & innovations immediately after admission.

3. Number of courses per semester

The Curriculum of a semester shall normally have a blend of 4 to 7 lecture courses, except the final semesters, and 2-3 laboratory courses. However, the total number of courses per semester shall not exceed 10 (including EEC). Prefinal semester may have 1 design Project. The final semester may have a blend of 2 or 3 lecture courses and 1 innovative Project.

4. Credit Assignment

In assigning the credits for the courses, 1-hour lecture/week, 1-hour tutorial/week, 2 hours practical/week, 2 hours project work or seminar/week is equivalent to 1 credit.

5. Industrial Training / Internship

Student is expected to undergo In-plant training in any industry/organization during the programme of study. Every 2 weeks of internship/training at industry is equivalent to 1 credit. The credit will be awarded to the student based on the recommendation by the evaluation team, and the results will be sent to The Controller of Examinations after the approval by the Head of the Department.

6. Industrial Visit

Student is required to go for at least one Industrial Visit every year, starting from the second year of the Programme. The Heads of Departments shall ensure that necessary arrangements are made in this regard.

7. Medium of Instruction

The medium of instruction is English for all courses.

5. DURATION OF THE PROGRAMMES

- 1. A student is normally expected to complete the B.E. Programme in 4 years (8 Semesters), but in any case, not more than 7 years (14 Semesters).
- 2. Each semester shall normally consist of 90 working days (including examination days). The Head of the Department shall ensure that every faculty imparts instruction as per the number of periods specified in the syllabus, covering the full content of the syllabus for the course being taught.
- 3. **The** total duration for completion of the programme reckoned from the commencement of the first semester to which the student was admitted shall not exceed the maximum duration irrespective of the period of break of study.

6. COURSE ENROLLMENT AND REGISTRATION

1. Student, on admission, shall be assigned to a Faculty Advisor, who shall advice and counsel the student about the details of the academic programme and the choice of courses, considering the student's academic background and career objectives.

- 2. After registering for a course, a student shall attend the classes, satisfy the attendance requirements, earn continuous assessment marks and appear for the end semester examinations.
- 3. Each student on admission shall register for all the courses prescribed in the curriculum.
- 4. If a student fails to secure a pass in any theory or Laboratory course (including elective theory), he/she shall register for the same course in the immediate semester examinations by retaining the Continuous Assessment Marks already earned.
- 5. The student shall register Project-1 in VII Semester and Project-2 in VIII Semester.
- 6. The student who fails in any Project work (Project 1 / Project 2) shall register for the course again. In this case, the student shall attend the reviews and fulfil the attendance requirements.

7. RE`QUIREMENTS FOR APPEARING FOR THE END SEMESTER EXAMINATION

- 1. Student who has fulfilled the following conditions shall be deemed to have satisfied the attendance requirements for appearing for the end semester examination of a particular course.
- 2. Ideally every student is expected to attend all periods and earn 100% attendance. However, the student shall secure not less than 80% attendance, course wise, taking into account the number of periods required for that course, as specified in the curriculum.
- 3. If a student secures attendance between 70% and less than 80% in any course in the current semester, due to medical reasons (hospitalization / accident / specific illness) or due to participation in the College / University / State / National / International level Sports events, with prior permission from the Sports director, and Head of the Department concerned, the student shall be given exemption from the prescribed attendance requirement and the student shall be permitted to appear for the end semester examination of that course.
- 4. In all such cases, the students should submit the required documents on joining after the absence to the Head of the Department through the Faculty Advisor.
- 5. A student with an attendance between 40% and 70% in any course will fall under the category **"Semester Break"**, which means Students will not be permitted to attend the Regular End Semester Examinations for that course. If

a student has short fall of attendance in all the registered courses in "Semester Break", he/she would be permitted to move to the higher semester and has to repeat the current semester in the subsequent semester.

- 6. The student, whose attendance falls below 40% for a course in any semester, will be categorized as **"Detained"**, which means detained in the particular course for want of attendance and they will not be permitted to write the End semester exam for that course. Students will be asked to repeat the same course in the next year.
- 7. A student who has already appeared for a course in a semester and passed the examination is not entitled to reappear for the same course for improvement of grades.

8. FACULTY ADVISOR

To help the students in planning their courses of study and for general advice on the academic programme, the Head of the Department of the students will attach a certain number of students to a faculty of the Department, who shall function as Faculty Advisor for those students throughout their period of study. The Faculty Advisor shall advise the students in registering and reappearance (Arrear) registering of courses, authorize the process, monitor their attendance and progress and counsel them periodically. If necessary, the Faculty Advisor may also discuss with or inform the parents about the progress / performance of the students concerned.

9. CLASS COMMITTEE

The objective of the Class Committee is to improve the teaching-learning process. The functions of the class committee include:

- 1. Resolving difficulties experienced by students in the classroom and in the laboratories.
- 2. Clarifying the regulations of the degree programme and the details of rules therein.
- 3. Discussing the progress of academic schedule and deviations if any.
- 4. Evaluating the performance of the students of the class after each test and finding the ways and means of improvement.
- 5. Class committee consisting of faculty members who are teaching in that class, student representatives and a Head of the Department

- 6. The class committee shall meet 2-3 times in a semester as specified in the academic calendar. The Dean (Engg. & Tech) may participate in any class committee of the institution.
- 7. During these meetings, the representative of the class shall meaningfully interact and express the opinions and suggestions of the other students of the class to improve the effectiveness of the teaching-learning process.
- 8. The Head of the Department is required to prepare the minutes of the meeting, signed by the members and submit the same to Dean. In each meeting, the action taken report of the previous meeting is to be presented by the HOD.

10. SYSTEM OF EXAMINATION

Performance in each course of study shall be evaluated for a maximum of 100 marks based on one of the following:

- 1. Continuous assessment throughout the semester and a terminal examination at the end of the semester. The continuous assessment will carry 40 marks while the end-semester examination will carry 60 marks.
- 2. The end semester examination (Theory & Practical) of 3 hours duration shall be conducted by the Controller of Examinations between October to December during the Odd Semesters and between April to May during the Even semesters. All Practical examinations shall be conducted and evaluated at the Department itself on behalf of the Controller of Examinations.
- 3. For all the practical courses, students shall obtain bonafide certificate for the Observation cum Record completed from the Faculty in-charges / Head of the Department on or before the day of the practical examination.
- 4. For the project works, students shall obtain bonafide certificate for the project work completed from the project Guide and Head of the Department, at the end of the semester.
- 5. The semester examination for project work shall comprise of evaluation of the final report submitted by the project group (of not exceeding 4 students) by an external examiner. Further, the performance of each student of the project group would be evaluated in a viva-voce examination conducted by a committee consisting of an external examiner appointed by the Head of the Department/the Controller of Examination, Head of the Department or faculty nominated by Head of the Department and Guide of the project group.

6. Student can apply for re-valuation of his/her semester examination answer paper in theory courses within the stipulated period from the declaration of results, on payment of a prescribed fee, as specified by the Controller of Examinations from time to time. The Controller of Examination will arrange for going through the answer scripts by the students and to make appeals. The re-valuation results will be published before the commencement of supplementary examinations. Re-valuation is not permitted for practical courses, project work and industry supported courses.

11. PROCEDURE FOR AWARDING MARKS FOR CONTINUOUS ASSESSMENT

1. Theory courses

- The award of marks for continuous assessment shall be normally based on two internal assessment tests and five Assignments / tutorials / seminars. The apportioning of marks shall be as follows:
 - 1. 30 marks for tests
 - 2. 10 marks for assignments/tutorials/seminars/Attendance

However, the assessment pattern for awarding the continuous assessment marks may be designed by the course designers based on the nature of the course and is to be approved by the Academic Council.

- 2. The first and second Continuous Assessment Tests will be normally conducted at the mid and end of the semester respectively. Each test carries maximum of 30 marks.
- 3. There will be five assignments for each course which will be considered for awarding marks for assignment.
- 4. Both test and assignment marks put together is 40 marks maximum.
- 5. If a student fails in a theory course, the Continuous Assessment Marks already earned will be retained for subsequent reappearances.

2. Practical courses

The continuous assessment mark will be awarded as follows:

Observation-cum-Record in regular class works	: 15 marks
Model Test	: 15 marks
Viva	: 10 marks

3. Project work

Head of the Department shall constitute a review committee comprises of Head of the Department or Faculty member nominated by Head of the Department and two faculty members. The student shall make presentation on the progress made by him / her before the committee. The total marks obtained in the three reviews shall be averaged to 40 marks.

• Every faculty member is required to maintain an Attendance and Continuous Assessment Record which consists of attendance marked for each lecture or practical or project work classes, the tests & assignment marks and record of class works (topics covered) separately for each course.

12. ELIGIBILITY FOR PASS IN EACH COURSE

- 1. A student who secures not less than 50% of total marks (both continuous assessment and end semester examination marks put together) in theory courses, practical courses shall be declared to have passed the examination.
- 2. If a student fails to secure a pass in a particular course, it is mandatory that he/she shall register for that course in the subsequent semester and attend the end semester examination. He/she should continue to register and appear for the examination till he /she secures a pass.

Range of Total marks (Continuous assessment + End semester examination)	Letter Grade	Grade Point (GP)
Between 90 to 100	S	
Between 80 to 89	А	
Between 70 to 79	В	
Between 60 to 69	С	
Between 55 to 59	D	
Between 50 to 54	Е	
Between 0 to 49	F	
Absent	AB	

3. Award of Grades

Grade Point Average GPA= $\frac{\sum_{i=1}^{N} C_{i}G_{P_{i}}}{\sum_{i=1}^{N} C_{i}}$

N is the number of courses registered in a particular semester, GP_i is the grade point obtained in i^{th} course and C_i is the number of credits assigned to i^{th} course.

Cumulative GPA (CGPA) will be calculated when the student is declared to be eligible for the award of the degree. CGPA calculation is based on all the courses considered for the award of the degree.

13. ELIGIBILITY FOR THE AWARD OF DEGREE

A student shall be declared to be eligible for the award of the degree if he/she has satisfied the following:

- 1. A student seeking B.E., degree shall be required to undergo the prescribed courses of study and evaluation in the college for the specified duration and to pass all the examinations prescribed therefore.
- 2. He/ she should register for the courses prescribed in the curriculum of the respective degree programme, fulfil the requirement of credits in each category of credit distribution, pass in all mandatory courses in the curriculum and earn the specified total minimum number of credits.
- 3. No disciplinary action pending against the student.

14. CLASSIFICATION OF THE DEGREE AWARDED

1. First class with Distinction

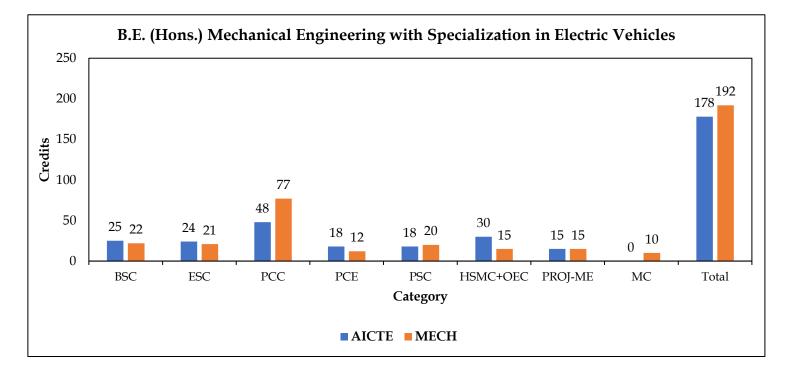
A student who qualifies for the award of degree having passed the examination in all registered courses in his / her first appearance (including industry supported courses), within Four years (Three Years for Lateral Entry students), and securing a CGPA of not less than 8.50 shall be declared to have passed in First class with distinction.

2. First Class

A student who qualifies for the award of degree having passed the examination in all the courses within Four years (Three years for Lateral Entry students) and securing a CGPA of not less than 7.00 shall be declared to have passed in First class.

3. Second Class

All other students (not covered in 14.1 and 14.2) who qualify for the award of degree having passed the examination in all the courses and fulfilling the requirements shall be declared to have passed in Second Class.


15. DISCIPLINE

- 1. Every student is required to observe discipline and decorous behavior both inside and outside the college and not to indulge in any activity, which will tend to bring down the prestige of the college. The Registrar shall constitute a disciplinary committee to enquire into acts of indiscipline and notify the institution about the disciplinary action recommended for approval. In case of any serious disciplinary action which leads to suspension or dismissal.
- 2. If a student indulges in malpractice in any test/examinations, the student shall be liable for punitive action as prescribed by the institution from time to time.

16. REVISION OF REGULATIONS AND CURRICULUM

The standing committee/Academic Council/ of the institution reserves the right to revise or change or amend the regulations, the scheme of examinations, the curriculum and the syllabi from time to time if found necessary.

	DISTRIBUTION OF CREDITS										
SL. No	Course Category	As per AICTE regulation 2018	Credits	Percentage (%)							
1.	Basic Science Courses (BSC)	25	22	13.5							
2.	Engineering Science Courses (ESC)	24	21	13.1							
3.	Professional Core Courses (PCC)	48	79	48.1							
4.	Professional Core Electives Courses (PCE)	18	12	7.5							
5.	Professional Specialised Courses (PSC)	18	20	12.5							
6.	Humanities and Social Sciences including Management courses (HSMC) + Open Electives Courses (OEC)	30	15	9.3							
7.	Project Mechanical Engineering courses (PROJ-ME)	15	15	9.3							
8.	Mandatory Courses (MC)*	0	8*	*							
* Not a	ccountable for CGPA										
	Total 178 192 100										

EACH COURSE IN CATEGORY WISE

B.E. (HONS.) MECHANICAL ENGINEERING WITH SPECIALIZATION IN ELECTRIC VEHICLES

	Basic Science Courses (BSC)										
SL.	Semester	Course	Course	Name of the Course	Hou	ours per week		Credit			
No	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Category	Code		L	Т	Р				
1	1	BSC		Mathematics –I (Calculus & Linear Algebra)	3	1	-	4			
2	1	BSC		Engineering Chemistry	3	-	-	3			
3	1	BSC		Chemistry Lab	-	-	3	2			
4	2	BSC		Mathematics – II (Calculus, Ordinary Differential Equations, and Complex Variables)	3	1	-	4			
5	2	BSC		Applied Physics for Engineers	3	-	-	3			
6	2	BSC		Physics Lab	-	-	3	2			
7	3	BSC		Mathematics III (PDE, Probability & Statistics)	3	1	-	4			
	Total Credits										

			Enginee	ring Science Courses (ESC)				
SL.	Semester	Course	Course	Name of the Course	Hours per week			Credit
No	Semester	Category	Code	Name of the Course	L	Т	Р	Credit
1	1	ESC		Basic Electrical Engineering	3	-	-	3
2	1	ESC		Engineering Graphics & Design	2	-	2	3
3	1	ESC		Basic Electrical Engineering Lab	-	-	3	2
4	2	ESC		Programming for Problem Solving	2	1	-	3
5	2	ESC		Programming for Problem Solving Lab	-	-	3	2
6	2	ESC		Workshop/Manufacturing Practices Lab	-	-	3	2
7	3	ESC		Engineering Mechanics	2	1	-	3
8	4	ESC		Basic Electronics Engineering	3	-	-	3

			Total Credits							
Humanities and Social Sciences including Management courses (HSMC)										
SL.	Somostor	mester Course Course Code Name of the Course	Hou	rs per v	week					
No	Semester		Code	Ivalle of the Course	L	Т	Р	Credit		
1	2	HSMC		English	2	1	-	3		
2	6	HSMC		Operation Research & Management	2	1	-	3		
3	8	HSMC		Engineering Economics	3	-	-	3		
	Total Credits							09		

	Mandatory Courses (MC)										
SL.	Semester	Course	Course	Name of the Course	Hou	rs per v	Credit				
No		Category	Code		L	Т	Р	cicuit			
1	1	MC*		English Proficiency Certification	2	-	-	1*			
2	2	MC*		Environmental Science and Engineering*	2	-	-	1*			
3	3	MC*		Foreign Language Level – II and Above	-	-	-	1*			
4	4	MC		Sanskrit and Indian Culture	2	-	-	1*			
5	5	MC*		Soft Skill and Aptitude Certification	-	-	-	1*			
6	6	MC*		Technical Certification Course	-	-	-	1*			
7	7	MC*		Presentation / Publication in Conference / Seminar	-	-	-	1*			
8	8	MC*		Start ups				1*			
			То	otal Credits				8			

Professional Core Courses (PCC)										
SL.	Semester	Course	Course	Name of the Course	Hou	rs per v	week	Credit		
No	Semester	Category	Code	Name of the Course	L	Т	Р	Credit		
1.	3	PCC		Fluid Mechanics & Machinery	2	1	-	3		
2.	3	РСС		Thermodynamics	3	-	-	3		
3.	3	PCC		Materials Engineering	3	-	-	3		
4.	3	PCC		Fluid Mechanics and Machinery	-	-	3	2		
5.	3	PCC		Materials and Metallurgy Lab	-	-	3	2		
6.	4	PCC		Applied Thermodynamics	3	-	-	3		
7.	4	PCC		Strength of Materials	2	1	-	3		
8.	4	PCC		Kinematics of Machines	2	1	-	3		
9.	4	PCC		Manufacturing Processes	3	-	-	3		
10.	4	PCC		Thermal Engineering Lab	-	-	3	2		
11.	4	PCC		Strength of Materials Lab	-	-	3	2		
12.	5	PCC		Heat and Mass Transfer	3	-	-	3		
13.	5	PCC		Dynamics of Machines	2	1	-	3		
14.	5	PCC		Instrumentation and Control	3	-	-	3		
15.	5	PCC		Design of Machine Elements	3	-	-	3		
16.	5	PCC		Manufacturing Technology	3	-	-	3		
17.	5	PCC		Metrology and Quality Control	3	-	-	3		
18.	5	PCC		Machine Drawing Practical	-	-	3	2		
19.	5	PCC		Manufacturing Technology Lab	-	-	3	2		
20.	5	PCC		Dynamics and Measurements Lab	-	-	3	2		
21.	6	PCC		Automobile Engineering	3	-	-	3		
22.	6	PCC		Power Plant Engineering	3	-	-	3		
23.	6	PCC		CAD/CAM	3	-	-	3		
24.	6	PCC		Heat Transfer Lab	-	-	3	2		
25.	6	PCC		CAD/CAM Lab	-	-	3	2		
26.	7	PCC		Design of Transmission Systems	3	-	-	3		
27.	7	PCC		Mechatronics	3	-	-	3		
28.	7	PCC		Computer Aided Analysis Lab	-	-	3	2		
29.	7	PCC		Mechatronics Lab	-	-	3	2		
30.	8	PCC		Automation in Manufacturing	3	-	-	3		
	Total Credits									

Professional Core Electives Courses (PCE)									
SL.	Semester	Course	Course	Name of the Course		rs per v	week	Credit	
No	Semester	Category	Code		L	Т	Р	cituit	
1.	6	PCE -I		Finite Element Analysis	3	-	-		
2.	6	PCE -I		Fluid Power Systems	3	-	-		
3.	6	PCE -I		Product Design & Development	3	-	-	3	
4.	6	PCE -I		3D Printing	3	-	-		
5.	6	PCE -I		Tribology	3	-	-		
6.	7	PCE - II		Refrigeration & Air Conditioning	3	-	-		
7.	7	PCE - II		I.C. Engines	3	-	-		
8.	7	PCE - II		Turbo Machines	3	-	-	3	
9.	7	PCE - II		Energy Conservation in Industries	3	-	-		
10.	7	PCE - II		Gas Dynamics & Jet Propulsion	3	-	-		
11.	7	PCE - III		Sustainable Manufacturing	3	-	-		
12.	7	PCE - III		Design for Manufacturing	3	-	-		
13.	7	PCE - III		Theory of Metal Forming	3	-	-	3	
14.	7	PCE - III		Digital Manufacturing	3	-	-		
15.	7	PCE - III		Composite Materials	3	-	-		
16.	8	PCE - IV		Total Quality Management	3	-	-		
17.	8	PCE - IV		Entrepreneurship Development	3	-	-		
18.	8	PCE - IV		Non-Traditional Machining Process	3	-	-	3	
19.	8	PCE - IV		Non Destructive Evaluation	3	-	-		
20.	8	PCE - IV		Flexible Manufacturing Systems	3	-	-		
			То	otal Credits				12	

Professional Specialised Courses (PSC)										
SL.	Semester	Course	Course	Name of the Course	Hou	Hours per week		Credit		
No	Semester	Category	Code		L	Т	Р	create		
1	3	PSC		Electric & Hybrid Vehicles	3	-	-	3		
2	3	PSC		Energy Storage System and Management System	3	-	-	3		
3	4	PSC		Electric Drives and Controls for Electric Vehicles	3	-	-	3		
4	4	PSC		Electro-Chemistry of Fuel Cells	3	-	-	3		
5	5	PSC		Modelling and Simulation of EHV	3	-	-	3		
6	6	PSC		Modelling and Simulation of EHV Lab	-	-	2	2		
7	7	PSC		Testing and Certification of Electric Hybrid Vehicles	3	-	-	3		
			To	otal Credits				20		

Project Mechanical Engineering courses (PROJ-ME)										
SL.	Semester Course Course Name of the Course		Hours per week			Credit				
No	Semester	Category	Code		L	Т	Р			
1	7	PROJ		Design and Fabrication Project	-	-	4	2		
2	7	PROJ-ME		Industrial Internship and Training	-	-	-	3		
3	8	PROJ-ME		Project Work	-	-	12	10		
Total Credits							15			

			Open	Electives Courses (OEC)				
SL.	Semester	Course	Course	Name of the Course	Hou	rs per v		Credit
No		Category	Code		L	Т	Р	
1.	6	OEC - I		Cloud Computing	3	-	-	
2.	6	OEC - I		Web Design	3	-	-	
3.	6	OEC - I		Digital Image Processing	3	-	-	
4.	6	OEC - I		Data Analysis	3	-	-	
5.	6	OEC - I		Astro-Physics	3	-	-	
6.	6	OEC - I		Business Administration	3	-	-	•
7.	6	OEC - I		Chemistry in Crime Investigation	3	-	-	3
8.	6	OEC - I		Bioinformatics	3	-	-	
9.	6	OEC - I		Finance for Non Finance Managers	3	-	-	
10.	6	OEC - I		Fuel Cell and Batteries	3	-	-	
11.	7	OEC - II		Autotronics	3	-	-	
12.	7	OEC - II		Artificial Intelligence & Machine Learning	3	-	-	
13.	7	OEC - II		Nano Technology & Surface Engineering	3	-	-	
14.	7	OEC - II		Disaster Management & Mitigation	3	-	-	
15.	7	OEC - II		Robotics	3	-	-	
16.	7	OEC - II		HR Management	3	-	-	
17.	7	OEC - II		Nuclear and particle physics	3	-	-	
18.	7	OEC - II		Internet of Things (IOT)	3	-	-	3
19.	7	OEC - II		Psychology	3	-	-	
20.	7	OEC - II		Statistical methods with excel	3	-	-	
21.	7	OEC - II		Key Board	3	-	-	
22.	7	OEC - II		Logistics and Supply Chain	3	-	-	
23.	7	OEC - II		Violin	3	-	-	
24.	7	OEC - II		Vocal Music	3	-	-	
			Т	otal Credits				06

B.E. (HONS.) MECHANICAL ENGINEERING WITH SPECIALIZATION IN ELECTRIC
VEHICLES

	SEMESTER - I (First year)								
SL.	Course	Course	Name of the Course	Hou	ours per week		Credit		
No	Category	Code		L	Т	Р			
1.	BSC		Mathematics –I (Calculus & Linear Algebra)	3	1	-	4		
2.	BSC		Engineering Chemistry	3	-	-	3		
3.	ESC		Basic Electrical Engineering	3	-	-	3		
4.	ESC		Engineering Graphics & Design	2	-	2	3		
5.	BSC		Chemistry Lab	ŀ	-	3	2		
6.	ESC		Basic Electrical Engineering Lab	ŀ	-	3	2		
7.	MC*		English Proficiency Certification	2	-	-	1*		
* No	* Not accountable for CGPA								
	Total				01	08	17+1*		

			SEMESTER - II (First year)					
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit	
No	Category	Code	Name of the Course	L	Т	Р	Credit	
1.	HSMC		English	2	1	-	3	
2.	BSC		Mathematics – II (Calculus, Ordinary Differential Equations, and Complex Variables)	3	1	-	4	
3.	BSC		Applied Physics for Engineers	3	I	-	3	
4.	ESC		Programming for Problem Solving	2	1	-	3	
5.	MC*		Environmental Science and Engineering*	2	-	-	2*	
6.	BSC		Physics Lab	-	-	3	2	
7.	ESC		Programming for Problem Solving Lab	-	-	3	2	
8.	ESC		Workshop/Manufacturing Practices Lab	-	-	3	2	
* No	* Not accountable for CGPA							
	Total 10 03 09 19+2*							

			SEMESTER - III (Second year)					
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit	
No	Category	Code		L	Т	Р	citait	
1.	BSC		Mathematics III (PDE, Probability & Statistics)	3	1	-	4	
2.	ESC		Engineering Mechanics	2	1	-	3	
3.	PCC		Fluid Mechanics & Machinery	2	1	-	3	
4.	PCC		Thermodynamics	3	-	-	3	
5.	PCC		Materials Engineering	3	-	-	3	
6.	PSC		Electric & Hybrid Vehicles	3	0	0	3	
7.	PSC		Energy Storage System and Management System	3	0	0	3	
8.	PCC		Fluid Mechanics and Machinery Lab	-	-	3	2	
9.	PCC		Materials and Metallurgy Lab	-	-	3	2	
10.	MC*		Foreign Language Level – II and Above (German, French, Japanese, etc,)	-	-	-	1*	
* No	* Not accountable for CGPA							
	Total 19 03 06 26+1*							

			SEMESTER - IV (Second year)					
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit	
No	Category	Code	Name of the Course	L	Т	Р	Crean	
1.	ESC		Basic Electronics Engineering	3	-	-	3	
2.	PCC		Applied Thermodynamics	3	-	-	3	
3.	PCC		Strength of Materials	2	1	-	3	
4.	PCC		Kinematics of Machines	2	1	-	3	
5.	PCC		Manufacturing Processes	3	-	-	3	
6.	PSC		Electric Drives and Controls for Electric Vehicles	3	-	-	3	
7.	PSC		Electro-Chemistry of Fuel Cells	3	-	-	3	
8.	МС		Sanskrit and Indian Culture	2	-	-	2*	
9.	PCC		Thermal Engineering Lab	-	-	3	2	
10.	PCC		Strength of Materials Lab	-	-	3	2	
* No	* Not accountable for CGPA							
	Total 19 02 06 25+2*							

			SEMESTER - V (Third year)				
SL.	Course	Course	Name of the Course	Hou	ours per week		Credit
No	Category	Code		L	Т	Р	
1.	PCC		Heat and Mass Transfer	3	-	-	3
2.	PCC		Dynamics of Machines	2	1	-	3
3.	PCC		Instrumentation and Control	3	-	-	3
4.	PCC		Design of Machine Elements	3	-	-	3
5.	PCC		Manufacturing Technology	3	-	-	3
6.	PCC		Metrology and Quality Control	3	-	-	3
7.	PSC		Modelling and Simulation of EHV	3	-	-	3
8.	PCC		Machine Drawing Practical	-	-	3	1
9.	PCC		Manufacturing Technology Lab	-	-	3	2
10.	PCC		Dynamics and Measurements Lab	-	-	3	1
11.	MC*		Soft Skill and Aptitude Certification	-	-	-	1*
* No	t accountabl	e for CGPA					
	Total				01	09	25+1*

	SEMESTER - VI (Third year)								
SL.	Course	Course	Name of the Course	Hou	Hours per week		Credit		
No	Category	Code		L	Т	Р			
1.	HSMC		Operation Research & Management	2	1	-	3		
2.	PCC		Automobile Engineering	3	-	-	3		
3.	PCC		Power Plant Engineering	3	-	-	3		
4.	PCC		CAD/CAM	3	-	-	3		
5.	PSC		Modelling and Simulation of EHV Lab	2	-	-	2		
6.	PEC		Professional Elective – I	3	-	-	3		
7.	OEC		Open Elective – I	3	-	-	3		
8.	PCC		Heat Transfer Lab	-	-	3	2		
9.	PCC		CAD/CAM Lab	-	-	3	2		
10.	MC*		Technical Certification Course	-	-	-	1*		
* No	t accountabl	e for CGPA	•	•					
	Total					06	24+1*		

			SEMESTER - VII (Fourth year)				
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit
No	Category	Code		L	Т	Р	cituit
1.	PCC		Design of Transmission Systems	3	-	-	3
2.	PCC		Mechatronics	3	-	-	3
3.	PEC		Professional Elective – II	3	-	-	3
4.	PEC		Professional Elective - III	3	-	-	3
5.	OEC		Open Elective – II	3	-	-	3
6.	PCC		Computer Aided Analysis Lab	-	-	3	2
7.	PSC		Testing and Certification of Electric Hybrid Vehicles	3	-	-	3
8.	PCC		Mechatronics Lab	-	-	3	2
9.	PROJ-ME		Design and Fabrication Project	-	-	4	2
10.	PROJ-ME		Industrial Internship and Training	-	-	-	3
11.	MC*		Presentation / Publication in Conference / Seminar	-	-	-	1*
* No	t accountable	for CGPA					
		Total	Credits	18	-	10	27+1*

	SEMESTER - VIII (Fourth year)									
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit			
No	Category	Code		L	Т	Р				
1.	PCC		Automation in Manufacturing	3	-	-	3			
2.	HSMC		Engineering Economics	3	-	-	3			
3.	PEC		Professional Elective – IV	3	-	-	3			
4.	PROJ-ME		Project Work	-	-	12	10			
5.	MC*		Start ups				1*			
* Not	* Not accountable for CGPA									
	Total Credits9-12+									

		PR	OFESSIONAL ELECTIVE COURSES	6			
SL. No	Catagory	Code	Course Title	Hou	rs per	week	Credit
5L. NO	Category	Code	Course Thie	L	Т	Р	Credit
1.			Finite Element Analysis				
2.			Fluid Power Systems				
3.	PEC-I		Product Design & Development	3	-	-	3
4.			3D Printing				
5.			Tribology				
6.			Refrigeration & Air Conditioning				
7.			I.C. Engines				
8.	PEC-II		Turbo Machines	3	-	-	3
9.			Energy Conservation in Industries	-			
10.			Gas Dynamics & Jet Propulsion				
11.			Sustainable Manufacturing				
12.			Design for Manufacturing				
13.	PEC-III		Theory of Metal Forming	3	-	-	3
14.			Digital Manufacturing				
15.			Composite Materials				
16.			Total Quality Management				
17.			Entrepreneurship Development				
18.	PEC-IV		Non-Traditional Machining Process	3	-	-	3
19.			Non Destructive Evaluation				
20.			Flexible Manufacturing Systems				

OPEN ELECTIVE COURSES								
SL. No	Catagory	Code	Course Title	Hou	ours per week		Credit	
5L. NO	Category	Code	Course Thie	L	Т	Р	Credit	
1.			Cloud Computing					
2.			Web Design					
3.			Digital Image Processing					
4.			Data Analysis					
5.			Astro-Physics					
6.			Business Administration					
7.	OEC – I		Chemistry in Crime Investigation	3	-	-	3	
8.			Bioinformatics					
9.			Finance for Non Finance Managers					
10.			Fuel Cell and Batteries					
11.			Autotronics					
12.			Artificial Intelligence & Machine Learning					
13.			Nano Technology & Surface Engineering					
14.			Disaster Management & Mitigation					
15.			Robotics					
16.			HR Management					
17.			Nuclear and particle physics					
18.	OEC - II		Internet of Things (IOT)	3	-	-	3	
19.			Psychology					
20.			Statistical methods with excel					
21.			Key Board					
22.			Logistics and Supply Chain					
23.			Violin					
24.			Vocal Music					

Course Ti	tle ELECTR	IC & HYBRID VEHICLES	Cradita	LTPC				
Course Co	ode		Credits	3003				
Course Cat	0,							
Learning L	evel							
		OBJECTIVES						
• Tc	To understand the concept of electric vehicles.							
• Tc	• To study about the motors & drives for electric vehicles.							
• Tc	understand the e	ectronics and sensors in electric vehicles.						
• Tc	understand the c	oncept of hybrid vehicles.						
• Tc	study about fuel	cell for electric vehicles.						
UNIT – I I	ntroduction to Ele	ectric Vehicles						
cables, com	ponents, Controls	pes – Cost and Emissions – End of life. Electric Vehic 8. Batteries – overview and its types. Battery plug-in adards. Alternate charging sources – Wireless & Solar.						
UNIT – II	Electric Vehicle	Motors						
HEDT (Electronic Coupling)	ctrical Coupling) -	C) - Types, Principle, Construction, Control. Electric Dr - Power Rating Design, Peak Power Source (PPS); Par ng and Speed Coupling. Switched Reluctance Motor esign.	allel HEDT	(Mechanical				
UNIT – III	Electronics and S	ensor-less control in EV						
and Guidar drive Cars,	nce, Precautions, H Hacking; Sensor I	iodes, Thyristors, BJTs, MOSFETs, IGBTs, Convertors, Iigh Voltage safety, Hazard management. Sensors - Au less – Control methods- Phase Flux Linkage-Based Me ction, Mutually Induced Voltage-Based, Observer-Base	utonomous I ethod, Phase	EV cars, Self-				
	Hybrid Vehicles	enon, mutuany maacea vonage-based, observer-base						
Hybrid Ele Parallel and	ctric vehicles – Cl 1 Series-Parallel H	assification – Micro, Mild, Full, Plug-in, EV. Layout a lybrid, Propulsion systems and components. Regener n. Hybrid Electric Vehicles System – Analysis and its T	ative Brakin	g, Economy,				
UNIT – V	Fuel Cells for Ele	ctric vehicles						
and Oxida affecting, P	Fuel cell – Introduction, Technologies & Types, Obstacles. Operation principles, Potential and I-V curve, Fuel and Oxidation Consumption, Fuel cell Characteristics – Efficiency, Durability, Specific power, Factors affecting, Power design of fuel Cell Vehicle and freeze capacity. Lifetime cost of Fuel cell Vehicle – System, Components, maintenance.							
CO		COURSE OUTCOMES		PO				
Upon comp	pletion of this cour	se, Students should be able to						
		orking principle of electric vehicles.						
2.	electric vehicles.	truction and working principle of various motors u						
3.	Understand abou electric vehicles.	t working principle of electronics and sensor less con	ntrol in					
4.	Describe the diffe	rent types and working principle of hybrid vehicles.						
5.	Illustrate the varie	ous types and working principle of fuel cells.						

TEXT BO	OK
1.	Jack Erjavec and Jeff Arias, "Hybrid, Electric and Fuel Cell Vehicles", Cengage Learning, 2012.
2.	Jack Erjavec and Jeff Arias, "Alternative Fuel Technology - Electric, Hybrid and Fuel Cell
	Vehicles", Cengage Learning Pvt. Ltd., New Delhi, 2007
3.	Mehrdad Ehsani, Yimin Gao, sebastien E. Gay and Ali Emadi, "Modern Electric, Hybrid Electric
	and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2009.
REFEREN	ICES
1.	Hybrid Electric Vehicle System Modeling and Control - Wei Liu, General Motors, USA, John
	Wiley & Sons, Inc., 2017.
2.	Hybrid Electric Vehicles – Teresa Donateo, Published by ExLi4EvA, 2017.
3.	Electric and Hybrid Vehicles Power Sources, Models, Sustainability, Infrastructure and the
	Market Gianfranco Pistoia Consultant, Rome, Italy, Elsevier Publications, 2017.
4.	Hybrid, Electric & Fuel-Cell Vehicles Jack Erjavec, Delmar, Cengage Learning.
5.	Electric and Hybrid Vehicles, Tom Denton, Taylor & Francis, 2018.

Course Title ENERGY SYSTEM		STORAGE SYSTEM AND MANAGEMENT	Credits	LTPC	
Course Code				3003	
Course Category					
Learning Level					
		OBJECTIVES			
• To understa	and the differ	ent types of energy storage system.			
• To study at	out the batte	ry characteristic & parameters.			
• To model the	ne types of ba	tteries			
To know the concepts of battery management system and design the battery pack.					
To study about the battery testing, disposal and recycling.					
UNIT – I ENERG	Y STORAGE	SYSTEM			
Batteries: Lead Aci	d Battery, Ni	ckel based batteries, Sodium based batteries, Lithiur	n based batte	eries – Li-ion	

Batteries: Lead Acid Battery, Nickel based batteries, Sodium based batteries, Lithium based batteries – Li-ion & Li-poly, Metal Air Battery, Zine Chloride battery; Ultra capacitors; Flywheel Energy Storage System; Hydraulic Energy Storage System; Comparison of different Energy Storage System.

UNIT - II BATTERY CHARACTERISTICS & PARAMETERS

Cells and Batteries- conversion of chemical energy to electrical energy- Battery Specifications: Variables to characterize battery operating conditions and Specifications to characterize battery nominal and maximum characteristics; Efficiency of batteries; Electrical parameters- Heat generation- Battery design- Performance criteria for Electric vehicles batteries- Vehicle propulsion factors- Power and energy requirements of batteries- Meeting battery performance criteria- setting new targets for battery performance.

UNIT - III BATTERY MODELLING

General approach to modelling batteries, simulation model of a rechargeable Li-ion battery, simulation model of a rechargeable NiCd battery, Parameterization of the NiCd battery model, Simulation examples.

UNIT - IV BATTERY PACK AND BATTERY MANAGEMENT SYSTEM

Selection of battery for EVs & HEVs, Traction Battery Pack design, Requirement of Battery Monitoring, Battery State of Charge Estimation methods, Battery Cell equalization problem, thermal control, protection interface, SOC Estimation, Energy & Power estimation, Battery thermal management system, Battery Management System: Definition, Parts: Power Module, Battery, DC/DC Converter, load, communication channel, Battery Pack Safety, Battery Standards & Tests.

UNIT - V BATTERY TESTING, DISPOSAL & RECYCLING

Chemical & structure material properties for cell safety and battery design, battery testing, limitations for transport and storage of cells and batteries, Recycling, disposal and second use of batteries. Battery Leakage: gas generation in batteries, leakage path, leakage rates. Ruptures: Mechanical stress and pressure tolerance of cells, safety vents, Explosions: Causes of battery explosions, explosive process, Thermal Runway: High discharge rates, Short circuits, charging and discharging. Environment and Human Health impact assessments of batteries, General recycling issues and drivers, methods of recycling of EV batteries.

СО	COURSE OUTCOMES	РО
Upon com	pletion of this course, Students should be able to	
1.	Discuss about the different types of energy storage system.	
2.	Describe about the battery characteristic & parameters.	
3.	Model different types of batteries	
4.	Apply the concepts of battery management system and design the battery pack.	
5.	Explain about the battery testing, disposal and recycling.	
TEXT BO	OK	
1.	Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Battery Systems", John Wiley& Sons Ltd., 2016.	Electric Vehicle
2.	Chris Mi, Abul Masrur& David Wenzhong Gao, "Hybrid electric Vehicle Applications with Practical Properties", Wiley, 2011.	e- Principles &
3.	Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric Hybrid Electric and Fue Taylor& Francis Group, 2010.	el Cell Vehicles",
4.	James Larminie, John Lowry, "Electric Vehicle Technology Explained", John W 2003.	iley & Sons Ltd,
REFEREN	CES	
1.	G. Pistoia, J.P. Wiaux, S.P. Wolsky, "Used Battery Collection and Recycling", Elsev 0-444-50562-8)	vier, 2001. (ISBN:
2.	Guangjin Zhao, "Reuse and Recycling of Lithium-Ion Power Batteries", John Wil (ISBN: 978-1-1193-2185-9)	ey & Sons. 2017.
3.	T R Crompton, "Battery Reference Book-3 rd Edition", Newnes- Reed Educational Publishing Ltd., 2000.	and Professional
4.	4Arno Kwade, Jan Diekmann, "Recycling of Lithium-Ion Batteries: The LithoRec 2018. (ISBN: 978-3-319-70571-2).	Way", Springer,

Course Title		ELECTRIC VEHICLES		ES AND	CON	TROLS F	OR ELECTRIC	Credits	LTPC
Course Co									3003
Course Cat	egory								
Learning L	evel								
				0	BJECT	IVES			
• To s	tudy ab	out the moto	tor & de	vice charac	cteristic	s & param	eters.		
• To k	know th	e various ele	ectric dr	ive concep	ots				
• To h	nave a k	nowledge of	f DC dri	ve mechar	nism.				
• To h	nave a k	nowledge of	f AC dri	ve mechar	nism.				
• To u	understa	and about dri	rives for	special ele	ectrical	machines.			
UNIT – I N	AOTOR	AND DEV	VICE CH	ARACTE	RISTIC	CS			
		principles, mo tor SCRs, IG				ting, braki	ng & speed con	trol of dc an	d ac motors- (9)
UNIT – II F	ELECTR	RIC DRIVE O	CONCE	PTS					
				0			ification of drive al machines, sele		-
UNIT – III	DC DF	RIVES							
Transient a controlled (9)	nalysis rectifi	-	•		tors, co closed		single phase und control of so		alf and fully DC drives.
UNIT – IV	AC DR	RIVES							
methods an	nd spee		of single	-phase ind	duction	n motors, s	control of induct self-controlled sy		
UNIT – V	DRIVE	S FOR SPEC	CIAL EI	ECTRICA	L MA	CHINES			
	s to spe	ecial electrica					ontroller –gate notor drives, bru		
CO				COURSE	OUTC	COMES			РО
Upon comp	oletion o	of this course,	e, Studer	nts should	be able	e to			
1.	Describ	e about the r	motor &	device ch	aracter	istics & pa	rameters.		
2.	Explain	n about vario	ous elect	ric drive c	oncepts	3			
3.	Unders	tand the DC	C drive r	nechanism					
4.	Unders	tand the AC	C drive r	nechanism	l .				
5.	Explain	about drive	es for sp	ecial electi	rical ma	achines.			

TEXT BO	OK
1.	Gopal K D, "Fundamentals of Electric Drives", Narosa Publishing House Pvt. Ltd., 2011.
2.	Pillai S K, "A first course on Electrical Drives", Wiley Eastern Ltd, Bombay 2011.
REFEREN	ICES
1.	Ali Elamadi, "Handbook Automotive Power Electronics and Drives", CRC publishers, 2012.
2.	Bimal K Bose, "Modern Power Electronics and Drives", Elsevier publishers, Butterworth Hinnemann, 2012.
3.	Krishnan R, "Permanent Magnet synchronous and Brushless DC Motor Drives", CRC Publishers, 2010.
4.	Krishnan R, "Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design and Applications", CRC Publishers, 2012.

Course Title	MODELLI	NG AND SIMULATION OF EHV	Credite	LTPC				
Course Code			- Credits	3003				
Course Category								
Learning Level								
		OBJECTIVES						
• To understa	and the mode	lling of vehicle performance parameters.						
To model battery electric vehicles.								
To describe the drivetrain characteristics.								
To know th	To know the concepts of energy management system.							
• To know th	e vehicle dyn	amic control systems.						
UNIT – I MODEL	LING IN PE	RFORMANCE PARAMETER						
0		- Acceleration performance parameters, model cceleration of a small car.	ing the acce	leration of an				
UNIT - II MODE	LLING OF B	ATTERY ELECTRIC VEHICLES						
Acceleration force, of battery electric	Electric Vehicle Modelling - Tractive Effort, Rolling resistance force, Aerodynamic drag, Hill climbing force, Acceleration force, Total tractive effort, Modelling Electric Vehicle Range - Driving cycles, Range modelling of battery electric vehicles, Constant velocity range modelling, Range modelling of fuel cell vehicles, Range modelling of hybrid electric vehicles.							
UNIT - III DRIVI								
Electric Motor Pe Drivetrain Charact Electric and Hybrid	erformance (eristics-Regen d Electric Veh	of EV/HEV Powertrains Components- ICE Pe Characteristics - Battery Performance Characteristice Braking Characteristics-Driving Cycles I icles Propulsion and Braking - Longitudinal Dyna nd Analysis - Vehicle Braking Modelling and Ana	eristics-Tran Modelling ar amics Equati	smission and d Analysis of				
UNIT - IV ENER								
	anagement -	nd Hybrid Electric Vehicles - Simplified Handli Power/Energy Management Controllers - Rule- ategies.						
UNIT – V VEHIC	LE DYNAMI	C CONTROL						
Systems, VDC Imp Hybrid Vehicles, F	lementation c uel Cell Powe	lectric Vehicle Dynamics - Fundamentals of Vehic on Electric and Hybrid Vehicles – Case Studies, Rec ered Bus. Ilink, ADVISOR and AVL Cruise.	5	· · · ·				
CO		COURSE OUTCOMES		PO				
Upon completion of	of this course,	Students should be able to						
1. Under	stand the mo	odelling of vehicle performance parameters.						
	5	tric vehicles.						
		rain characteristics.						
		s of energy management system.						
5. Explai	n the vehicle	e dynamic control systems.						

TEXT BO	OK
1.	James Larminie, John Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons
	Ltd, 2003.
2.	Amir Khajepour, Saber Fallah and AvestaGoodarzi, "Electric and Hybrid Vehicles-
	Technologies, Modelling and Control: A Mechatronic Approach", John Wiley & Sons Ltd,
	2014.
REFEREN	ICES
1.	Antoni Szumanowski, "Hybrid Electric Power Train Engineering and Technology:
	Modelling, Control, and Simulation", IGI Global, 2013.
2.	Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell
	Vehicles_Fundamentals, Theory, and Design, Second Edition", CRC Press, 2010.

Course Co	tle	ELECTRC	D-CHEMI	STRY OF F	UEL CELLS		Crustite	LTPC
	ode						Credits	3003
Course Cat	tegory							
Learning L	level							
				OBJEC	CTIVES			
To study about the various types of fuel cells								
To understand the thermodynamics of fuel cells								
To understand the electro chemistry concept of fuel cells.								
• To s	study th	e performan	nce characte	eristics of fue	el cell.			
• To l	know at	out hydroge	en fueling.					
UNIT – I I	NTROI	DUCTION C	OF FUEL C	ELLS				
methanol electrocher	types, nical kir		hange fue cells. (5)			high temperatu rogen fuel cell		
Enthalpy cl energy bala			system, sys	ematic Gibb	os free energy,	Ideal efficiency	of the energy	conversion,
UNIT – III	ELECT	RO CHEMI	ISTRY					
-		relation of th	he fuel coi	n_{011} m n_{10} n_{10}				((· · · 1
and fuel ce and polari	ll stack, zations,	total voltag DMFC ope	fuel and ox ge and curr	ygen, mass ent for fuel	flow rate calco cells in paralle	a output, stoichi ulation for fuel a el and serious co vater flooding a	and oxygen : onnection, or	ver-potential
and fuel ce and polari polarization	ll stack, zations, n in PEN	total voltag DMFC ope MFC.	fuel and ox ge and curr eration sch	ygen, mass ent for fuel æme, gener	flow rate calco cells in parallo ous issues -w	ulation for fuel a el and serious co	and oxygen i onnection, or and water n	in single cell ver-potential
and fuel ce and polari polarization UNIT - IV Fuel cell p resistance,	ell stack, zations, n in PEN FUEL perform Kinetic polar pla	total voltag DMFC ope MFC. CELL COMI ance charac performance te, humidifie	fuel and ox ge and curr eration sch PONENTS cteristics- (ge, mass tra	ygen, mass ent for fuel eme, gener AND THE Current/vol insfer effects	flow rate calcuccells in paralle rous issues -w IR IMPACT C tage, voltage	ulation for fuel a el and serious co vater flooding a	and oxygen : onnection, or ind water n NCE power den	in single cell ver-potential nanagement, sity, Ohmic
and fuel ce and polari polarization UNIT - IV Fuel cell p resistance, stacks, bi-p UNIT - V Hydrogen production	ell stack, zations, n in PEN FUEL o perform Kinetic oolar pla FUELI storage , carbor	total voltag DMFC ope MFC. CELL COMI ance charac performance te, humidifie NG technology-	fuel and ox ge and curr eration sch PONENTS cteristics- (ce, mass tra ers and coo -pressure c rmer techno	ygen, mass ent for fuel eme, gener AND THE Current/vol- insfer effects ling plates. ylinders, liq plogy- steam	flow rate calcu cells in paralle ous issues -w IR IMPACT C tage, voltage s-membrane e quid hydroger n reforming, p	ulation for fuel a el and serious co vater flooding a N PERFORMA efficiency and	and oxygen i onnection, or and water m NCE power den ly compone (12) s, methods	in single cell ver-potential nanagement, sity, Ohmic ents, fuel cell of hydrogen
and fuel ce and polari polarization UNIT - IV Fuel cell p resistance, stacks, bi-p UNIT - V Hydrogen production	ell stack, zations, n in PEN FUEL o perform Kinetic oolar pla FUELI storage , carbor	total voltag DMFC ope MFC. CELL COMI ance charac performance te, humidifie NG technology- fibres-refor	fuel and ox ge and curr eration sch PONENTS cteristics- (re, mass tra ers and coc -pressure c rmer techno gy based or	ygen, mass ent for fuel eme, gener AND THE Current/vol- insfer effects ling plates. ylinders, liq plogy- steam	flow rate calcu cells in paralle ous issues -w IR IMPACT C tage, voltage s-membrane e juid hydroger n reforming, p ce bio-mass.	ulation for fuel a el and serious co vater flooding a DN PERFORMA efficiency and lectrode assemb h, metal hydride artial oxidation,	and oxygen i onnection, or and water m NCE power den ly compone (12) s, methods	in single cell ver-potential nanagement, sity, Ohmic ents, fuel cell of hydrogen
and fuel ce and polari polarization UNIT - IV Fuel cell p resistance, stacks, bi-p UNIT - V Hydrogen production CO remova	ell stack, zations, n in PEN FUEL o perform Kinetic olar pla FUELI storage , carbor al, fuel c	total voltag DMFC ope MFC. CELL COMI ance charac performance te, humidifie NG technology- fibres-refor	fuel and ox ge and curr eration sch PONENTS cteristics- (ce, mass tra ers and coc -pressure c rmer techno gy based or CO	ygen, mass ent for fuel eme, gener AND THE Current/vol- insfer effects ling plates. ylinders, liq ology- steam removal lik DURSE OU	flow rate calcu cells in paralle rous issues -w IR IMPACT C tage, voltage s-membrane e quid hydroger n reforming, p ke bio-mass. TCOMES	ulation for fuel a el and serious co vater flooding a DN PERFORMA efficiency and lectrode assemb h, metal hydride artial oxidation,	and oxygen i onnection, or and water m NCE power den ly compone (12) s, methods	in single cell ver-potential nanagement, sity, Ohmic ents, fuel cell of hydrogen al reforming-
and fuel ce and polari polarization UNIT - IV Fuel cell p resistance, stacks, bi-p UNIT - V Hydrogen production CO remova	ell stack, zations, n in PEN FUEL of perform Kinetic oolar pla FUELI storage , carbor al, fuel c	total voltag DMFC ope MFC. CELL COMI ance charac performance te, humidifie NG technology- fibres-refor ell technolog	fuel and ox ge and curr eration sch PONENTS cteristics- (ce, mass tra ers and coc -pressure c rmer techno gy based or Co e, Students	ygen, mass ent for fuel eme, gener AND THE Current/vol- insfer effects ling plates. ylinders, liq ology- steam removal lik DURSE OU' should be al	flow rate calcu cells in paralle rous issues -w IR IMPACT C tage, voltage s-membrane e quid hydroger n reforming, p ke bio-mass. TCOMES	ulation for fuel a el and serious co vater flooding a DN PERFORMA efficiency and lectrode assemb h, metal hydride artial oxidation,	and oxygen i onnection, or and water m NCE power den ly compone (12) s, methods	in single cell ver-potential nanagement, sity, Ohmic ents, fuel cell of hydrogen al reforming-
and fuel ce and polari polarization UNIT - IV Fuel cell p resistance, stacks, bi-p UNIT - V Hydrogen production CO remova CO Upon comp	ell stack, zations, n in PEN FUEL of perform Kinetic olar pla FUELI storage , carbor al, fuel c oletion of Explai	total voltag DMFC oper MFC. CELL COMI ance characc performance te, humidifie NG technology- fibres-refor ell technologe of this course	fuel and ox ge and curr eration sch PONENTS cteristics- (ce, mass tra ers and coc -pressure c rmer techno gy based or Co e, Students as types of f	ygen, mass ent for fuel eme, gener AND THE Current/vol- insfer effects ling plates. ylinders, liq ology- steam removal lik DURSE OU should be al fuel cells.	flow rate calcu cells in paralle rous issues -w IR IMPACT C tage, voltage s-membrane e quid hydroger n reforming, p ke bio-mass. TCOMES ble to	ulation for fuel a el and serious co vater flooding a DN PERFORMA efficiency and lectrode assemb h, metal hydride artial oxidation,	and oxygen i onnection, or and water m NCE power den ly compone (12) s, methods	in single cell ver-potential nanagement, sity, Ohmic ents, fuel cell of hydrogen al reforming-
and fuel ce and polari polarization UNIT - IV Fuel cell p resistance, stacks, bi-p UNIT - V Hydrogen production CO remova CO Upon comp 1.	ell stack, zations, n in PEN FUEL of perform Kinetic olar pla FUELI storage , carbor al, fuel c oletion of Explai Leant	total voltag DMFC oper MFC. CELL COMI ance characc performance te, humidifie NG technology- fibres-refor ell technology of this course in the variou the thermod	fuel and ox ge and curr eration sch PONENTS cteristics- (C ce, mass tra ers and coc -pressure c rmer techno gy based or Co e, Students is types of f dynamics ba	ygen, mass ent for fuel eme, gener AND THE Current/vol insfer effects ling plates. ylinders, liq plogy- steam removal lik DURSE OU should be al cuel cells. ackground c	flow rate calcuccells in parallel ous issues -w IR IMPACT C tage, voltage s-membrane e quid hydroger n reforming, p ke bio-mass. TCOMES ble to	ulation for fuel a el and serious co vater flooding a DN PERFORMA efficiency and lectrode assemb h, metal hydride artial oxidation,	and oxygen i onnection, or ind water m NCE power den ly compone (12) s, methods auto therma	in single cell ver-potential nanagement, sity, Ohmic ents, fuel cell of hydrogen al reforming-
and fuel ce and polari polarization UNIT - IV Fuel cell p resistance, stacks, bi-p UNIT - V Hydrogen production CO remova CO Upon comp 1. 2.	ell stack, zations, n in PEN FUEL of perform Kinetic olar pla FUELI storage , carbor al, fuel c oletion of Explai Leant Gain u	total voltag DMFC oper MFC. CELL COMI ance characc performance te, humidifie NG technology- fibres-refor ell technology of this course in the variou the thermod	fuel and ox ge and curr eration sch PONENTS cteristics- (ce, mass tra ers and coc -pressure c rmer techno gy based or Co e, Students is types of f dynamics ba ng the fund	ygen, mass ent for fuel eme, gener AND THE Current/vol- insfer effects ling plates. ylinders, liq ology- steam removal lik OURSE OU should be al uel cells. ackground co amental cor	flow rate calcu cells in paralle rous issues -w IR IMPACT C tage, voltage s-membrane e quid hydroger n reforming, p ke bio-mass. TCOMES ble to of fuel cells. ncepts of electr	ulation for fuel a el and serious co vater flooding a DN PERFORMA efficiency and lectrode assemb a, metal hydride artial oxidation, (8)	and oxygen i onnection, or ind water m NCE power den ly compone (12) s, methods auto therma	in single cell ver-potential nanagement, sity, Ohmic ents, fuel cell of hydrogen al reforming-

TEXT BO	OK
1.	Frano Babir, "PEM FUEL CELLS: Theory and Practice", Elsevier Academic Press, USA,
	2005.
2.	Viswanathan B. and Scibioh Aulice M, "Fuel cells: Principles and Applications", University
	Press, 2006.
REFEREN	ICES
1.	Fuel cells for automotive applications - professional engineering publishing UK, 2004.
2.	Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay and Ali Emadi, "Modem Electric, Hybrid
	Electric and Fuel cell Vehicles", Fundamental, Theory and design", CRS Press, 2004.
3.	Fuel cell Technology Handbook SAE International Gregor Hoogers CRC Press, 2003.
4.	Young G J, "Fuel cells", Rein hold publishing Copr., 1960.

Course Title	TESTING HYBRID V	AND CERTIFICATION OF ELECTRIC EHICLES	2	Credits	LTPC			
Course Code				Cicuits	3003			
Course Category								
Learning Level								
		OBJECTIVES						
To gain kno	owledge in th	field of E-vehicle certification.						
To understa	and the conce	ot of static testing of E-vehicle.						
To understa	and the conce	ot of dynamic testing of E-vehicle.						
		-vehicle component testing.						
-		nentals of charging station & hybrid electr	ic vehicle	e testino				
UNIT – I INTROI								
(HIL) concepts for UNIT - II STATIO Photographs, CMV Rear view mirror in M1 Vehicle, Angle away - Chassis, ele	EV/HEVs. C TESTING VR physical v nstallation, To & Dimensio ectric vehicle	erification, Tyre Tread Depth Test, Vehicle I Tales, External Projection, Wheel Guard, Is Measurement of Vehicle, The requireme Safety norms, Energy consumption and pe	e Weight Arranger ent of ter	tment, Horn ment of Foot nporary cabi	installation, Controls for			
UNIT - III DYNA	MICS TEST	NG OF VEHICLE						
Diameter, Steerin Calibration, Range	g Effort, Co Test, Maxim	y Noise, Interior Noise, Turning Circle Dia nstant Speed Fuel Consumption, Cooli m Speed, Acceleration Test, Coast-down te Test, Electric vehicle – Range Test.	ing Perf	ormance, S	peedo-meter			
UNIT - IV VEHIC	CLE COMPO	IENT TESTING						
Hydraulic Brakes I Bumper Impact Te Steering Impact te assemblies, Safety System, Motor pov	Hoses Fuel Ta st, Side Door est (GVW<15 belt anchorag ver, Safety Re	t: Windscreen laminated and toughened sa hk Test: Metallic & Plastic, Hinges and Lato htrusion, Crash test with dummies, Demist 0 kg), Body block test, Head form test, D es, Seat anchorages & head restraints test, juirements of Traction Batteries, EMI-EMC	ches Test, test, Defr Driver Fie Airbag 7 C (CI, BCI	, Tyre & Whe ost Test, Inte eld of vision Fest, Acceler , RE,RI and (eel Rim Test, erior Fittings, a, Safety belt rator Control CTE).			
	FOR HYBRI	DELECTRIC VEHICLES, RETRO-FITME	NT AND) CHARGIN	IG			
on Vehicles of M a	nd N Categor	and N category), Tests for Hybrid Electric S 7 (GVW < 3500 kg), Test for Electric Propul ctive AC Charging System, and Test for	lsion kit i	intended for	Conversion,			

СО	COURSE OUTCOMES	РО					
Upon completion of this course, Students should be able to							
1.	Gain knowledge in the field of E-vehicle certification.						
2.	Explain the concept of static testing of E-vehicle.						
3.	Explain the concept of dynamic testing of E-vehicle.						
4.	Know about various E-vehicle component testing.						
5.	Gain the insight of charging station & hybrid electric vehicle testing.						
TEXT BOOK							
1.	"Vehicle Inspection Handbook", American Association of Motor Vehicle Administrators						
2.	Michael Plint & Anthony Martyr, "Engine Testing & Practice", Butterworth Heinmenn,						
	3 rd ed, 2007						
REFERENCES							
1.	Proceedings- Automotive Testing & Certification held on 20th to 24th July	2010 at ARAI,					
	PUNE						
2.	Bosch Automotive Handbook, Robert Bosch, 7th Edition, 2007.						

Course Title		MODELL	ING AND SIMULATION OF EHV LAB	Credite	LTPC			
Course Code				Credits	0 0 3 2			
Course Ca	ategory							
Learning Level								
OBJECTIVES								
•								
•								
•								
Vehicle Dynamics Fundamentals for HEV Modeling and Computer Simulation (MATLAB/Simulink)								
1.	Various strategies for improving vehicle energy/fuel efficiency							
2.	Vehicle chassis mathematical model in various operation conditions (steady motion, acceleration, regenerating braking, coasting, moving up and down a hill)							
3.	Series HE powertrain mathematical model							
4.	Computer model of the HEV							
5.	Computer Workshop. Fuel efficiency evaluation of a series HEV in city and high-way cycles: study and analyze two strategies for ICE/Battery power split.							
Vehicle Testing Laboratory Works								
•	4x4 Vehicle Chassis Dynamometer: Power Curve Test							
СО	COURSE OUTCOMES				РО			
Upon completion of this course, Students should be able to								
1.								
2.								
3.								
4.								
5.								
TEXT BOOK								
1.	Advanced Practical Physical Chemistry, J.B.Yadhav, Krishna Prakasan Media, 2016.							
2.	Experi	iments in Ap	plied Chemistry, Sunita Rattan, S.K. Kataria& Sons,	2012				