CURRICULUM & SYLLABUS

For

B.E. (Hons.) Mechanical Engineering with specialization in 3D Printing

(Choice Based Credit System) (With effect from 2018)

DEPARTMENT OF MECHANICAL ENGINEERING

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDYALAYA

SCSVMV

(Deemed to be University U/S 3 of UGC Act 1956)

Accredited with "A" Grade by NAAC

Enathur, Kanchipuram - 631 561

These regulations are applicable to the students admitted from the AY 2019-20 onwards.

1. PRELIMINARY DEFINITIONS AND NOMENCLATURE

- 1. "Degree" referred to as Under-Graduate (UG) Degree, i.e., B.E. Degree.
- "Honours Degree" referred to as Under-Graduate (UG) Degree specialization in emerging area of Home Discipline i.e., Mechanical Engineering to facilitate the students to choose additionally the specialized courses of their choice and to build their competence in special area. Students have to undergo additional courses and acquire more than required number of credits & maintaining CGPA – 8.0 during their period of study (4 years) and no history of arrears to obtain B. E (Hons).
- 3. "Minor **Degree**" referred to as Under-Graduate (UG) Degree specialization in emerging areas other than the chosen discipline of Engineering. Students have to undergo additional courses in their special areas of interest and earn additional credits to obtain B. E with Minor Specialization.
- 4. "Programme" referred to as discipline of B.E. Degree programme like Mechanical Engineering.
- 5. "Course" referred to as a theory/practical subject studied in a semester.

2. ELIGIBILITY FOR ADMISSION

1. Regular Admission

- Maximum age limit for the full-time course is 20 years.
- Students seeking admission to the first semester of the eight semester B.E.
 -Degree programme shall be required to have a pass in Higher Secondary Examinations (Academic 10+2) or its equivalent examinations in any State/CBSE/IGCSE board with Mathematics, Physics and Chemistry. Passed 10+2 examination with Physics and Mathematics as compulsory subjects along with one of the Chemistry / Biotechnology / Biology / Technical Vocational subject / Computer Science / Information Technology / Informatics Practices / Agriculture / Engineering Graphics / Business Studies.
- Obtained at least 50%, Marks (40% marks in case of candidates belonging to reserved category) in the above subject taken together.

2. Lateral Entry Admission

Students who possess the Diploma in Engineering (Mechanical/Automobile or its equivalent) awarded by the State Board of Technical Education, Tamil Nadu

or its equivalent board are eligible to apply for Lateral entry admission to the third semester of B.E. Programme.

3. COURSES OFFERED

COURSE - I	:	B.E. – MECHANICAL ENGINEERING
COURSE – II	:	B.E. (HONS.) - MECHANICAL ENGINEERING in Specialization with 3D Printing
COURSE – III	:	B.E. (HONS.) - MECHANICAL ENGINEERING in Specialization with Electric Vehicles
COURSE – IV	:	B.E. (HONS.) - MECHANICAL ENGINEERING in Specialization with Robotics
COURSE – V	:	B.E MECHANICAL ENGINEERING with Minor degree in Cyber Security
COURSE – VI	:	B.E MECHANICAL ENGINEERING with Minor degree in Internet of Things (IoT)
COURSE – VII	:	B.EMECHANICAL ENGINEERING with Minor degree in Artificial Intelligence & Machine Learning
COURSE – VIII	:	B.EMECHANICAL ENGINEERING with Minor degree in Sensor Technology

A student may be offered admission to any one of the programmes of study. The recommended credit range for the above programmes are in between 170 to 192.

4. STRUCTURE OF PROGRAMMES

1. Categorization of Courses

Each B.E., programme will have a curriculum with syllabi comprising of Theory and Practical courses with well-defined Program Outcomes and Programme Educational Objectives (PEO) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses of a programme are categorized as follows:

- **1. Basic Science Courses (BSC)** include Mathematics, Physics, Chemistry, Biology, Environmental Sciences, etc.
- **2. Engineering Science Courses (ESC)** include Engineering Practices, Engineering Graphics, Basics of Electrical / Electronics / Mechanical / Computer Engineering, Instrumentation etc.
- **3. Professional Core Courses (PCC)** include the core courses relevant to the Mechanical Engineering & chosen specialization.
- **4. Professional Core Elective Courses (PCEC)** include the elective courses relevant to the chosen specialization.
- **5. Professional Specialised Courses (PSC)** include the specialised courses relevant to the chosen specialization.
- 6. Humanities and Social Sciences including Management courses (HSMC) & Open Electives Courses (OEC) provide an opportunity to study a course from any discipline that includes the courses relevant to the chosen specialization. The student can choose from the curriculum of other B.E. / B. Tech. programmes and the courses offered by the Departments under the Faculty of Science and Humanities.
- 7. Project Mechanical Engineering courses (PROJ-ME)
- 8. Mandatory Courses (MC) non-credit courses such as Environmental Sciences, Induction Program, Indian Constitution, Essence of Indian Traditional Knowledge

2. Mandatory Two-Week Induction Programme

The students are expected to undergo a mandatory two-week induction programme comprising of physical activity, creative arts, universal human values, proficiency modules, lectures by eminent people, visits to local areas and familiarization to department/branch & innovations immediately after admission.

3. Number of courses per semester

The Curriculum of a semester shall normally have a blend of 4 to 7 lecture courses, except the final semesters, and 2-3 laboratory courses. However, the total number of courses per semester shall not exceed 10 (including EEC). Prefinal semester may have 1 design Project. The final semester may have a blend of 2 or 3 lecture courses and 1 innovative Project.

4. Credit Assignment

In assigning the credits for the courses, 1-hour lecture/week, 1-hour tutorial/week, 2 hours practical/week, 2 hours project work or seminar/week is equivalent to 1 credit.

5. Industrial Training / Internship

Student is expected to undergo In-plant training in any industry/organization during the programme of study. Every 2 weeks of internship/training at industry is equivalent to 1 credit. The credit will be awarded to the student based on the recommendation by the evaluation team, and the results will be sent to The Controller of Examinations after the approval by the Head of the Department.

6. Industrial Visit

Student is required to go for at least one Industrial Visit every year, starting from the second year of the Programme. The Heads of Departments shall ensure that necessary arrangements are made in this regard.

7. Medium of Instruction

The medium of instruction is English for all courses.

5. DURATION OF THE PROGRAMMES

- 1. A student is normally expected to complete the B.E. Programme in 4 years (8 Semesters), but in any case, not more than 7 years (14 Semesters).
- 2. Each semester shall normally consist of 90 working days (including examination days). The Head of the Department shall ensure that every faculty imparts instruction as per the number of periods specified in the syllabus, covering the full content of the syllabus for the course being taught.
- 3. **The** total duration for completion of the programme reckoned from the commencement of the first semester to which the student was admitted shall not exceed the maximum duration irrespective of the period of break of study.

6. COURSE ENROLLMENT AND REGISTRATION

1. Student, on admission, shall be assigned to a Faculty Advisor, who shall advice and counsel the student about the details of the academic programme and the choice of courses, considering the student's academic background and career objectives.

- 2. After registering for a course, a student shall attend the classes, satisfy the attendance requirements, earn continuous assessment marks and appear for the end semester examinations.
- 3. Each student on admission shall register for all the courses prescribed in the curriculum.
- 4. If a student fails to secure a pass in any theory or Laboratory course (including elective theory), he/she shall register for the same course in the immediate semester examinations by retaining the Continuous Assessment Marks already earned.
- 5. The student shall register Project-1 in VII Semester and Project-2 in VIII Semester.
- 6. The student who fails in any Project work (Project 1 / Project 2) shall register for the course again. In this case, the student shall attend the reviews and fulfil the attendance requirements.

7. RE`QUIREMENTS FOR APPEARING FOR THE END SEMESTER EXAMINATION

- 1. Student who has fulfilled the following conditions shall be deemed to have satisfied the attendance requirements for appearing for the end semester examination of a particular course.
- 2. Ideally every student is expected to attend all periods and earn 100% attendance. However, the student shall secure not less than 80% attendance, course wise, taking into account the number of periods required for that course, as specified in the curriculum.
- 3. If a student secures attendance between 70% and less than 80% in any course in the current semester, due to medical reasons (hospitalization / accident / specific illness) or due to participation in the College / University / State / National / International level Sports events, with prior permission from the Sports director, and Head of the Department concerned, the student shall be given exemption from the prescribed attendance requirement and the student shall be permitted to appear for the end semester examination of that course.
- 4. In all such cases, the students should submit the required documents on joining after the absence to the Head of the Department through the Faculty Advisor.
- 5. A student with an attendance between 40% and 70% in any course will fall under the category **"Semester Break"**, which means Students will not be permitted to attend the Regular End Semester Examinations for that course. If

a student has short fall of attendance in all the registered courses in "Semester Break", he/she would be permitted to move to the higher semester and has to repeat the current semester in the subsequent semester.

- 6. The student, whose attendance falls below 40% for a course in any semester, will be categorized as **"Detained"**, which means detained in the particular course for want of attendance and they will not be permitted to write the End semester exam for that course. Students will be asked to repeat the same course in the next year.
- 7. A student who has already appeared for a course in a semester and passed the examination is not entitled to reappear for the same course for improvement of grades.

8. FACULTY ADVISOR

To help the students in planning their courses of study and for general advice on the academic programme, the Head of the Department of the students will attach a certain number of students to a faculty of the Department, who shall function as Faculty Advisor for those students throughout their period of study. The Faculty Advisor shall advise the students in registering and reappearance (Arrear) registering of courses, authorize the process, monitor their attendance and progress and counsel them periodically. If necessary, the Faculty Advisor may also discuss with or inform the parents about the progress / performance of the students concerned.

9. CLASS COMMITTEE

The objective of the Class Committee is to improve the teaching-learning process. The functions of the class committee include:

- 1. Resolving difficulties experienced by students in the classroom and in the laboratories.
- 2. Clarifying the regulations of the degree programme and the details of rules therein.
- 3. Discussing the progress of academic schedule and deviations if any.
- 4. Evaluating the performance of the students of the class after each test and finding the ways and means of improvement.
- 5. Class committee consisting of faculty members who are teaching in that class, student representatives and a Head of the Department

- 6. The class committee shall meet 2-3 times in a semester as specified in the academic calendar. The Dean (Engg. & Tech) may participate in any class committee of the institution.
- 7. During these meetings, the representative of the class shall meaningfully interact and express the opinions and suggestions of the other students of the class to improve the effectiveness of the teaching-learning process.
- 8. The Head of the Department is required to prepare the minutes of the meeting, signed by the members and submit the same to Dean. In each meeting, the action taken report of the previous meeting is to be presented by the HOD.

10. SYSTEM OF EXAMINATION

Performance in each course of study shall be evaluated for a maximum of 100 marks based on one of the following:

- 1. Continuous assessment throughout the semester and a terminal examination at the end of the semester. The continuous assessment will carry 40 marks while the end-semester examination will carry 60 marks.
- 2. The end semester examination (Theory & Practical) of 3 hours duration shall be conducted by the Controller of Examinations between October to December during the Odd Semesters and between April to May during the Even semesters. All Practical examinations shall be conducted and evaluated at the Department itself on behalf of the Controller of Examinations.
- 3. For all the practical courses, students shall obtain bonafide certificate for the Observation cum Record completed from the Faculty in-charges / Head of the Department on or before the day of the practical examination.
- 4. For the project works, students shall obtain bonafide certificate for the project work completed from the project Guide and Head of the Department, at the end of the semester.
- 5. The semester examination for project work shall comprise of evaluation of the final report submitted by the project group (of not exceeding 4 students) by an external examiner. Further, the performance of each student of the project group would be evaluated in a viva-voce examination conducted by a committee consisting of an external examiner appointed by the Head of the Department/the Controller of Examination, Head of the Department or faculty nominated by Head of the Department and Guide of the project group.

6. Student can apply for re-valuation of his/her semester examination answer paper in theory courses within the stipulated period from the declaration of results, on payment of a prescribed fee, as specified by the Controller of Examinations from time to time. The Controller of Examination will arrange for going through the answer scripts by the students and to make appeals. The re-valuation results will be published before the commencement of supplementary examinations. Re-valuation is not permitted for practical courses, project work and industry supported courses.

11. PROCEDURE FOR AWARDING MARKS FOR CONTINUOUS ASSESSMENT

1. Theory courses

- The award of marks for continuous assessment shall be normally based on two internal assessment tests and five Assignments / tutorials / seminars. The apportioning of marks shall be as follows:
 - 1. 30 marks for tests
 - 2. 10 marks for assignments/tutorials/seminars/Attendance

However, the assessment pattern for awarding the continuous assessment marks may be designed by the course designers based on the nature of the course and is to be approved by the Academic Council.

- 2. The first and second Continuous Assessment Tests will be normally conducted at the mid and end of the semester respectively. Each test carries maximum of 30 marks.
- 3. There will be five assignments for each course which will be considered for awarding marks for assignment.
- 4. Both test and assignment marks put together is 40 marks maximum.
- 5. If a student fails in a theory course, the Continuous Assessment Marks already earned will be retained for subsequent reappearances.

2. Practical courses

The continuous assessment mark will be awarded as follows:

Observation-cum-Record in regular class works	: 15 marks
Model Test	: 15 marks
Viva	: 10 marks

3. Project work

Head of the Department shall constitute a review committee comprises of Head of the Department or Faculty member nominated by Head of the Department and two faculty members. The student shall make presentation on the progress made by him / her before the committee. The total marks obtained in the three reviews shall be averaged to 40 marks.

• Every faculty member is required to maintain an Attendance and Continuous Assessment Record which consists of attendance marked for each lecture or practical or project work classes, the tests & assignment marks and record of class works (topics covered) separately for each course.

12. ELIGIBILITY FOR PASS IN EACH COURSE

- 1. A student who secures not less than 50% of total marks (both continuous assessment and end semester examination marks put together) in theory courses, practical courses shall be declared to have passed the examination.
- 2. If a student fails to secure a pass in a particular course, it is mandatory that he/she shall register for that course in the subsequent semester and attend the end semester examination. He/she should continue to register and appear for the examination till he /she secures a pass.

Range of Total marks (Continuous assessment + End semester examination)	Letter Grade	Grade Point (GP)
Between 90 to 100	S	
Between 80 to 89	А	
Between 70 to 79	В	
Between 60 to 69	С	
Between 55 to 59	D	
Between 50 to 54	Е	
Between 0 to 49	F	
Absent	AB	

3. Award of Grades

Grade Point Average GPA= $\frac{\sum_{i=1}^{N} C_i G_{P_i}}{\sum_{i=1}^{N} C_i}$

N is the number of courses registered in a particular semester, GP_i is the grade point obtained in i^{th} course and C_i is the number of credits assigned to i^{th} course.

Cumulative GPA (CGPA) will be calculated when the student is declared to be eligible for the award of the degree. CGPA calculation is based on all the courses considered for the award of the degree.

13. ELIGIBILITY FOR THE AWARD OF DEGREE

A student shall be declared to be eligible for the award of the degree if he/she has satisfied the following:

- 1. A student seeking B.E., degree shall be required to undergo the prescribed courses of study and evaluation in the college for the specified duration and to pass all the examinations prescribed therefore.
- 2. He/ she should register for the courses prescribed in the curriculum of the respective degree programme, fulfil the requirement of credits in each category of credit distribution, pass in all mandatory courses in the curriculum and earn the specified total minimum number of credits.
- 3. No disciplinary action pending against the student.

14. CLASSIFICATION OF THE DEGREE AWARDED

1. First class with Distinction

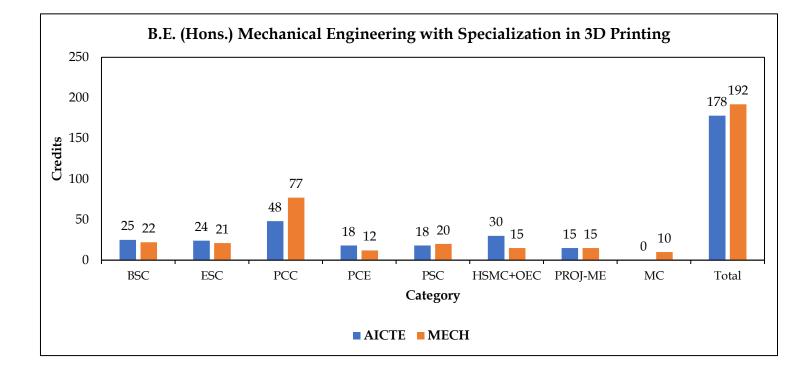
A student who qualifies for the award of degree having passed the examination in all registered courses in his / her first appearance (including industry supported courses), within Four years (Three Years for Lateral Entry students), and securing a CGPA of not less than 8.50 shall be declared to have passed in First class with distinction.

2. First Class

A student who qualifies for the award of degree having passed the examination in all the courses within Four years (Three years for Lateral Entry students) and securing a CGPA of not less than 7.00 shall be declared to have passed in First class.

3. Second Class

All other students (not covered in 14.1 and 14.2) who qualify for the award of degree having passed the examination in all the courses and fulfilling the requirements shall be declared to have passed in Second Class.


15. DISCIPLINE

- 1. Every student is required to observe discipline and decorous behavior both inside and outside the college and not to indulge in any activity, which will tend to bring down the prestige of the college. The Registrar shall constitute a disciplinary committee to enquire into acts of indiscipline and notify the institution about the disciplinary action recommended for approval. In case of any serious disciplinary action which leads to suspension or dismissal.
- 2. If a student indulges in malpractice in any test/examinations, the student shall be liable for punitive action as prescribed by the institution from time to time.

16. REVISION OF REGULATIONS AND CURRICULUM

The standing committee/Academic Council/ of the institution reserves the right to revise or change or amend the regulations, the scheme of examinations, the curriculum and the syllabi from time to time if found necessary.

	DISTRIBUTION OF O	CREDITS		
SL. No	Course Category	As per AICTE regulation 2018	Credits	Percentage (%)
1.	Basic Science Courses (BSC)	25	22	13.5
2.	Engineering Science Courses (ESC)	24	21	13.0
3.	Professional Core Courses (PCC)	48	79	47.5
4.	Professional Core Electives Courses (PCE)	18	12	7.5
5.	Professional Specialised Courses (PSC)	18	20	12.5
6.	Humanities and Social Sciences including Management courses (HSMC) + Open Electives Courses (OEC)	30	15	9.25
7.	Project Mechanical Engineering courses (PROJ-ME)	15	15	9.25
8.	Mandatory Courses (MC)*	0	8*	*
* Not a	countable for CGPA			
	Total	178	192	100

EACH COURSE IN CATEGORY WISE

B.E. (HONS.) MECHANICAL ENGINEERING WITH SPECIALIZATION IN 3D PRINTING

				Basic Science Courses (BSC)				
SL.	Semester	Course	Course	Name of the Course	Hours per week			Credit
No	Semester	Category	Code		L	Т	Р	cituit
1	1	BSC		Mathematics –I (Calculus & Linear Algebra)	3	1	-	4
2	1	BSC		Engineering Chemistry	3	-	-	3
3	1	BSC		Chemistry Lab	-	-	3	2
4	2	BSC		Mathematics – II (Calculus, Ordinary Differential Equations, and Complex Variables)	3	1	-	4
5	2	BSC		Applied Physics for Engineers	3	-	-	3
6	2	BSC		Physics Lab	-	-	3	2
7	3	BSC		Mathematics III (PDE, Probability & Statistics)	3	1	-	4
				Total Credits				22

	Engineering Science Courses (ESC)											
SL.	Semester	Course	Course	Name of the Course	Hou	rs per v	week	Credit				
No	Semester	Category	Code		L	Т	Р	cicuit				
1	1	ESC		Basic Electrical Engineering	3	-	-	3				
2	1	ESC		Engineering Graphics & Design	2	-	2	3				
3	1	ESC		Basic Electrical Engineering Lab	-	-	3	2				
4	2	ESC		Programming for Problem Solving	2	1	-	3				
5	2	ESC		Programming for Problem Solving Lab	-	-	3	2				
6	2	ESC		Workshop/Manufacturing Practices Lab	-	-	3	2				
7	3	ESC		Engineering Mechanics	2	1	-	3				
8	4	ESC		Basic Electronics Engineering	3	-	-	3				
			Тс	otal Credits		÷		21				

	Humanities and Social Sciences including Management courses (HSMC)										
SL.	Semester	Course	Course		Hours per week						
No	Semester	Category	Code	Name of the Course	L	Т	Р	Credit			
1	2	HSMC		English	2	1	-	3			
2	6	HSMC		Operation Research & Management	2	1	-	3			
3	8	HSMC		Engineering Economics	3	-	-	3			
	Total Credits										

			Ma	ndatory Courses (MC)					
SL.	Semester	Course	Course	Name of the Course	Hou	Hours per week		Credit	
No		Category	Code		L	Т	Р		
1	1	MC*		English Proficiency Certification	2	-	-	1*	
2	2	MC*		Environmental Science and Engineering*	2	-	-	1*	
3	3	MC*		Foreign Language Level – II and Above	-	-	-	1*	
4	4	MC		Sanskrit and Indian Culture	2	-	-	1*	
5	5	MC*		Soft Skill and Aptitude Certification	-	-	-	1*	
6	6	MC*		Technical Certification Course	-	-	-	1*	
7	7	MC*		Presentation / Publication in Conference / Seminar	-	-	-	1*	
8	8	MC*		Start ups				1*	
			Т	otal Credits				8	

			Profe	ssional Core Courses (PCC)				
SL.	Semester	Course	Course	Name of the Course		rs per v		Credit
No		Category	Code		L	Т	Р	
1.	3	PCC		Fluid Mechanics & Machinery	2	1	-	3
2.	3	PCC		Thermodynamics	3	-	-	3
3.	3	PCC		Materials Engineering	3	-	-	3
4.	3	PCC		Fluid Mechanics and Machinery	-	-	3	2
5.	3	PCC		Materials and Metallurgy Lab	-	-	3	2
6.	4	PCC		Applied Thermodynamics	3	-	-	3
7.	4	PCC		Strength of Materials	2	1	-	3
8.	4	PCC		Kinematics of Machines	2	1	-	3
9.	4	PCC		Manufacturing Processes	3	-	-	3
10.	4	PCC		Thermal Engineering Lab	-	-	3	2
11.	4	PCC		Strength of Materials Lab	-	-	3	2
12.	5	PCC		Heat and Mass Transfer	3	-	-	3
13.	5	PCC		Dynamics of Machines	2	1	-	3
14.	5	PCC		Instrumentation and Control	3	-	-	3
15.	5	PCC		Design of Machine Elements	3	-	-	3
16.	5	PCC		Manufacturing Technology	3	-	-	3
17.	5	PCC		Metrology and Quality Control	3	-	-	3
18.	5	PCC		Machine Drawing Practical	-	-	3	2
19.	5	PCC		Manufacturing Technology Lab	-	-	3	2
20.	5	PCC		Dynamics and Measurements Lab	-	-	3	2
21.	6	PCC		Automobile Engineering	3	-	-	3
22.	6	PCC		Power Plant Engineering	3	-	-	3
23.	6	PCC		CAD/CAM	3	-	-	3
24.	6	PCC		Heat Transfer Lab	-	-	3	2
25.	6	PCC		CAD/CAM Lab	-	-	3	2
26.	7	PCC		Design of Transmission Systems	3	-	-	3
27.	7	PCC		Mechatronics	3	-	-	3
28.	7	PCC		Computer Aided Analysis Lab	-	-	3	2
29.	7	PCC		Mechatronics Lab	-	-	3	2
30.	8	PCC		Automation in Manufacturing	3	-	-	3
			7	Fotal Credits	1	1		79

			Professiona	ll Core Electives Courses (PCE)				
SL.	Semester	Course	Course	Name of the Course	Hou	rs per v	week	Credit
No	Semester	Category	Code		L	Т	Р	cituit
1.	6	PCE -I		Finite Element Analysis	3	-	-	
2.	6	PCE -I		Fluid Power Systems	3	-	-	
3.	6	PCE -I		Product Design & Development	3	-	-	3
4.	6	PCE -I		3D Printing	3	-	-	
5.	6	PCE -I		Tribology	3	-	-	
6.	7	PCE - II		Refrigeration & Air Conditioning	3	-	-	
7.	7	PCE - II		I.C. Engines	3	-	-	
8.	7	PCE - II		Turbo Machines	3	-	-	3
9.	7	PCE - II		Energy Conservation in Industries	3	-	-	
10.	7	PCE - II		Gas Dynamics & Jet Propulsion	3	-	-	
11.	7	PCE - III		Sustainable Manufacturing	3	-	-	
12.	7	PCE - III		Design for Manufacturing	3	-	-	
13.	7	PCE - III		Theory of Metal Forming	3	-	-	3
14.	7	PCE - III		Digital Manufacturing	3	-	-	
15.	7	PCE - III		Composite Materials	3	-	-	
16.	8	PCE - IV		Total Quality Management	3	-	-	
17.	8	PCE - IV		Entrepreneurship Development	3	-	-	
18.	8	PCE - IV		Non-Traditional Machining Process	3	-	-	3
19.	8	PCE - IV		Non Destructive Evaluation	3	-	-	
20.	8	PCE - IV		Flexible Manufacturing Systems	3	-	-	
			То	otal Credits				12

	Professional Specialised Courses (PSC)											
SL.	Semester	Course	Course	Name of the Course	Hou	rs per v	week	Credit				
No	0 0 === 0 0 0 ==	Category	Code		L	Т	Р					
1.	3	PSC		Polymer Engineering	3	-	-	3				
2.	3	PSC		3D Printing Processes & Applications	3	-	-	3				
3.	4	PSC		Materials & Characterisation Techniques	3	-	-	3				
4.	4	PSC		3D Printing Machines & Systems	3	-	-	3				
5.	5	PSC		Medical Applications in 3D Printing	3	-	-	3				
6.	6	PSC		Rapid Tooling & Industrial Applications	3	-	-	3				
7.	7	PSC		Rapid Prototyping Lab	-	-	2	2				
			To	otal Credits				20				

Project Mechanical Engineering courses (PROJ-ME)										
SL.	Semester	Semester Course Course Name of the Course	Hours per week			Credit				
No		Category	Code		L	Т	Р			
1	7	PROJ		Design and Fabrication Project	-	-	4	2		
2	7	PROJ-ME		Industrial Internship and Training	-	-	-	3		
3	8	PROJ-ME		Project Work	-	-	12	10		
	Total Credits							15		

			Open	Electives Courses (OEC)				
SL.	Semester	Course	Course	Name of the Course	Hou	rs per v	week	Credit
No	Jeniester	Category	Code	Name of the Course	L	Т	Р	Cleun
1.	6	OEC - I		Cloud Computing	3	-	-	
2.	6	OEC - I		Web Design	3	-	-	
3.	6	OEC - I		Digital Image Processing	3	-	-	
4.	6	OEC - I		Data Analysis	3	-	-	
5.	6	OEC - I		Astro-Physics	3	-	-	
6.	6	OEC - I		Business Administration	3	-	-	
7.	6	OEC - I		Chemistry in Crime Investigation	3	-	-	3
8.	6	OEC - I		Bioinformatics	3	-	-	
9.	6	OEC - I		Finance for Non Finance Managers	3	-	-	
10.	6	OEC - I		Fuel Cell and Batteries	3	-	-	
11.	7	OEC - II		Autotronics	3	-	-	
12.	7	OEC - II		Artificial Intelligence & Machine Learning	3	-	-	
13.	7	OEC - II		Nano Technology & Surface	3	-	-	
14.	7	OEC - II		Disaster Management & Mitigation	3	-	-	
15.	7	OEC - II		Robotics	3	-	-	
16.	7	OEC - II		HR Management	3	-	-	
17.	7	OEC - II		Nuclear and particle physics	3	-	-	
18.	7	OEC - II		Internet of Things (IOT)	3	-	-	•
19.	7	OEC - II		Psychology	3	-	-	3
20.	7	OEC - II		Statistical methods with excel	3	-	-	
21.	7	OEC - II		Key Board	3	-	-	
22.	7	OEC - II		Logistics and Supply Chain	3	-	-	
23.	7	OEC - II		Violin	3	-	-	
24.	7	OEC - II		Vocal Music	3	-	-	
			Тс	otal Credits				06

B.E. (HONS.) MECHANICAL ENGINEERING WITH SPECIALIZATION IN 3D PRINTING

	SEMESTER - I (First year)									
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit			
No	Category	Code		L	Т	Р				
1.	BSC		Mathematics –I (Calculus & Linear Algebra)	3	1	-	4			
2.	BSC		Engineering Chemistry	3	-	-	3			
3.	ESC		Basic Electrical Engineering	3	-	-	3			
4.	ESC		Engineering Graphics & Design	2	-	2	3			
5.	BSC		Chemistry Lab	-	-	3	2			
6.	ESC		Basic Electrical Engineering Lab	-	-	3	2			
7.	MC*		English Proficiency Certification	2	-	-	1*			
* No	* Not accountable for CGPA									
		T	otal	11	01	08	17+1*			

			SEMESTER - II (First year)						
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit		
No	Category	Code	Name of the Course	L	Т	Р	Cleuit		
1.	HSMC		English	2	1	-	3		
2.	BSC		Mathematics – II	3	1	-	4		
3.	BSC		Applied Physics for Engineers	3	-	-	3		
4.	ESC		Programming for Problem Solving	2	1	-	3		
5.	MC*		Environmental Science and Engineering*	2	-	-	2*		
6.	BSC		Physics Lab	-	-	3	2		
7.	ESC		Programming for Problem Solving Lab	-	-	3	2		
8.	ESC		Workshop/Manufacturing Practices Lab	-	-	3	2		
* No	* Not accountable for CGPA								
	Total					09	19+2*		

			SEMESTER - III (Second year)						
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit		
No	Category	Code	Name of the Course	L	Т	Р	Cleuit		
1.	BSC		Mathematics III (PDE, Probability & Statistics)	3	1	-	4		
2.	ESC		Engineering Mechanics	2	1	-	3		
3.	PCC		Fluid Mechanics & Machinery	2	1	-	3		
4.	PCC		Thermodynamics	3	-	-	3		
5.	PCC		Materials Engineering	3	-	-	3		
6.	PSC		Polymer Engineering	3	-	-	3		
7.	PSC		3D Printing Processes & Applications	3	-	-	3		
8.	PCC		Fluid Mechanics and Machinery Lab	-	-	3	2		
9.	PCC		Materials and Metallurgy Lab	-	-	3	2		
10.	MC*		Foreign Language Level – II and Above (German, French, Japanese, etc,)	-	-	-	1*		
* Not accountable for CGPA									
		T	otal	19	03	06	26+1*		

			SEMESTER - IV (Second year)						
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit		
No	Category	Code	Name of the Course	L	Т	Р	Creun		
1.	ESC		Basic Electronics Engineering	3	-	-	3		
2.	PCC		Applied Thermodynamics	3	-	-	3		
3.	PCC		Strength of Materials	2	1	-	3		
4.	PCC		Kinematics of Machines	2	1	-	3		
5.	PCC		Manufacturing Processes	3	-	-	3		
6.	PSC		Materials Characterisation & Techniques	3	-	-	3		
7.	PSC		3D PrintingMachines&Systems	3	-	-	3		
8.	MC*		Sanskrit and Indian Culture	2	-	-	2*		
9.	PCC		Thermal Engineering Lab	-	-	3	2		
10.	PCC		Strength of Materials Lab	-	-	3	2		
* No	* Not accountable for CGPA								
	Total 21 02 06 25+2*								

			SEMESTER - V (Third year)							
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit			
No	Category	Code	Name of the Course	L	Т	Р	Cleun			
1.	PCC		Heat and Mass Transfer	3	-	-	3			
2.	PCC		Dynamics of Machines	2	1	-	3			
3.	PCC		Instrumentation and Control	3	-	-	3			
4.	PCC		Design of Machine Elements	3	-	-	3			
5.	PCC		Manufacturing Technology	3	-	-	3			
6.	PCC		Metrology and Quality Control	3	-	-	3			
7.	PSC		Medical Applications in 3D Printing	3	-	-	3			
8.	PCC		Machine Drawing Practical	-	-	3	1			
9.	PCC		Manufacturing Technology Lab	-	-	3	2			
10.	PCC		Dynamics and Measurements Lab	-	-	3	1			
11.	11.MC*Soft Skill and Aptitude Certification1*									
* Not accountable for CGPA										
	Total 20 01 09 25+1*									

	SEMESTER - VI (Third year)										
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit				
No	Category	Code	Name of the Course	L	Т	Р	Cleuit				
1.	HSMC		Operation Research & Management	2	1	-	3				
2.	PCC		Automobile Engineering	3	-	-	3				
3.	PCC		Power Plant Engineering	3	-	-	3				
4.	PCC		CAD/CAM	3	-	-	3				
5.	PSC		Rapid Tooling & Industrial Applications	3	-	-	3				
6.	PEC		Professional Elective - I	3	-	-	3				
7.	OEC		Open Elective – I	3	-	-	3				
8.	PCC		Heat Transfer Lab	-	-	3	2				
9.	PCC		CAD/CAM Lab	-	-	3	2				
10.	MC**		Technical Certification Course	-	-	-	1*				
*Not	*Not accountable for CGPA										
	Total 20 01 06 25+1*										

			SEMESTER - VII (Fourth year)							
SL.	Course	Course	Name of the Course	Hou	rs per v	week	Credit			
No	Category	Code		L	Т	Р				
1.	PCC		Design of Transmission Systems	3	-	-	3			
2.	PCC		Mechatronics	3	-	-	3			
3.	PEC		Professional Elective – II	3	-	-	3			
4.	PEC		Professional Elective – III	3	-	-	3			
5.	OEC		Open Elective – II	3	-	-	3			
6.	PCC		Computer Aided Analysis Lab	-	-	3	2			
7.	PCC		Mechatronics Lab	-	-	3	2			
8.	PSC		Rapid Prototyping Lab	-	-	2	2			
9.	PROJ-ME		Design and Fabrication Project	-	-	4	2			
10.	PROJ-ME		Industrial Internship and Training	-	-	-	3			
11.	MC**		Presentation / Publication in Conference / Seminar	-	-	-	1*			
* No	* Not accountable for CGPA									
		Total	Credits	15	-	12	26+1*			

	SEMESTER - VIII (Fourth year)											
SL.	Course	Course	Name of the Course	Hours per week			Credit					
No	Category	Code		L	Т	Р						
1.	PCC		Automation in Manufacturing	3	-	-	3					
2.	HSMC		Engineering Economics	3	-	-	3					
3.	PEC		Professional Elective – IV	3	-	-	3					
4.	PROJ-ME		Project Work	-	-	12	10					
5.	MC*		Start ups				1*					
* Not	* Not accountable for CGPA											
	Total Credits 09 - 12 19+1*											

		PR	OFESSIONAL ELECTIVE COURSES	;			
SL. No	Catagory	Code	Course Title	Hou	rs per	week	Credit
SL. NU	Category	Coue	Course Thie	L	Т	Р	
1.			Finite Element Analysis				
2.			Fluid Power Systems				
3.	PEC-I		Product Design & Development	3	-	-	3
4.			3D Printing				
5.			Tribology				
6.			Refrigeration & Air Conditioning				
7.			I.C. Engines				
8.	PEC-II		Turbo Machines	3	-	-	3
9.			Energy Conservation in Industries	_			
10.			Gas Dynamics & Jet Propulsion				
11.			Sustainable Manufacturing				
12.			Design for Manufacturing				
13.	PEC-III		Theory of Metal Forming	3	-	-	3
14.			Digital Manufacturing				
15.			Composite Materials				
16.			Total Quality Management				
17.			Entrepreneurship Development				
18.	PEC-IV		Non-Traditional Machining Process	3	-	-	3
19.			Non Destructive Evaluation				
20.			Flexible Manufacturing Systems				

			OPEN ELECTIVE COURSES				
SL. No	Category	Code	Course Title		rs per	r	Credit
				L	Т	Р	
1.			Cloud Computing	-			
2.			Web Design	-			
3.			Digital Image Processing	-			
4.			Data Analysis	-			
5.			Astro-Physics				
6.			Business Administration				
7.	OEC – I		Chemistry in Crime Investigation	3	-	-	3
8.			Bioinformatics				
9.			Finance for Non Finance Managers				
10.			Fuel Cell and Batteries				
11.			Autotronics	-			
12.			Artificial Intelligence & Machine Learning				
13.			Nano Technology & Surface Engineering				
14.			Disaster Management & Mitigation				
15.			Robotics				
16.			HR Management				
17.			Nuclear and particle physics				
18.	OEC - II		Internet of Things (IOT)	3	-	-	3
19.			Psychology				
20.			Statistical methods with excel				
21.			Key Board				
22.	_		Logistics and Supply Chain				
23.			Violin	1			
24.			Vocal Music				

Course Title	POLYMER	ENGINEERING		LTPC
Course Code			Credits	3003
Course Category				
Learning Level				
		OBJECTIVES		
-		iip between polymer properties (thermal, rheologica and molecular weight.	l, mechanica	l), and
To relate po	olymer prope	rties to their processing and uses for 3D Printing.		
To explain	methods for a	determining the microstructure and molecular weigl	nt of polyme	rs.
To describe 3D Printing		es of polymerization process, polymer processing a	nd the signifi	icance for
To understa	and the appli	cations and design concepts for use of polymer in de	evice manufa	cturing.
UNIT-I BASIC CO	ONCEPTS			
Nomenclature of I Structure-Based N Polymers, Molecul	Polymers - N omenclature ar Weight, Pl	rizations - Polymer Composition and Structure, Pol Iomenclature Based on Source, Nomenclature Base System, Trade Names and Nonnames, Linear, Bra nysical State, Crystalline and Amorphous Behavior, ns, Applications of Polymers - Mechanical Propertie	ed on Structu anched, and Determinants	ure, IUPAC, Crosslinked s of Polymer
UNIT - II POLYM	ERIZATION	& ITS TECHNIQUES		
Distributions in Polymerisation Tec of Functional Gro	Nonlinear chniques - Re ups, Equilibr	onditions, Multichain Polymerization, Crosslink Polymerizations, Crosslinking Technology, S eactivity of Functional Groups, Kinetics of Step Poly rium Considerations, Cyclization versus Linear Po merization, Molecular Weight Distribution in Linear 1	Step Copoly merization, A olymerization	ymerization. Accessibility n, Molecular
UNIT-III- POLYM				
Polymerizations, 1	Polymerizatio	Inorganic and Organometallic Polymers, Dendrit on in Supercritical Carbon Dioxide, Cycloadditio 5 and Polyrotoxanes.		
UNIT-IV EMULS	ION POLYM	IERIZATION		
Surfactants, Other	Components, Distributions,	itative Aspects, Characteristics of Emulsion Poly , Propagation and Termination Rate Constants, Ener Surfactant-Free Emulsion Polymerization, Other I erization.	getics, Molec	cular Weight
UNIT-V REACTION	ONS OF POI	LYMERS		
Aromatic Substitu	tion, Cycliza	ty, Crosslinking, Reactions of Cellulose, Reaction tion, Other Reactions, Graft Copolymers, Block C Reagents, Polymer Catalysts, Polymer Substrates.	2 (

Upon completion of this course, Students should be able to 1. Explain the relationship between polymer properties (thermal, rheological, mechanical), and polymer microstructure and molecular weight. 2. Relate polymer properties to their processing and uses for additive manufacturing. 3. Explain methods for determining the microstructure and molecular weight of polymers. 4. Describe different types of polymerization process, polymer processing and the significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th editient is processed. V.P. Coversiter Polymer Science. New Ace Int. 2002	СО	COURSE OUTCOMES	РО
1. mechanical), and polymer microstructure and molecular weight. 2. Relate polymer properties to their processing and uses for additive manufacturing. 3. Explain methods for determining the microstructure and molecular weight of polymers. 4. Describe different types of polymerization process, polymer processing and the significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit	Upon com	pletion of this course, Students should be able to	
mechanical), and polymer microstructure and molecular weight. 2. Relate polymer properties to their processing and uses for additive manufacturing. 3. Explain methods for determining the microstructure and molecular weight of polymers. 4. Describe different types of polymerization process, polymer processing and the significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit	1		
2. manufacturing. 3. Explain methods for determining the microstructure and molecular weight of polymers. 4. Describe different types of polymerization process, polymer processing and the significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edite	1.	mechanical), and polymer microstructure and molecular weight.	
manufacturing. manufacturing. 3. Explain methods for determining the microstructure and molecular weight of polymers. 4. Describe different types of polymerization process, polymer processing and the significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edite REFERENCES	2	Relate polymer properties to their processing and uses for additive	
5. polymers. 4. Describe different types of polymerization process, polymer processing and the significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit REFERENCES	۷.	manufacturing.	
Polymers. polymers. 4. Describe different types of polymerization process, polymer processing and the significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit REFERENCES	3	Explain methods for determining the microstructure and molecular weight of	
4. significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit REFERENCES	5.		
significance for AM. significance for AM. 5. Understand the applications and design concepts for use of polymer in device manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit REFERENCES	4		
5. manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit REFERENCES	т.	0	
manufacturing. TEXT BOOK 1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit REFERENCES	5		
1. G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons, 4th edit REFERENCES	5.	manufacturing.	
REFERENCES	TEXT BO	OK	
	1.	G. Odian, Principles of Polymerization, Wiley Inerscience, John Wiley and Sons,	4th edition, 2005
1 V. R. Cowarikar Polymor Science Now Ago Int. 2002	REFEREN	ICES	
I. V.N. GOWAIIKAI FOIJIIEI SCIEIICE, , New Age III., 2002	1.	V.R. Gowarikar Polymer Science, , New Age Int., 2002	
2. F.W. Billmeyer Jr, Polymer Science, Inter science Publisher John Wiley and Sons, 3rd edi 1999.	2.		3rd edition

Course Title	3D PRINTI	NG PROCESSES & APPLICATIONS		Cruchita	LTPC				
Course Code				Credits	3003				
Course Category									
Learning Level									
		OBJECTIVES							
To Know th	ne importance	of 3D printing in Manufacturing							
To know th	e different 3I	Printing Technologies							
To select a	suitable mate	rial for 3D Printing							
To observe	the different	methods for Post-processing of 3D Printing	g parts						
To Underst	and the appli	cations of 3D Printing in Automobile, Aero	ospace, Bio	o-medical et	с.				
UNIT-I INTROD	UCTION AN	D BASIC PRINCIPLES							
3D Printing, Gener	ric 3D Printin	g Process, Benefits of 3D Printing, Distincti	ion Betwee	en 3D Printi	ng and CNC				
Machining, Other		0							
		echnology: Introduction, Computers, Con							
		The Use of Layers, Classification of 3D I D Printing Development, 3D Printing arou			etal Systems,				
		CESS CHAIN & PHOTOPOLYMERIZAT							
		cture, Variations from One 3D Printing M			etal Systems.				
0 1		erials Handling Issues, Design for 3D PRI			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
-	· •	ation Processes: Photopolymerization Mat		action Rates,	Vector Scan				
	0	SL Scan Patterns, Vector Scan Micro st	ereolithog	raphy, Mas	k Projection				
Photopolymerizati	on Technolog	ies and Processes, Two-Photon SL.							
		ON PROCESSES & EXTRUSION-BASEI							
		troduction, SLS Process Description, Powe							
		ts of Powder Bed Fusion Processes, Prod		-					
Limitations.	ns and Scan	Patterns, Typical Materials and Applicat	ions, Mate	erials - Capa	abilities and				
	vstems. Intro	luction, Basic Principles, Plotting and Path	Control	Materials Li	imitations of				
FDM, Bioextrusion		1 0	r control,	Materials, L					
	2	IES FOR PROCESS SELECTION & SOFT	FWARE IS	SUES					
Design for 3D Prir	ting - Design	for Manufacturing and Assembly, Core D	OFM for 3I	D Printing C	oncepts and				
Objectives, 3D Prir	nting Unique	Capabilities, Exploring Design Freedoms, I	Design To	ols for 3D Pr	inting.				
Guidelines for Process Selection - Selection Methods for a Part, Challenges of Selection, Preliminary Selection,									
Production Planni	0		D 11		.1 0771 1.1				
Software Issues for 3D Printing - Preparation of CAD Models – the STL File, Problems with STL Files, STL File									
Manipulation, Beyond the STL File, Additional Software to Assist 3D Printing. UNIT-V MEDICAL APPLICATIONS & FUTURE DIRECTIONS FOR 3D PRINTING									
					Commenter en la				
Medical Applications for 3D Printing - Use of 3D Printing to Support Medical Applications, Software Support									
for Medical Applications, Limitations of 3D Printing for Medical Applications, Further Development of Medical 3D Printing Applications.									
Use of Multiple Materials in 3D Printing - Discrete Multiple Material Processes, Porous Multiple Material									
-		Material Processes, Embedded Compo			-				
	-	terials, Future Directions, Business Oppor		0					

СО	COURSE OUTCOMES	РО				
Upon com	Upon completion of this course, Students should be able to					
1.	Importance of 3D printing in Manufacturing					
2.	Different 3D Printing Technologies					
3.	Select suitable materials for 3D Printing					
4.	Different methods for Post-processing of 3D Printing parts					
5.	Applications of 3D Printing in Automobile, Aerospace, Bio-medical etc.					
TEXT BO	OK					
1.	1. Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010					
REFEREN	ICES					
1.	Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", 2003.	World Scientific,				
2.	Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Sp	oringer, 2006.				
3.	D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Application Prototyping and Rapid Tooling, Springer 2001.	s of Rapid				

Course Title	MATERIA	S AND CHARACTERIZATI	ON TECHNIQUES	Credite	LTPC			
Course Code				Credits	3003			
Course Category								
Learning Level								
OBJECTIVES								
To interpret	t various mat	erials characterization technique	les.					
	-	ple and operation of character tain good images / results	ization equipment and	d the adjustr	nent of			
To select th	e characteriza	tion tool for specific application	n					
-		and operation of different cha ctron microscopes and transm		-				
To analyze	the character	zation results by various equi	pment					
UNIT-I OPTICAL								
Introduction, Option Modes, Application		Instrumentation, Specimen p. s.	reparation-metallogra	aphic princip	les, Imaging			
UNIT - II SEM, TH	EM & XRD							
thinning, final th Applications, Limit X- Ray Diffraction Types of analysis, I	inning, Ima tations. (XRD) - Intr Data collectio	copy (TEM) - Introduction, ge modes- mass density co oduction, Basic principles of d n for analysis, Applications, Li	ntrast, diffraction co	ontrast, pha	ise contrast,			
UNIT-III THERM	AL ANALYS	IS						
experimental para Scanning Calorime	meters, Diff etry, Thermo	dynamics and heat transfer rent types used for analysi gravimetry, Dilatometry, Dyn ples, Applications, Limitations	s, Differential therm namic mechanical ar	al analysis,	Differential			
UNIT-IV SPM, AI	FM & EPMA							
 Scanning Probe Microscopy (SPM) - Introduction, Instrumentation, Scanning Tunneling Microscopy-Basics, probe tips, working environment, operational modes, Applications, Limitations. Atomic Force Microscopy (AFM) - basic principles, instrumentation, operational modes, Applications, Limitations Electron Probe Micro Analyzer (EPMA) - Introduction, Sample preparation, Working procedure, Applications, Limitations 								
UNIT-V X- RAY S	SPECTROSC	DPY FOR ELEMENTAL ANA	LYSIS					
Introduction, Characteristics of X-rays, X- ray Fluorescence Spectrometry, Wavelength Dispersive Spectroscopy-Instrumentation, Working procedure, Applications, Limitations, Energy Dispersive Spectroscopy - Instrumentation, Working procedure, Applications, Limitations								

СО	COURSE OUTCOMES	РО				
Upon com	Upon completion of this course, Students should be able to					
1.	Interpret various materials characterization techniques.					
2.	Understand the principle and operation of characterization equipment and the adjustment of operation variables to obtain good images / results					
3.	Select the characterization tool for specific application					
4.	Compare the principle and operation of different characterization tools such as optical microscope, Scanning electron microscopes and transmission electron microscope					
5.	Analyze the characterization results by various equipment					
TEXT BO	ОК					
1.	Yang Leng, Materials Characterization, Introduction to Microscopic and Spectro John Wiley & Sons (Asia) Pte Ltd., 2008	scopic Methods,				
REFEREN	ICES					
1.	ASM Handbook: Materials Characterization, ASM International, 2008.					
2.	Robert F. Speyer, Thermal Analysis of Materials, Marcel Dekker Inc., New York,	1994.				
3.	V. T. Cherapin and A. K. Mallik, Experimental Techniques in Physical Metallurgy, House, 1967.	Asia Publishing				
4.	S.J.B. Reed, Electron Microprobe Analysis, Cambridge University Press, London,	1975.				

Course Title	3D PRINT	ING MACHINES & SYSTEMS			LTPC		
Course Code				Credits	3003		
Course Category							
Learning Level							
	OBJECTIVES						
To understa	and the const	ruction of basic 3D Printing machines	3				
To understa	and the Energ	y delivery, Material delivery, Nozzle	and Heating S	bystems			
To know th	e Optical & C	ptoelectronic components in 3D Prin	iting				
• To know th	e environme	ntal control systems					
To understa	and the Pre-p	rocessing & Post processing techniqu	es in 3D printi	ng			
UNIT-I INTROD	UCTION TO	3D PRINTING MACHINES & PRO	CESSES				
		hines: Historical Perspectives, Rapic	l Prototyping -	An Integral	Part of Time		
1 0	0	formation Workflow.		- · ·			
1 21 0		lassification of Rapid Prototyping Pr			U		
		er, Solidification of an Electroset Flu lving Discrete Particles, Processes Inv		0	diffication of		
UNIT - II RAPID			orving bond b	liceto.			
		olid Ground Curing Systems, Fused I	Deposition Mo	lelling System	ms Selective		
		nated Object Manufacturing System					
Engineering Net Sl			, 1		0)		
UNIT-III TECH	NICAL, TE	CHNOLOGICAL CAPABILITIES	& APPLIC	ATIONS (OF RAPID		
PROTOTYPING							
		echnological Capabilities of Concep		2			
		, Z-Corporation Z402 3D Printer, Stra	atasys Genisys	Xs 3D Printe	r, JP System,		
Object Quadra Sys		ning Technology: Functional Models	s Pattern for I	nvestment a	nd Vacuum		
		odels, Engineering Analysis Models.	<i>, i uttern for i</i>	investment u	na vacuum		
UNIT-IV INDIRE	CT & DIREC	T METHODS FOR RAPID TOOL I	RODUCTION	1			
Indirect Methods f	or Rapid Too	Production: Role of Indirect Method	ds in Tool Prod	uction, Meta	1 Deposition		
	1 2	Ceramic Tools, Cast Metal Tools, Inv	vestment Castir	ng, Fusible M	letallic Core,		
Sand Casting, Kelt			D 11 T 1 1				
	-	Production: Classification of Direct	-				
		Object Manufactured Tools, DTM Tooling using 3Dp, Topographic Sha	-		aform EOS		
		RAPID TOOLING TECHNOLOGY			ION		
		Rapid Tooling Inserts Wear Resistance					
e	Ų	encing Accuracy - Data Preparation,			Errors due to		
-		ding Errors in the SL Process, Part I					
0	Q	uild Orientation, Orientation Const	U				
Constraints of the S	SLS Process.						

CO	COURSE OUTCOMES	РО					
Upon com	Upon completion of this course, Students should be able to						
1.	Understand the construction of basic 3D Printing machines						
2.	Understand the Energy delivery, Material delivery, Nozzle and Heating Systems						
3.	Know the Optical & Optoelectronic components in 3D Printing						
4.	Know the environmental control systems						
5.	Understand the Pre-processing & Post processing techniques in 3D printing						
TEXT BO	ОК						
1.	D.T. Pham, S.S. Dimov, Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, Springer Science & Business Media, 2012.						
REFEREN	ICES						
1.	Chee Kai Chua, Kah Fai Leong, 3D Printing and Additive Manufacturing: Princip Applications: Fourth Edition of Rapid Prototyping	oles and					
2.	Andreas Gebhardt, Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing, Hanser Publications, 2012	Rapid Tooling,					
3.	Peter Hilton & Paul Jacobs, Rapid Tooling: Technologies and Industrial Applicati 2000	ions, CRC Press,					

Course Title	MEDICAI	APPLICATIONS IN	3D PRINTING	0 11	LTPC		
Course Code				Credits	3003		
Course Category							
Learning Level							
	OBJECTIVES						
117	 To apply the concepts of medical imaging, 3D scanning and digitizing for accurate 3D model construction. 						
To identify	the errors du	ring processing of medi	ical image data and minimize	e them.			
To select th	e suitable ma	terial for the given med	ical application.				
To analyze	and select an	additive manufacturing	g technology for a given med	ical applicat	ion.		
To analyze	and design t	ne virtual models of the	patient for planning the surg	gery.			
UNIT-I RAPID PI	ROTOTYPIN	G FOR MEDICAL API	PLICATIONS				
on Rapid Prototyp Selective Laser Sir	ping, Stereolit ntering, Drop	hography and Other R blet/Binder Systems, R	erse Engineering and Rapid F esin-type Systems, Fused De elated Technology: Microsy Technologies, Disadvantage	eposition Mo stems and I	odelling and Direct Metal		
UNIT - II BIOMO	DELLING						
virtuality in cu	stomized c	anio-maxillofacial pro	y - Cranio-maxillofacial bio osthetics, Biomodel-guided y, Orthopaedic biomodelling	stereotaxy	y, Vascular		
UNIT-III BIOBUI	LD SOFTWA	ARE FOR MEDICAL D	ATA TRANSFER				
Implantology. Bio	Build Parad ume editing,	igm - Importing a d Image processing, Build	ner to 3D Model, Compute ataset, Volume reduction, d orientation optimization, 3	Anatomical	orientation		
UNIT-IV SCAFFC	OLD-BASED	TISSUE ENGINEERIN	IG & ORTHOPEDIC IMPLA	ANTS			
Introduction, Medical Imaging: from Medical Scanner to 3D Model, Computer Approach in Dental Implantology. BioBuild Paradigm - Importing a dataset, Volume reduction, Anatomical orientation confirmation, Volume editing, Image processing, Build orientation optimization, 3D visualization, RP file generation, Future Enhancements.							
Introduction to orthopedic implants, Electron Beam Melting Technology, Direct Fabrication of Titanium Orthopedic Implants - EBM fabrication of custom knee implants, EBM fabrication of custom bone implants, Direct fabrication of bone ingrowth surfaces.							
UNIT-V MODELLING, ANALYSIS AND FABRICATION OF BELOW-KNEE PROSTHETIC SOCKETS USING RAPID PROTOTYPING							
RSMM, Future De	velopment of	Medical Applications	Socket Manufacturing Mae for Advanced Manufacturing e Engineering, Business				

СО	COURSE OUTCOMES	РО					
Upon com	Upon completion of this course, Students should be able to						
1.	Apply the concepts of medical imaging, 3D scanning and digitizing for accurate 3D model construction.						
2.	Identify the errors during processing of medical image data and minimize them.						
3.	Select the suitable material for the given medical application.						
4.	Analyze and select an additive manufacturing technology for a given medical application.						
5.	Analyze and design the virtual models of the patient for planning the surgery.						
TEXT BO	ОК						
1.	Ian Gibson, Advanced Manufacturing Technology for Medical Applications, Johr	n Wiley, 2005.					
REFERENCES							
1.	Paulo Bartolo and Bopaya Bidanda, Bio-materials and Prototyping Applications i Springer, 2008.	n Medicine,					
2.	Joseph D. Bronzino, The Biomedical Engineering Hand Book, 3rd Edition, CRC P	ress, 2006					

Course Ti	itle	RAPID TO	OOLING & INDUSTRIAL APPLICATIONS	Credito	LTPC			
Course Co	ode			Credits	3003			
Course Ca	tegory							
Learning I	Level							
	OBJECTIVES							
• To	• To identify suitable rapid tooling technique for rapid product development.							
• To	To model the suitable tooling method for the given industrial application.							
• To	identify	the errors du	ring development of tool and minimize them.					
• To	design a	nd fabricate	the tool for the given medical application					
• To	design a	nd fabricate	the tool for the given automobile application					
			IS, AND APPLICATION LEVELS					
			rer Manufacturing, The Principle of Layer-Based	Fechnology,	Application			
			es of Machines for Additive Manufacturing.	0,7	11			
UNIT - II	LAYER	MANUFACI	URING PROCESSES					
			cocesses, Polymerization - Laser-Stereolithography,	Polymer Pr	inting and -			
		0	, Micro Stereolithography. Sintering and Melting - La		0			
			r Melting - Selective Laser Melting (SLM), Electron 1					
			er-Binder Bonding - Three-Dimensional Printing - 2					
			acturing (LLM), Machines for Additive Manufacturi					
UNIT-III	APPLIC	ATIONS OF	RAPID PROTOTYPE TOOLING					
Data Proce	essing ar	d Application	n Workflow - AM Process Chain, Application Workf	low. Applica	ations of AM			
- Automoti	ive Indu	stries and Su	opliers. Aerospace Industry, Consumer Goods, Toy I	ndustry, Art	and History			
			chnology, Mold and Die Making for Plastic Injection	n Molding ar	nd Metal Die			
U			ind Landscaping.					
UNIT-IV	ADDIT	IVE MANUF	ACTURING DESIGN AND STRATEGIES					
			nd Resulting Perspectives - Complex Geometries					
		onalities, Mu	Ilti-Material Parts and Graded Materials. AM-B	ased New	Strategies -			
Customiza								
			N, AND QUALITY ASPECTS FOR ADDITIVE MA					
		-	c Properties, Basic Isentropic Materials, Graded ar	-				
			M - Tolerances - Digital to Object, Design Freedor					
			ion and Clamping, Drillings (Bores), Gaps, Pins, an	d Walls. AN	Λ Properties,			
Selection, I	Build Ma	anagement			DO			
CO	1	6.1.1	COURSE OUTCOMES		PO			
	1		Students should be able to					
1.		*	id tooling technique for rapid product development	•	<u> </u>			
2.			ooling method for the given industrial application.					
3.			uring development of tool and minimize them.					
4.	U U		e the tool for the given medical application					
5.	Design	and fabricate	e the tool for the given automobile application					

TEXT BO	OK
1.	Andreas Gebhardt, Understanding Additive Manufacture: Rapid Prototyping, Rapid Tooling and Rapid Manufacture, Hanser Publishers, 2013.
REFEREN	ICES
1.	D.T. Pham and S.S Dimov, Rapid Manufacturing: The Technogies and Applications of Rapid
1.	Prototyping & Rapid Tooling, Springer, 2001.
2.	Peter Hilton and Paul F Jacobs, Rapid Tooling Technologies and Industrial Applications, Marcel
۷.	Dekker Inc, New York, 2001.
3.	Wanlong Wang, Henry W. Stoll and James G. Conley, Rapid Tooling Guidelines for Sand
	Casting, Springer, 2010.

Course Title	RAPID PR	OTOTYPING LABOR	ATORY	Castle	LTPC			
Course Code				Credits	3003			
Course Category								
Learning Level								
		OBJECTI	VES					
To optimize	e the process	parameters of FDM mach	ine to improve the quality	of the parts j	produced.			
• To build co	mplex engine	ering assemblies in plast	c material with less process	s planning.				
To improve	surface finis	h of fabricated plastic cor	nponents for the engineerin	ng applicatio	ns.			
• To design a	nd fabricate	working models for the co	onceptual testing applicatio	ns.				
DETAILED SYLLA		0	1 0 11					
1. Review of C	CAD Modelir	g Techniques and Introd	uction to RP					
		ning Creative Idea						
		n the CAD Models & Wo	rking on STL files					
		ns in CAD Software	8					
Ũ		, signs in CAD Software						
			ection of Orientation, Supp	orts				
		path generation)						
7. Simulation								
		ta to FDM RP machine						
9. Fabricating	the physical	part on FDM RP machine						
		& post processing (cleanii	ng the surfaces)					
		Working Models						
	CT/MRI scar		MIMICS software (Demo)					
CO		COURSE OUTCO			PO			
		Students should be able						
	ze the proces roduced.	s parameters of FDM ma	chine to improve the quality	y of the				
2. Build c	complex eng	neering assemblies in p	lastic material with less j	process				
plannir								
3. Improve surface finish of fabricated plastic components for the engineering								
applications.								
4. Design and fabricate working models for the conceptual testing applications.								
TEXT BOOK								
		0 0	n, Rapid Prototyping: Princ	ciples and A	pplications			
in Man	utacturing, W	orld Scientific, 2010.						
REFERENCES								
		RP Machine Manual, Str	5					
2. Mojo 3I) Printer Mai	nual, Stratasys INC., USA	, 2013.					