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Aim:

To generate PWM pulses using TMS 320 F2182 DSP Processor.

Pre MCQ

1. In pulse width modulated inverters, the output voltage is controll@diyolling the
a) input frequency
b) modulating index
c) amplification factor
d) none of the mentioned
Ans: b

2. In case of sinusoidal pulse width modulation with Ml < 1, if the number of pulses per
half cycle (N) = 5, then
a) harmonics of order 5 andbécome significant
b) harmonics of order 5 and 7 are eliminated
c¢) harmonics of order 9 and 11 become significant
d) harmonics of order 9 and 11 are eliminated

Ans: c

3. In case of sinusoidal pulse width modulation with Ml < 1, the order aidh@nate
harmonic can be raised by
a) increasing the number of pulses
b) reducing the number of pulses
c) lowering the input voltage frequency
d) raising the input voltage frequency

Ans: a

4. In case of sinusoidal pulse width modulation with Ml < 1, if toenber of pulses per
half cycle (N) = 6, then
a) harmonics of order 7 and 9 become significant

b) harmonics of order 7 and 9 are eliminated



¢) harmonics of order 11 and 13 become significant
d) harmonics of order 11 and 13 are eliminated

Ans: C

5. Increasing the number of pulses (N),

a) reduces the output voltage amplitude
b) reduces the inverter efficiency
c) improves the inverter efficiency

d) none of the mentioned

Ans: b

PWM Output and General Purpose Timer Compare Operation

A PWM waveform is a sequence of pulses with fixed frequency but varying pulse widths. The
width of the pulse might vary from 0% to 100% of the fixed period. The pulse widths are
modulated by another signal called the modulation signal. In order to gend?&¥dlasignal

digitally, a timer is set to continuously repeat a counting period. This period is known as the
PWM carrier period. The inverse of the carrier period is called the carrier frequency.

The counting pattern of -toothe (tasmemmewirlilc)eiotrh
(symmetric) wave depending on what counting mode the timer has been configured for. As
always, the compare value is constantly being compared with the value of the timer counter.
When a match occurs, the output toggles Highdw, or Low to High. When the timer period

value is reached or a second match occurs, the output toggles again. The on and off time of the
pul se is directly dependent on the value | oad
number in the compa register by the modulation signal (usually a sinusoid), a PWM signal that
represents the modulating signal can be produced.

The fAoutputodo discussed above refers to each G
The logic level of the PWM output pirs idetermined automatically by hardware. This level is

based on the value of the associated compare register and timer count vahig. (sa®te the

compare match points and the output change at these points). If the compare operation is enabled

in TXCON, the following events occur on a compare match:

1. The compare interrupt flag of the timer is set one clock cycle after the match.



2. A transition occurs on the associated PWM output pin one device clock cycle
after the match according to the biinfiguration in GPTCONA/B.

3. If the compare interrupt flag has been selected by the appropriate GPTCONA/B
bits to start the ADC, an ADC start signal is generated at the same time the
compare interrupt flag is set.

4. A peripheral interrupt re@st is generated by the compare interrupt flag if it is

unmasked.

Timer
(PWM)
period 1

Compare
| match

TXPWM/TxCMP Active
active low

||nacﬁve

Timer value

TXPWM/TxCMP
active high

Active

The polarity of the compare output of a GP Timer can be specified active high, active low,
forced high, or forced low. This polarity is determined by settingbitein the GPTCONA/B
register. If active low, the output changes from high to low on the first compare match. It then
goes from low to high on the second compare match if the GP Timer is in an um/domting
mode, or on period match if the GP Timer msup-counting mode. If active high, the output
changes from low to high on the first compare match. It then goes from high to low on the
second compare match if the GP Timer is in afidgevn counting mode, or on period match if

the GP Timer is in wgount mode. If forced low, the timer compare output becomes low
immediately when it is specified. If forced high, the timer compare output becomes high

immediately when it is specified.



By default (after a reset or powen) all GP Timer PWM output pins are put a high
impedance (HE) state. The PWM output must be made active by configuring the GPTCONA/B
registers. At anytime the PWM outputs will be madeZHkhenever the power drive protection

pin PDPINTXx is active and is pulled low. Additionally, the copesding PWM pin will be

made HiZ when bit 1 of the TXCON register is zeroed by software.

The transition on the PWM output pin is controlled by the asymmetric or symmetric timer
waveform and the associated output logic. For an asymmetric wave form, énastiget up in
continuous ugcount mode. To generate a symmetric waveform, the timer needs to be configured
to continuous up/down counting.

Example 1- Generation of an Asymmetric Waveform

The asymmetric waveform in Fi@ is generated when the GP Timis in continuous up

counting mode. When in this mode the output changes in the following:

1. Output pin at Ainactive |l evel 06 before the
2. Output pin remains at Ainactive | evel o0 unt
3.Outputtogglesst fiacti ve | evel 6 on the compare match
4. Output remains unchanged at fAactive |l evel 0
5. At end of period, output resets to Ainact.i

compare value is not zero

Timer Timer
< (PWM) (PWM)
period 1 period 2
Compare
match
Timer value
New comp
value greater
than period

TXPWM/TxCMP Active I |
active low | e
Inactive

TXPWM/TXCMP :’Q_‘ I |
active high Active

F ),

-+Compare matches
It tne compare value IS zero at tne very beginning ot the period, tnen a compare match is made at

the very beginning and, consequently, the output is the active level foeribd.df the output is
Aactiveo for the whole period and the new col

output will stay at the active level so as not to cause a glitch. If the value in the compare register



is greater than the value in theripd register, then a compare match will never be made and
consequently the output will be at the inactive level through the whole period.

The above allows the duty cycle of the PWM to range from 0 to 100% without glitches being
present. If the compare & is the same as the period value, which causes a compare match,
then the output pin will be at the active level for exactly onespated clock cycle.

Example 2- Symmetric Waveform Generation:

When the GP Timer is configured in continuous up/d@eurting mode, a symmetric
waveform is generated ashig. 3. The output changes in the following sequence:

1. Ai nactive | evel 0 before the counting opera
2. remains at Ainactive | evel o until the comp
3. toggles to fsacompargmatchevel 06 on the fir

4. remains unchanged at fAactive |l evel o until

5. toggles to Ainactive | evel 0 on the second

6. remains unchanged at Ainactive | evel 0 unt.

remains unchanged until next coanp match

Timer Timer
— (pwMm) — (PWM)
period 1 period 2
Compare
) match
Timer value Reloaded
- comp value
greater than
period
TXPWM/TXCMP Active I I
active low |nactive L
TXPWM/TXCMP | I | |
active high _____|

-Compare matches

Figure3 Symmetric timer waveform from continuous up/down count mode.

If the compare value is zero at the beginning of the period, the output is set to the active level at
the beginning of a period and remains unchanged untddbend compare match. After the first
transition, the output remains at the active level until the end of the period if the compare value
becomes zero for the second half of the period. When this happens, the output does not reset to

zero if the new comparvalue for the following period is still zero.



This is done again to assure the generation of PWM pulses of 0% to 100% duty cycle without
any glitches. The first transition does not happen if the compare value is greater than or equal to
that of the perid register for the first half of the period. However, the output still toggles when a
compare match happens in the second half of the period. This error in output transition, often as
a result of calculation error in the application routine, is correctettheaend of the period
because the output resets to zero, unless the new compare value for the following period is zero.
In this case, the output remains one, which again puts the output of the waveform generator in
the correct state.

Calculations for Active and Inactive Time Periods

In order to utilize the GP Timer PWM outputs, it is sometimes necessary to calculate the active
and inactive pulse times for the PWM output pins. We can find the active and inactive times for
both the asymmetrical (ContinueWpCount Mode) and symmetrical (Continuous Up/Down
Count Mode). The calculation criteria for these times are as follows:

Continuous Up-Count Mode:
Active Output Pulse Time = [(TXPR)(TXCMPR) + 1] cycles of the scaled input clock.

Inactive Output Puls&ime = (period of the scaled input clock) * (value of TXCMPR)
1 When the value in TXCMPR is zero, the GP Timer compare output is
active for the whole period.
1 When TXCMPR is TxPR, the length of the active phase (the output pulse
width) is zero.

Continuous Up/Down Counting Mode:
For the continuous uftlowncounting mode, the compare register can have different values

while counting down and while counting up.
Active Output Pulse Time = [(TXPR)(TXCMPRup + (TXPR)i (TXCMPRXn]** cycles of the
scaled input clock
1 If (TxCMPR) up is zero, the compare output is active at the beginning of the
period. If (TXCMPR)dn is also zero, then output remains active until the end of the

period.



1 When (TXCMPR)ipis (TxPR), the first transition is lost. Similarly, the second
transition is lost when (TXCMPRh is  (TxPR).
1 If both (TXCMPR)up and TXCMPR)dn are greater than or equal to (TXPR), then
the GP Timer compare output is inactive tloe entire period.
**where (TXCMPR)up is the compare value on
(TXCMPR)dn is the compare value on the way down.

GP Timer PWM Generation -Practical Steps
To generate a PWM output signal on the GP Timer PWM outputs, make sdoddheng are

configured to allow for PWM generation (also see Example 6.3): 1. Note what the PLL module
is set to. The PLL provides the clock signal to

the DSP and hence to the EV. In the timer control registers we have the

option of prescaling (dividing the clock signal to choose a time base for

the GP Timers.

2. The corresponding EV pins need to be configured for their primary

function in the appropriate MCRX register.

3. Initialize TXCNT (we usually set the count vale to zero)

4. Set TxPR according tbe desired PWM (carrier) period. The TxPR value

is calculated by the following formulas:
Asymmetric PWM:

desired PWM period

TxPR Value=| — —
GP Timer prescaled clk period

Symmetric PWM:

desired PWM period

TxPR Value=| —— .
2 *(GP Timer prescaled clk period )

5. Initialize TXCMPR to first desired compare value
6. To create a PWM signal, the registers GPTCONA/B and TxCON need to be
configured for TXCMP enabled, desired counting mode etc.

7. To create an asymmetric PWM signal, the timer is set to the Contijpous

t



Count Mode. If a symmetric PWM signialdesired, then the Timer should be set
to the ContinuousJp/Down Mode.

8. During run time, the GP Timer compare register (TXCMPR) will need to be
periodically updated with new compare values corresponding to the modulation
signal or new dty cycle. This can be done during an interrupt service routine.

Example 3- Fixed Duty Cycle PWM

The following block of code is an example of generating a simple-fixeyg cycle PWM signal
by using the GP Timer Compare function. The PLL needs to be §#KIN x 4, the watchdog
needs to be disabled, and the wait state generator (WSGR) set for zero wait states.

LDP #SCSR1>>7

SPLK #000Ch,SCSR1 ;EVA & EVB modules clock enable

LDP #0OElh ;Set Mux pins for

SPLK #0FFFFh,MCRA ;PWM function

SPLK #0FFFFh,MCRC ;EVA PWM output initialization

LDP #GPTCONA >> 7h ;Load EVA datpage

SPLK #00000h, T1CNT ;this just zeros the counter T1 the
;counters are auto zeroed after a DSP
;reset

SPLK #0FFFFh, T1PR ;the T1PR value sets the frequency in
;this case, it is 500 Hzont upcnt mod

SPLK #08000h, TLCMPR;50 % duty cycle PWM bits

SPLK #0000000001000010b, GPTCONA

SPLK #1001000001000010b, TICON

LOOP2 B LOOP2 ;after the control registers are setup
;the program can loop endlessly while
;PWM is generatedutomatically

4 Compare Units

A PWM signal can also be generated using the compare unit (CMPRX). The compare units

(CMPRX) in the LF2407 function identically to the GP Timer compare units (TXCMPR)
discussed above. Unlike the GP Timer compare function, @aapare unit hasvo associated
PWM outputs which both toggle on the same compare match. The PWM outputs associated with
the compare units allow for the generation of six PWM outputs per EV.
As shown in Fig4 the Compare Units Include:

1 Three 16bit compae registers (CMPR1, CMPR2, and CMPR3 for EVA; and CMPRA4,

CMPR5, and CMPRG6 for EVB), all doublauffered
1 One 16bit compare control register (COMCONA for EVA, and COMCONB for EVB)



1 One 16bit action control register (ACTRA for EVA, and ACTRB for EVB), wian
associated buffer register

1 Six PWM (3state; Low, High, High Z) output (compare output) pins (PWMy,y =1, 2, 3,
4,5, 6 for EVA and PWMz,z=7, 8, 9, 10, 11, 12 for EVB)

TzCNT
GPTz
counter
ACTR
Compare full compare
logic action control register
TT (shadowed)
CMPRX L}
full compare Output >
register (shad PWM circuits [ Iogpic
owed) PWMy,y+1

Figure4 Compare unit block diagram.
ForEVA:x=1,2,3;y=1,3,5;21
ForEVB:x=4,5,6;y=7,9,11;z=3

4.1 Inputs and Outputs of the Compare Units

The inputs to a compare unit include:

Control signals from compare control registers

GP Timer 1/3 (TLCNT/T3CNT) count value, underflow, and period mesitphals

System RESET

The time base (counter value) for the compare units in EVA (CMPR1,2 ,3) is GP Timer

1, and for EVB (CMPRA4, 5, 6 ) is GP Timer 3.

When any reset event occurs, all register bits associated with the compare units are reset to zero

1
1
T
T

and allcompare output pins are put in the higipedance state. The output of a compare unit is

a compare match output, or in other words, a PWM output. If the compare operation is enabled, a



compare match signal sets the corresponding interrupt flag and theutpuat pins associated
with the compare unit to toggle. Either of the two outputs can be configured as either active high
or active low, but will toggle upon the same event.

4.2 Operation of Compare Units

The sequence below is an example of the compat®peration in EVA. For

EVB operation, GP Timer 3 and ACTRB are used instead:

1. The value of the GP Timer 1 counter is continuously compared with that of

the compare register.

2. When a compare match occurs, a transition appears on the two outputs of

the compare unit according to the bits in the action control register (ACTRA). The bits in the
ACTRA can individually specify each output to toggle active high or toggle alctiveif not

forced high or low) on a compare match.

3. The compare interrupt flagssociated with a compare unit is set when a compare match is
made between GP Timer 1 and the compare register of a compare unit, if compare is enabled.

4. A peripheral interrupt request will then be generated if the interrupt is

unmasked. The timing ofubput transitions, setting of interrupt flags, and

the generation of interrupt requests are similar to the GP Timer compare

operation.

5. The outputs of the compare units in compare mode are subject to modification by the output
logic, dead bandnits, and the space vector PWM logic.

Having two outputs controlled by the same compare unit is useful in applications such as the
control of a power inverter (sédg. 5). With a power inverter, PWM signals can be used to gate
the powertransistors for creating currents through the legs of the inverter of any frequency or
amplitude. This is useful in controlling electric motors their operation depends on the current
flowing through the windings. By controlling the current flowing througbtor windings,
torque and speed control of the motor can be accomplished.

In inverter circuits such as those shown in Eigtwo power transistors are placed in series on
each phase filegd with the output b elegntghbeb et we ¢
connected either to the DC supply voltage (Vdc) or ground. A potential hazard with these circuits

is that if both transistors are turned on at the same time, a short circuit condition will exist



through the leg and power transistors, causingtrduesistors to rapidly heat up and, in most
cases, explode.

The solution to this problem is to make sure that only one transistor in each leg is on at a time. In
theory, this is accomplished by feeding complementary PWM gating signals to each of the two
transistors in a leg. So when one transistor is on, the other is off. In reality, all transistors turn on
faster than they turn off. Therefore, it is necessary to add a time delayb@eddbetween the

PWM signals to allow for the first transistor to futurn off before the second one is turned on.

Udc ® I l
//
DTPHa - A omrmrl Q3 DTPHC| Q5 A
A
va l—I—\;b Ve
DTPH g — DTPH
a_— Q2 A — Q4 A - Q6 y \
A NA A
GND . 3 @ L & (3

Figure5 Basic thregohase inverter circuit.

1. Which among the below stated components should be filtered for determining-tfe cut
frequency corresponding to the PW period of-joass filter ?
a. Fundamental Fpwm & higher harmonics
b. Resonant#wwm & higher harmonics
c. Slowly Varying DC components
d. Slowly Varying AC components
Ans: a

2. Three methods for modulating a digital signal with analog data are
a) PAM, ASM, PPM
b) PAM, PWM, PPM
c) FSK, QAM, PAM
d) QAM, PAM, PWM,

Ans: b

3. Pulse amplititude modulation makes use of
a) a successive approximator



b) a dualslope ADC
c) an R/2R set up
d) a sample and hold circuit

Ans: d

4. A certain number of bits (D) are encoded by a single pulse in one of 2D possible
positions during a specified fixed period (T) in

a) TDM
b) PAM
c) PPM
d) PWM

Ans: c

Aim
To understand the working of various instructions of TMS320c2407
processor.

How To Use the Instruction Descriptions
The description for each instruction presents the following categories of information:
Syntax
Operands
Opcode
Execution
Status Bits
Description
Words
Cycles
Examples
Syntax
Each instruction begins with a list of the available assembler syntax expressions and the addressing
mode type(s) for each expression. For example, the description for the ADD instruction begins with:

ADD dma [, shift ] Direct addressing

ADD dma, 16 Direct with left shift of 16

ADD ind [, shift [ , ARn] ] Indirect addressing

ADD ind, 16 [, ARn] Indirect with left shift of 16

ADD #k Short immediate addressing

ADD #lk [, shift ] Long immediate addressing

These are the notations used in the syntax expressions:
italic

symbols

Italic symbols in an instruction syntax represent variables.
Example: For the syntax

ADD dma

you may use a variety of values for dma.

Samples with this syntax follow:



ADD DAT

ADD 15

Boldface characters in an instruction syntax must be typed as shown.
Example:

For the syntax

ADD dma, 16

you may use a variety of values for dma, but the word ADD and the number 16 must be typed
as shown. Samples with this syntax follow:

ADD 7h, 16

ADD X, 16

[, x] Operand x is optional.

Example: For the syntax

ADD dma, [, shift]

you must supply dma, as in the instruction:
ADD 7h

and we have the option of adding a shift value,as in the instruction:
ADD 7h, 5

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot include x2 without also including x1.

Example: For the syntax

ADD ind, [, shift [, ARn]]

you must supply ind, as in the instruction:

ADD *+

You have the option of including shift,

as in the instruction:

ADD *+, 5

If we wish to include ARn, you must also include shift, as in:

ADD *+, 0, AR2

# The # symbol is a prefix for constants used in immediate addressing. For short- or long- immediate
operands, it is used in instructions where there is ambiguity with other addressing modes.

Example: RPT #15 uses short immediate addressing. It causes the next instruction to be repeated16
times. But RPT 15 uses direct addressing.The number of times the next instruction repeats is determined
by a value stored in memory. Finally, consider this code example:

MoveData BLDD DATS5, #310h ;move data at address

;referenced by DATS5 to address

:310h.

Note the optional MoveData label is used as a reference in front of the instruction mnemonic. Place labels
either before the instruction mnemonic on the same line or on the preceding line in the first column. (Be
sure there are no spaces in your labels.) An optional comment field can conclude the syntax expression.
At least one space is required between fields (label, mnemonic,operand, and comment).

Operands

Operands can be constants, or assembly-time expressions referring to memory, /O ports, register
addresses, pointers, shift counts, and a variety of other constants. The operands category for each
instruction description defines the variables used for and/or within operands in the syntax expressions.
For example, for the ADD instruction, the syntax category gives these syntax expressions:

ADD dma [, shift ] Direct addressing

ADD dma, 16 Direct with left shift of 16

ADD ind [, shift [ , ARn] ] Indirect addressing
ADD ind, 16 [, ARn] Indirect with left shift of 16
ADD #k Short immediate addressing

ADD #lk [, shift ] Long immediate addressing

The operands category defines the variables dma, shift, ind, n, k, and Ik. For ind, an indirect addressing
variable, you supply one of the following seven symbols:

* %+ %[ *0+ *0i *BRO+ *BROi

Opcode



The opcode category breaks down the various bit fields that make up each instruction word. When one of
the fields contains a constant value derived directly from an operand, it has the same name as that
operand. The contents of fields that do not directly relate to operands have other names;

the ADDC instruction:

ADDC dma
1514131211109876543210
011000000dma

ADDC ind [,ARN]
1514131211109876543210
011000001 ARUN NAR

The field called dma contains the value dma, which is defined in the operands category. The contents of
the fields ARU, N, and NAR are derived from the operands ind and n but do not directly correspond to
those operands;

Execution

The execution category presents an instruction operation sequence that describes the processing that
takes place when the instruction is executed. If the execution event or events depend on the addressing
mode used, the execution category specifies which events are associated with which addressing modes.
Here are notations used in the execution category:

(r) The content of register or location r.

Example: (ACC) represents the value in the accumulator.

x " y Value x is assigned to register or location y.

Example: (data-memory address) " ACC means:

The content of the specified data-memory address is put into the accumulator.

r(n:m) Bits n through m of register or location r.
Example: ACC(15:0) represents bits 15 through O of the accumulator.
(r(n:m)) The content of bits n through m of register or location r.

Example: (ACC(31:16)) represents the content of bits 31 through 16 of the accumulator.

nnh Indicates that nn represents a hexadecimal number.

Status Bits

The bits in status registers STO and ST1 affect the operation of certain instructions

and are affected by certain instructions. The status bits category of each

instruction description states which of the bits (if any) affect the execution of

the instruction and which of the bits (if any) are affected by the instruction.

Description

The description category explains what happens during instruction execution

and its effect on the rest of the processor or on memory contents. It also discusses

any constraints on the operands imposed by the processor or the assembler.

This description parallels and supplements the information given in

the execution category.

Words

The words category specifies the number of memory words required to store the instruction (one or two).
When the number of words depends on the addressing mode used for an instruction, the words category
specifies which addressing modes require one word and which require two words.



Examples
Example code is included for each instruction. The effect of the code on memory and/or registers is

summarized. Consider this example of the ADD instruction:
ADD*+,0,AR0

Before Instruction After Instruction

ARP 4 ARP O

AR4 0302h AR4 0303h

Data Memory Data Memory

302h 2h 302h 2h

ACC X 2h ACC 0 04h

Here are the facts and events represented in this example:

The auxiliary register pointer (ARP) points to the current auxiliary register.
Because ARP = 4, the current auxiliary register is AR4.

When the addition takes place, the CPU follows AR4 to data-memory address 0302h. The content of
that address, 2h, is added to the content of the accumulator, also 2h. The result (4h) is placed in the
accumulator.(Because the second operand of the instruction specifies a left shift of 0, the data-memory
value is not shifted before being added to the accumulator value.)

The instruction specifies an increment of 1 for the contents of the current auxiliary register (*+);
therefore, after the addition is performed, the content of AR4 is incremented to 0303h. The instruction
also specifies that ARO is the next auxiliary register; therefore,after the instruction ARP = 0.

Because no carry is generated during the addition, the carry bit (C) is cleared to O.

Instruction Descriptions
The instructions are presented alphabetically, and the description for each instruction
presents the following categories of information:
Syntax
Operands
Opcode
Execution
Status Bits
Description
Words
Cycles
Examples
ABS Absolute Value of Accumulator

Syntax ABS

Operands None

Opcode 1514 131211109876543210
1011111000000000

Execution Increment PC, then ...
[(ACC)|" ACC;0" C

Status Bits Affected by Affects

OVM C and OV

This instruction is not affected by SXM

Description If the contents of the accumulator are greater than or equal to zero, the accumulator

is unchanged by the execution of ABS. If the contents of the accumulator are less than zero, the

accumulator is replaced by its 2s-complementvalue. The carry bit (C) on the 6C20x
by the execution of this instruction.

Note that 8000 0000h is a special case. When the overflow mode is not set (OVM = 0), the ABS of 8000

0000h is 8000 0000h. When the overflow mode is set (OVM = 1), the ABS of 8000 0000h is 7FFF FFFFh.

In either case, the OV status bit is set.

Example 1 ABS

Before Instruction After Instruction
ACC X 1234h ACC 01234h
ccC



Example 2 ABS

Before Instruction After Instruction
ACC X OFFFFFFFFh ACCO0 1h
ccC

Example 3 ABS ;(OVM = 1)

Before Instruction After Instruction
ACC X 80000000h ACC 0 7FFFFFFFh
ccC

X1

oV ov

Example 4 ABS ;(OVM = 0)

Before Instruction After Instruction
ACC X 80000000h ACC 0 80000000h
ccC

X1

oV ov

ADD Add to Accumulator

Syntax ADD dma [, shift ] Direct addressing

ADD dma, 16 Direct with left shift of 16

ADD ind [, shift [ , ARn] ] Indirect addressing

ADD ind, 16 [, ARn] Indirect with left shift of 16
ADD #k Short immediate addressing

ADD #lk [, shift ] Long immediate addressing
Operands dma: 7 LSBs of the data-memory address

shift: Left shift value from 0 to 15 (defaults to 0) n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value

Ik: 16-bit long immediate value

ind: Select one of the following seven options:

* %+ %] *0+ *0i *BRO+ *BROi

ADD dma [, shift]
1514131211109876543210
0 0 1 0 shift 0 dma

ADD dma, 16
1514131211109876543210
011000010dma

ADDind[ ,shift[ , ARn ]
1514131211109876543210
0 010 shift 1 ARU N NAR

ADD ind, 16 [, ARn]
1514131211109876543210
011000011ARUNNAR

ADD #k
1514131211109876543210
10111000k

ADD #lk [, shift]
1514131211109876543210
101111111001



Shift llk
Opcode
Add to Accumulator ADD

Execution Increment PC, then ...

Event Addressing mode

(ACC) + ((data-memory address) 2shift) " ACC Direct or indirect
(ACC) + ((data-memory address) 216)" ACC Direct or indirect
(shift of 16)

(ACC) + k" ACC Short immediate

(ACC) + Ik 2shift" ACC Long immediate

Status Bits Affected by Affects Addressing mode
SXM and OVM C and OV Direct or indirect

OVM C and OV Short immediate

SXM and OVM C and OV Long immediate

Description The content of the addressed data memory location or an immediate constant

is left-shifted and added to the accumulator. During shifting, low-order bits are zero filled. High-order bits
are sign extended if SXM = 1 and zero filled if SXM = 0. The result is stored in the accumulator. When
short immediate addressing is used, the addition is unaffected by SXM and is not repeatable.If you are
using indirect addressing and update the ARP, you must specify a shift operand. However, if you do not

want a shift to occur, enter a 0 for this operand. For example:
ADD *+,0,AR2

Normally, the carry bit is set (C = 1) if the result of the addition generates a carry and is cleared (C = 0) if
it does not generate a carry. However, when adding with a shift of 16, the carry bit is set if a carry is
generated but otherwise, the carry bit is unaffected. This allows the accumulator to generate the proper

single carry when adding a 32-bit number to the accumulator.
Words Words Addressing mode

1 Direct, indirect, or

short immediate

2 Long immediate

ADD Add to Accumulator

Example 1 ADD 1,1 ;(DP = 6)

Before Instruction After Instruction
Data Memory Data Memory
301h 1h 301h 1h
ACC X 2h ACC 0 04h
ccC

Example 2 ADD *+,0,AR0

Before Instruction After Instruction
ARP 4 ARP 0

AR4 0302h AR4 0303h
Data Memory Data Memory
302h 2h 302h 2h
ACC X 2h ACC 0 04h
ccC

Add to Accumulator ADD

Example 3 ADD #1h ;Add short immediate

Before Instruction After Instruction
ACC X 2h ACC 003h
ccC



Example 4 ADD #1111h,1 ;Add long immediate with shift of 1

Before Instruction After Instruction
ACC X 2h ACC 0 2224h
ccC

ADDC Add to Accumulator With Carry

Syntax ADDC dma Direct addressing

ADDC ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address

n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

**+ %] *0+ *0i *BRO+ *BROi

ADDC dma
1514131211109876543210
011000000dma

ADDC ind [,ARN]
1514131211109876543210
011000001 ARUN NAR

Execution Increment PC, then ...

(ACC) + (data-memory address) + (C) " ACC

Status Bits Affected by Affects

OVM C and OV

This instruction is not affected by SXM.

Description The contents of the addressed data-memory location and the value of the carry bit are
added to the accumulator with sign extension suppressed. The carry bit is then affected in the normal
manner: the carry bit is set (C = 1) if the result of the addition generates a carry and is cleared (C = 0) if it
does not generate a carry.

The ADDC instruction can be used in performing multiple-precision arithmetic.

Example 1 ADDC DAT300 ;(DP = 6: addresses 0300h 1 037Fh;
;DAT300 is a label for 300h)

Before Instruction After Instruction

Data Memory Data Memory

300h 04h 300h 04h

ACC 113h ACC 0 18h

ccC

Example 2 ADDC *1 ,AR4 ;(OVM = 0)

Before Instruction After Instruction
ARP 0 ARP 4

ARO 300h ARO 299h
Data Memory Data Memory
300h Oh 300h Oh
ACC 1 OFFFFFFFFh ACC 10h
CC XO

oV ov

ADDS Add to Accumulator With Sign Extension Suppressed
Syntax ADDS dma Direct addressing
ADDS ind [,ARN] Indirect addressing

Operands dma: 7 LSBs of the data-memory address n: Value from 0 to 7 designating the next auxiliary
register ind: Select one of the following seven options:



**+ 7 *0+ *01 *BRO+ *BROV

ADDS dma
1514131211109876543210
011000100dma

ADDS ind [,ARN]
1514131211109876543210
011000101ARUN NAR

Execution Increment PC, then ...

(ACC) + (data-memory address) " ACC

Status Bits Affected by Affects

OVM C and OV

This instruction is not affected by SXM.

Description The contents of the specified data-memory location are added to the accumulator

with sign extension suppressed. The data is treated as an unsigned 16-bit number, regardless of SXM.
The accumulator contents are treated as a signed number. Note that ADDS produces the same results as
an ADD instruction with SXM = 0 and a shift count of 0. The carry bit is set (C = 1) if the result of the
addition generates a carry and is cleared (C = 0) if it does not generate a carry.

Example 1 ADDS 0 ;(DP = 6: addresses 0300h 1 037Fh)
Before Instruction After Instruction

Data Memory Data Memory

300h 0F006h 300h 0F006h

ACC X 00000003h ACC 0 0000F00%h

CccC

Example 2 ADDS *

Before Instruction After Instruction

ARP 0 ARP 0

ARO 0300h ARO 0300h

Data Memory Data Memory

300h OFFFFh 300h OFFFFh

ACC X 7FFF0O000h ACC 0 7FFFFFFFh
ccC

ADDT Add to Accumulator With Shift Specified by TREG

Syntax ADDT dma Direct addressing

ADDT ind [,ARnN] Indirect addressing

Operands dma: 7 LSBs of the data-memory address n: Value from 0 to 7 designating the next auxiliary
register ind: Select one of the following seven options:

**+ % *0+ *0i *BRO+ *BROi

ADDT dma
1514131211109876543210
011000110dma

ADDT ind [, ARn]
1514131211109876543210
011000111ARUN NAR

Execution Increment PC, then ...
(ACC) + [(data-memory address) 2(TREG(3:0))]" (ACC)

Status Bits Affected by Affects



SXM and OVM C and OV

Description The data-memory value is left shifted and added to the accumulator, and the result replaces
the accumulator contents. The left shift is defined by the four LSBs of the TREG, resulting in shift options
from 0 to 15 bits. Sign extension on the data-memory value is controlled by SXM. The carry bit (C) is set
when a carry is generated out of the MSB of the accumulator; if no carry is generated,the carry bit is
cleared.

Example 1 ADDT 127 ;(DP = 4: addresses 0200h 1 027Fh, ;SXM =0)
Before Instruction After Instruction

Data Memory Data Memory

027Fh 09h 027Fh  09h

TREG  OFF94h TREG  OFF94h

ACC X OF715h ACC 0 OF7A5h

ccC

Example 2 ADDT *i ,AR4 ;(SXM = 0)

Before Instruction After Instruction
ARP 0 ARP 4

ARO 027Fh ARO 027Eh
Data Memory Data Memory
027Fh  09h 027Fh  09h
TREG  OFF94h TREG OFF94h
ACC X O0F715h ACC 0 OF7A5h
ccC

ADRK Add Short-Immediate Value to Auxiliary Register
Syntax ADRK #k Short immediate addressing
Operands k: 8-bit short immediate value

ADRK #k
1514131211109876543210
01111000k

Execution Increment PC, then ...

(current AR) + 8-bit positive constant " current AR

Status Bits None

Description The 8-bit immediate value is added, right justified, to the current auxiliary register (the one
specified by the current ARP value) and the result replaces the auxiliary register contents. The addition
takes place in the ARAU, with the immediate value treated as an 8-bit positive integer. All arithmetic
operations on the auxiliary registers are unsigned.

Syntax AND dma Direct addressing

AND ind [,ARn] Indirect addressing

AND #lk [,shift] Long immediate addressing

AND #lk,16 Long immediate with left shift of 16

Operands dma: 7 LSBs of the data-memory address shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register Ik: 16-bit long immediate value

ind: Select one of the following seven options:

* %+ %[ *0+ *0i *BRO+ *BROi

AND dma
1514131211109876543210
011011100dma

AND ind [,ARnN]
1514131211109876543210
011011101ARUN NAR



AND #Ik [,shift]
1514131211109876543210
101111111011 shift

Ik

AND #lk,16

1514131211109876543210

1011111010000001

Ik

Execution Increment PC, then ...

Event(s) Addressing mode

(ACC(15:0)) AND (data-memory address) " ACC(15:0) Direct or indirect
0" ACC(31:16)

(ACC(31:0)) AND Ik  2shift" ACC Long immediate
(ACC(31:0)) AND Ik 216" ACC Long immediate with left shift of 16

Opcode
AND AND With Accumulator

Status Bits None
This instruction is not affected by SXM.

Description If direct or indirect addressing is used, the low word of the accumulator is ANDed with a
data-memory value, and the result is placed in the low word position in the accumulator. The high word of
the accumulator is zeroed. If immediate addressing is used, the long-immediate constant can be shifted.
During the shift, low-order and high-order bits not filled by the shifted value are zeroed. The resulting
value is ANDed with the accumulator contents.

Words Words Addressing mode
1 Direct or indirect
2 Long immediate

Example 1 AND 16 ;(DP = 4: addresses 0200h 1 027Fh)
Before Instruction After Instruction

Data Memory Data Memory

0210h  OOFFh 0210h  OOFFh

ACC 12345678h ACC 00000078h

Example 2 AND *

Before Instruction After Instruction
ARP 0 ARP 0

ARO 0301h ARO 0301h
Data Memory Data Memory

0301h  OFFOOh 0301h  OFFOOh
ACC 12345678h ACC 00005600h

Example 3 AND #00FFh,4

Before Instruction After Instruction
ACC 12345678h ACC 00000670h



APAC Add PREG to Accumulator
Syntax APAC

Operands None
1514131211109876543210
1011111000000100
Execution Increment PC, then ...

(ACC) + shifted (PREG) " ACC

Status Bits Affected by Affects
PM and OVM C and OV
This instruction is not affected by SXM.

Description The contents of PREG are shifted as defined by the PM status bits of the ST1 register (see
Table 71 7) and added to the contents of the accumulator. The result is placed in the accumulator. APAC
is not affected by the SXM bit of the status register. PREG is always sign extended. The task of the APAC
instruction is also performed as a subtask of the LTA, LTD, MAC, MACD, MPYA, and

SQRA instructions.

PM Bits

Bit 1 Bit 0 Resulting Shift

0 0 No shift

0 1 Left shift of 1 bit

1 0 Left shift of 4 bits

1 1 Right shift of 6 bits
Example APAC ;(PM = 01)

Before Instruction After Instruction
PREG 40h PREG 40h
ACC X 20h ACCO AOh
cc

B Branch Unconditionally
Syntax B pma [, ind [,ARn]_] Indirect addressing

Operands pma: 16-bit program-memory addressn: Value from 0 to 7 designating the next auxiliary
register

ind: Select one of the following seven options:

**+ %] *0+ *0i *BRO+ *BROi

B pma [, ind [,LARN]_]
1514131211109876543210
011110011ARUNNAR pma

Execution pma" PC
Modify (current AR) and (ARP) as specified.

Status Bits None
Description The current auxiliary register and ARP contents are modified as specified, and

control is passed to the designated program-memory address (pma). The pma
can be either a symbolic or numeric address.



Example B 191,*+,AR1

The value 191 is loaded into the program counter, and the program continues to execute from that
location. The current auxiliary register is incremented byl, and ARP is set to point to auxiliary register 1
(AR1).

Branch to Location Specified by Accumulator BACC
Syntax BACC
Operands None

Opcode 1514131211109876543210
1011111000100000

Execution ACC(15:0) " PC
Status Bits None
Description Control is passed to the 16-bit address residing in the lower half of the accumulator.

Example BACC ;(ACC contains the value 191)
The value 191 is loaded into the program counter, and the program continues
to execute from that location.

BANZ Branch on Auxiliary Register Not Zero
Syntax BANZ pma [, ind [, ARN]] Indirect addressing

Operands pma: 16-bit program-memory address n: Value from 0O to 7 designating the next auxiliary
register

ind: Select one of the following seven options:

* *+ % *Q+ *0i *BRO+ *BROT

BANZ pma [, ind [,ARN] ]
1514131211109876543210
011110111ARUNNARpma

Execution If (current AR) p O

Thenpma" PC

Else (PC)+2" PC

Modify (current AR) and (ARP) as specified

Status Bits None

Description Control is passed to the designated program-memory address (pma) if the contents of the
current auxiliary register are not zero. Otherwise, control passes to the next instruction.The default
modification to the current AR is a decrement by one. N loop iterations can be executed by initializing an
auxiliary register (as a loop counter) to Ni 1 prior to loop entry. The pma can be either a symbol ic or a
numeric address.

Branch on Auxiliary Register Not Zero BANZ



Example 1 BANZ PGMO ;(PGMO labels program address 0)

Before Instruction After Instruction
ARP 0 ARP 0
ARO 5h ARO 4h

Because the content of ARO is not zero, the program address denoted by PGMO is loaded into the
program counter (PC), and the program continues executing from that location. The default auxiliary
register operation is a decrement of the current auxiliary register content; thus, ARO contains 4h at the
end of the execution.

Before Instruction After Instruction
ARP 0 ARP 0
ARO Oh ARO FFFFh

Because the content of ARO is zero, the branch is not executed; instead, the PC is incremented by 2, and
execution continues with the instruction following the BANZ instruction. Because of the default
decrement, ARO is decremented by 1, becoming i 1.

Example 2 MAR *,ARO ;Set ARP to point to ARO.

LAR AR1,#3 ;Load AR1 with 3.

LAR ARO,#60h ;Load ARO with 60h.

PGM191 ADD *+,AR1 ;Loop: While AR1 not zero,

BANZ PGVI191,* T ARO ;add data referenced by ARO;to accumulator and increment
;ARO value.

The contents of data-memory locations 60hi 63h are added to the accumulator.

BCND Branch Conditionally
Syntax BCND pma, cond 1 [,cond 2]][,...]

Operands pma: 16-bit program-memory address cond Condition
EQACC=0

NEQ ACC p O

LTACC<O

LEQ ACC 30

GTACC>0

GEQ ACC .0

NCC=0

cc=1

NOV OV =0

ovovs=1

BIO BIO low

NTCTC=0

TCTC=1

UNC Unconditionally

Opcode 1514131211109876543210
111000TP ZLVC ZLVC pma

Execution If cond 1 AND cond 2 AND ...
Thenpma" PC
Else increment PC

Status Bits None



Description A branch is taken to the specified program-memory address (pma) if the specified
conditions are met. Not all combinations of conditions are meaningful. For

example, testing for LT and GT is contradictory. In addition, testing BIO is mutually

exclusive to testing TC.

Branch Conditionally BCND
Example BCND PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is

set, program address 191 is loaded into the program counter, and the program
continues to execute from that location. If these conditions do not hold, execution
continues from location PC + 2.

BIT Test Bit
Syntax BIT dma, bit code Direct addressing
BIT ind, bit code [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address bit code: Value from 0 to 15 indicating which bit to
test (see Figure 7i 1)

n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:

**+ % *0+ *0i *BRO+ *BROV

BIT dma, bit code
1514131211109876543210
0100 bit code 0 dma

BIT ind, bit code [ ,ARn ]
1514131211109876543210
0100 bit code 1 ARU N NAR

Execution Increment PC, then ...

(data bit number (157 bit code)) " TC

Status Bits Affects

TC

Description The BIT instruction copies the specified bit of the data-memory value to the TC bit of status
register ST1. Note that the BITT, CMPR, LST #1, and NORM instructions also affect the TC bitin ST1. A
bit code value is specified that corresponds to a certain bit number of the data-memory value. For
example, if you want to copy bit 6, you specify the bit code as 9, which is 15 minus six (157 6).

Bit Numbers and Their Corresponding Bit Codes for BIT Instruction
Bitcode012345678910111213 1415
Bit number 15 14 131211109876543210

mse  Data-memory value LSB
Test Bit BIT
Example 1 BIT Oh,15 ;(DP = 6). Test LSB at 300h
Before Instruction After Instruction
Data Memory Data Memory

300h 4DC8h 300h 4DC8h



TC 0 TC 0

Example 2 BIT *,0,AR1 ;Test MSB at 310h, then set ARP =1

Before Instruction After Instruction
ARP 0 ARP 1

ARO 310h ARO 310h
Data Memory Data Memory
310h 8000h 310h 8000h
TC 0 TC 1

BITT Test Bit Specified by TREG

Syntax BITT dma Direct addressing

BITT ind [, ARnN] Indirect addressing

Operands dma: 7 LSBs of the data-memory addressn: Value from 0 to 7 designating the next auxiliary
register

ind: Select one of the following seven options:

* %+ %1 *0+ *07 *BRO+ *BROi

BITT dma

1514131211109876543210

011011110dma

BITT ind [, ARN]
1514131211109876543210
011011111ARUN NAR

Execution Increment PC, then ...
(data bit number (157 TREG(3:0))) " TC

Status Bits Affects
TC

Description The BITT instruction copies the specified bit of the data-memory value to the
TC bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bit in status register ST1. The bit number is specified
by a bit code value contained in the four LSBs of the TREG.

Bit Numbers and Their Corresponding Bit Codes for BITT Instruction
Bit code (in 4 LSBs of TREG)

0123456789101112131415

Bit number 151413 1211109876543210
mMsB Data-memory value LSB

Test Bit Specified by TREG BITT

Example 1 BITT 00h ;(DP = 6) Test bit 14 of data ;at 300h
Before Instruction After Instruction

Data Memory Data Memory

300h 4DC8h 300h 4DC8h

TREG 1h TREG 1h

TC 0 TC 1



Example 2 BITT * ;Test bit 1 of data at 310h

Before Instruction After Instruction
ARP 1 ARP 1

AR1 310h AR1 310h
Data Memory Data Memory
310h 8000h 310h 8000h
TREG OEh TREG OEh
TC 0 TC 0

BLDD Block Move From Data Memory to Data Memory
Syntax General syntax: BLDD source, destination

BLDD #lk, dma Direct with long immediate source

BLDD #lk, ind [, ARn] Indirect with long immediate source

BLDD dma, #lk Direct with long immediate destination

BLDD ind, #lk [, ARn] Indirect with long immediate destination

Operands dma: 7 LSBs of the data-memory address n: Value from 0 to 7 designating the next auxiliary
register

Ik: 16-bit long immediate value

ind: Select one of the following seven options:

**+ %7 *0+ *07 *BRO+ *BROi

BLDD #lk, dma
1514131211109876543210
101010000dma Ik

BLDD #lK, ind [, ARN]
1514131211109876543210
10101000 1ARUN NAR Ik

BLDD dma, #lk
1514131211109876543210
101010010dmalk

BLDD ind, #Ik [, ARN]
1514131211109876543210
101010011ARUN NAR lk

Block Move From Data Memory to Data Memory BLDD
Assembly Language Instructions 7-49

Execution Increment PC, then ...

(PC)" MSTACK

k" PC

(source) " destination

For indirect, modify (current AR) and (ARP) as specified
(PC)+1" PC

While (repeat counter) p O:

(source) " destination

For indirect, modify (current AR) and (ARP) as specified
(PC)+1" PC

(repeat counter) i 1" repeat counter

(MSTACK) " PC

Status Bits None



Description The word in data memory pointed to by source is copied to a data-memoryspace pointed to
by destination. The word of the source and/or destination space can be pointed to with a long-immediate
value or by a data-memory address.Note that not all source/destination combinations of pointer types are
valid.

BLDD will not work with memory-mapped registers.RPT can be used with the BLDD instruction to move
consecutive words in data memory. The number of words to be moved is one greater than the number
contained in the repeat counter (RPTC) at the beginning of the instruction.

When the BLDD instruction is repeated, the source (destination) address specified by the long immediate
constant is stored to the PC. Because the PC is incremented by 1 during each repetition, it is possible to
access a series of source (destination) addresses. If you use indirect addressing to specify the
destination (source) address, a new destination (source) address can be accessed during each repetition.
If you use the direct addressing mode, the specified destination (source) address is a constant; it will not
be modified during each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.

Interrupts are inhibited during a BLDD operation used with the RPT instruction.

When used with RPT, BLDD becomes a single-cycle instruction once the RPTpipeline is started.

BLDD Block Move From Data Memory to Data Memory

Example 1 BLDD #300h,20h ;(DP = 6)

Before Instruction After Instruction
Data Memory Data Memory
300h Oh 300h Oh
320h OFh 320h Oh

Example 2 BLDD *+,#321h,AR3

Before Instruction After Instruction
ARP 2 ARP 3

AR2 301h AR2 302h
Data Memory Data Memory
301h 01h 301h 01h
321h OFh 321h 01h

Block Move From Program Memory to Data Memory BLPD
Syntax General syntax: BLPD source, destination

BLPD #pma, dma Direct with long immediate
source
BLPD #pma, ind [, ARnN] Indirect with long immediate source

Operands pma: 16-bit program-memory address dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register

ind: Select one of the following seven options:
* %+ % *0+ *07 *BRO+ *BROi

BLPD #pma, dma
1514131211109876543210
101001010dmapma

BLPD #pma, ind [, ARN]
1514131211109876543210



101001011ARUNNARpma

Execution Increment PC, then ...

(PC)" MSTACK

pma" PC

(source) " destination

For indirect, modify (current AR) and (ARP) as specified
(PC)+1" PC

While (repeat counter) p O:

(source) " destination

For indirect, modify (current AR) and (ARP) as specified
(PC)+1" PC

(repeat counter) i 1" repeat counter

(MSTACK) " PC

Status Bits None

BLPD Block Move From Program Memory to Data Memory

Description A word in program memory pointed to by the source is copied to data-memory

space pointed to by destination. The first word of the source space is pointed to by a long-immediate
value. The data-memory destination space is pointed to by a data-memory address or auxiliary register
pointer. Not all source/destination combinations of pointer types are valid.

RPT can be used with the BLPD instruction to move consecutive words. The number of words to be
moved is one greater than the number contained in the repeat counter (RPTC) at the beginning of the
instruction. When the BLPD instruction is repeated, the source (program-memory) address specified by
the long immediate constant is stored to the PC. Because the PC is incremented by 1 during each
repetition, it is possible to access a series of program memory addresses. If you use indirect addressing
to specify the destination (data-memory) address, a new data-memory address can be accessed during
each repetition. If you use the direct addressing mode, the specified data memory address is a constant;
it will not be modified during each repetition. The source and destination blocks do not have to be entirely
on chip or off chip.

Interrupts are inhibited during a repeated BLPD instruction. When used with RPT, BLPD becomes a
single-cycle instruction once the RPT pipeline is started.



Space vector PWM.

Squirrel cage motors, like all induction machines, are asynchronous machines with speed depending upon
applied frequency, pole number, and load torque. In order to use th@hssdg ac motor as an adjustable speed
device, it is necessary to control andustl the frequency of the thrgdhase voltages applied to its terminals. The
operating speed of the motor is determined by the following relationship

)1(12Gs P fN(1L1.1)
whereN is the shaft speed in rprhis the supplied frequency in HB,is the numier of poles, and is the operating
slip.

A switching power converter can be used to control both the supplied voltage and frequency. Consequently,
higher efficiency and performance can be achieved. The most common control principle for inductionabéors i
constant volts per hertz (V/Hz) principle, which will be explained in the next section.

Principle of Constant V/Hz Control for Induction Motors

For us to understand the V/Hz control, we will first assume that the voltage applied to -phhiseea
induction motor is sinusoidal, and neglect the voltage drop across the stator resistor. At steady state the machine
terminal voltage is given by
s & K&
or
s & E\E

where ang are the phasors of stator voltage and stator fluxMamch d s are t heir VEeEfpect i ve
fWWo 21=as
It follows that if the ratiov/f remains constant with the changdof t hen s al so remains const g
independent of the sulypfrequency.
In actual implementation, the ratio between the magnitude and frequency of the stator voltage is usually based on the
rated values of these variables, also known as motor ratings. However, when the frequency and voltage are low, the
voltage dop across the stator resistance cannot be neglected. At frequencies higher than the rated value, to avoid
insulation break, the constavitf principle has to be viotad.
Space Vector PWM Technique
Space Vector PWM (SVPWM) refers to a spetgghnique of determining the switching sequence of the upper
three power transistors of a thrgkase voltage source inverter (VSI). It has been shown to generate less harmonic
distortion in the output voltages or current in the windings of the motor 848WM provides more efficient use
of the dc bus voltage, in comparison with the direct sinusoidal modulation technique.
The structure of a typical thrgghase voltage source inverter is shown in The voltagesyd/ and tare the output
voltages applie to the windings of a motor. Q1 through Q6 are the six power transistors which are controlled by a,
a6, b, bd, ¢ and c¢cb6 gating signals and shape the outpuf
b, and c are 1, the corresponding wer transi stor is switched off, i.e., t
off
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Figure 11.2 Thre@hase power inverter supplying an induction motor.

Stator Voltages in the {d) Frame

Assumingq andd are the horizontal and vertical axes of the stator coordinate frankgttransformation given in
(11.6) can transform a thrgmase voltage vector into a vector in thg coordinate frame. This vector represents
the spatial vector sum of the thrpkase voltage. The phase voltages corresponding to the eight combinations of
switching patterns can be mapped intodkgplane by the sam@ g transformationThis mapping results in 6 nen
zero vectors and 2 zero vectors. The-gero vectors form the axe$ a hexagonal as shownhig. 11.3 The angle
between any two adjacent naaro vectors is G0 The 2 zero vectors are positioned at the origin and apply zero
voltage to a motor. The group of the 8 vectors are referred to as the basieesgiaceand are denoted\by
throughV . Thed-q transformation can be applied to the reference a, b, and c voltages to obtain the r&ference
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Space Vector PWM Control for Induction Motors with the LF2407 R&SP

Approximation of Outpt with Basic Space Vectors

The objective of the space vector PWM technique is to approximate the reference voltag® bg@amombination

of the eight switching patterns. One simple means of approximation is to require the average output vodage of th
inverter (in small period) to be the same as the averag¥ of the sameutoutperiod

For every PWM period, the desired reference voltage can be approximated by having the power inverter in a
switching pattern of/ andV for T andT periods of time, respectively. Since the sum of and is less than or equal to

, the inverter needs to hav® &000)V or (111)) pattern for the rest of the period.

The reference voltage vectdiis obtained by mapping the desired thptmse output voltages to theyglane

through the e transform. When the desired output voltages are in the form ofdimesoidal voltages with a

12mub phase shift between them becomes a vector rotating around the origin oftHogplane with a frequency
corresponding to that of the desired thpdase voltages. The envelope of the hexagon formed by the basic space
vectors, is the locus of maximuvh. Therefore, the magnitude @fmust be limited to the shortest radius of this
envelope becaudéis a rotating vector. This gives a maximum magnitudeuofit outou2dcV for V. The maximum

root mean square (rms) values of the fundamentatdidime and lineto-neutral output voltages ase? and @cV .
Notice that these values are 32 times higher than what a standard sinusoidal PWM technique can generate.
An example of a symetric space vector PWM waveform is showiris assumed that the reference volt&gees in
Sector 0, which is bordered by vectdfandV. oud6
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Implementation of this switching scheme with TMS320C24x/F24x involves two steps:

1) Initialization of the compare units and selected GP Timer for symmetric PWM



DSP Implementation

the space vector switching scheme discussed previoustyplismented on a LF2407 DSP processor. The-DSP
based algorithm is interrupt driven, meaning that the functionality of the code depends on a hardware interrupt, in

this case the Timer 1 underflow interrupt. a flowchart depicting the algorithm implementieel bF2407 DSP
processor.

The major features of this DSP implementation are:
w 32-Bit integration to obtain the phase of the reference voltage vector

w Quarter mapping to calculate sine and cosine functions

w Sectorbased lookup table for thedecomposition matrix

1 Sectorbased lookup table for the channel toggling order or Action Control Register reload pattern



D

¥

System configuration

¥

Initialize peripherals:
/O pins
GP Timers
PWM
Int control

v

Initialize variables
Reset flags

v

Clear pending ints
Enable interrupt
Enable GP Timer

C PWM ISR )
!

Integrate speed to get
phase THETA of U

v

Determine quadrant
of U . and perform
quarter mapping

¥

Obtain SIN(THETA)
and COS(THETA)

!

Calculate d-q
components of
u

aut

!

Determine sector of
U-_'ILIt

v

out

Background tasks:
Update set F
VIHz profile

Update display

v

Reset watchdog

|

Calculate
T,.T,&T,
{as comp values)

v

Determine toggling
sequence
Load compare
registers

v

Enable interrupt
Return

Space vector PWM algorithm flowchart.




Introduction to DSP
Signal
A signal is any physical quantity that carries information, and that varies with time, space, or any
other independent variable or variables. Mathematically, a signal is defined as a function of one or
more independent variables.
17 Dimensional signals ostly have time as the independent variable. For example,
Eg.,S()=20¢
217 Dimensional signals have two independent variables. For example, imagé 3 signal whose
independent variables are the two spatial coordinates (x,y)
Eg., &(t) = 3x+ 2xy + 10y
Video is a 3 dimensional signal whose independent variables are the two spatial coordinates, (X,y)
and time (t).
Similarly, a 3i D picture is also a B D signal whose independent variables are the three spatial
coordinates (x,y,z).
Signals S (t) and S(t) belong to a class that are precisely defined by specifying the functional
dependence on the independent variables.
Natural signals like speech signal, ECG, EEG, images, videos, etc. belong to the class which cannot
be described furtionally by mathematical expressions.

System

A system is a physical device that performs an operation on a signal. For example, natural signals are
generated by a system that responds to a stimulus or force.

For eg., speech signals are generated tmyrfg air through the vocal cords. Here, the vocal cord and

the vocal tract constitute the system (also called the vocal cavity). The air is the stimulus.

The stimulus along with the system is called a signal source.

An electronic filter is also a systendere, the system performs an operation on the signal, which has
the effect of reducing the noise and interference from the desired informdttearing signal.

When the signal is passed through a system, the signal is said to have been processed.

Processing

The operation performed on the signal by the system is Gilgdl ProcessingThe system is
characterized by the type of operation that it performs on the signal. For example, if the operation is
linear, the system is called linear system, and so on.

Digital Signal Processing

Digital Signal Processing of signals may consist ofimber of mathematical operations as specified
by a software program, in which case, the program represents an implementation of the system in
software. Alternatively, digital processing of signals may also be performed by digital hardware
(logic circuity. So, a digital system can be implemented as a combination of digital hardware and
software, each of which performs its own set of specified operations.



Basic elements of a Digital Signal Processing System

Most of the signals encountered in realrld are analog in nature .i.e., the signal value and the
independent variable take on values in a continuous range. Such signals may be processed directly by
appropriate analog systems, in which case, the processing isaraled signal processingHere,

both the input and output signals are in analog form.

These analog signals can also be processed digitally, in which case, there is a need for an interface
between the analog signal and bigital Signal Processor This interface is called th&nalogi to

1 Digital Converter (ADC), whose output is a digital signal that is appropriate as an input to the
digital processor.

In applications such as speech communications, that require the digital output of the digital signal
processor to be given to thear in analog form, another interface from digital domain to analog
domain is required. This interface is called Bhgital 7 to i Analog Converter (DAC).

In applications like radar signal processing, the information extracted from the radar signa§ such

the position of the aircraft and its speed are required in digital format. So, there is no need for a DAC
in this case.

Advantages of Digital Signal Processing over Analog Signal Processing

1. A digital programmable system allows flexibility in reconfiguring the digital signal processing
operations simply by changing the program.

Reconfiguration of an analog system usually implies a redesign of the hardware followed by testing
and verificaion.

2. Tolerances in analog circuit components and power supply make it extremely difficult to control
the accuracy of analog signal processor.

A digital signal processor provides better control of accuracy requirements in terms of word length,
floating i point versus fixed point arithmetic, and similar factors.

3. Digital signals are easily stored on magnetic tapes and disks without deterioration or loss of signal
fidelity beyond that introduced in A/D conversion. So the signals become transpartdldan be
processed offline.

4. Digital signal processing is cheaper than its analog counterpart.

5. Digital circuits are amenable for full integration. This is not possible for analog circuits because
inductances of respectable value (eH or mH) req
6. The same digital signal processor can be used to perform twaoiopetay time multiplexing,

since digital signals are defined only at finite number of time instants.

7. Different parts of digital signal processor can work at different sampling rates. 8. It is very difficult
to perform precise mathematical operationsignals in analog form but these operations can be
routinely implemented on a digital computer using software.

Disadvantages of Digital Signal Processing over Analog Signal Processing

1. Digital signal processors have increased complexity.

2. Signa$ having extremely wide bandwidths require fasamplingi rate ADCs. Hence the
frequency range of operation of DSPs is limited by the speed of ADC.

3. In analog signal processor, passive elements are used, which dissipate very less power.



In digital signal processor, active elements like transistors are used, which dissipate more power.
The above are some of the advantages and disadvantages of digital signal processing over analog
signal processing.

Discretei time signals

A discrete time signal ia function of an independent variable that is an integer, and is represented by
x[n], where n represents the sample numédsed fiot the time at which the sample occurs).

A discrete time signal is not defined at instants between two successive samplexher words,

for noni integer values of nBut, it is not zero, if n is not an integer).

Discrete time signal representation

The different representations of a discrete time signal are

1. Graphical Representation

-4-3-2-1012343-2-101234samlg number nDT signal x[n]Graphical Representation
2. Functional representation

x[£]={1, £€=1, 234/Q¢£ 8=2,0,Q0 i'MD Q

3. Tabular representation
N

x[n]

4. Sequence representation

x[n]={-,----,0,0,1,4,1,0,0,,-,-,-}

the above is a representation of a twsded infinite duration sequence, and the symbol indicates the
time origin (n= 0). If the sequence is zero for n < 0, it can be represented as
x[n]1={1,41,2;,-,-,-}

Here the leftmost point in the sequence is assumed to be the time origin, and so the symbol is
optional in this case.

A finite duration sequencean be represented as

x[n]={3,-1,-2,5,0, 4;1}

This is referred to as ai7point sequence.

Elementary discrete time sequences
These are the basic sequences that appear often, and play an important role. Any arbitrary sequence
can be represented in terms of these elementary sequences.

1. Uniti Samplesequencét i s denoted by U0 [ n ]. 't i s defi
a[e]={1,f¢ ie=0
0i¢ 1B
It is also referred as discrete time impulse.
It is mathematically much | ess complicated than

everywhere exceptatt = 0. Att =0, it is defined in terms of its area (unit area)} bytitso
absolute value.
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2. Unit step sequence

It is denoted by u [ n ] and defined@g]= {1, Q¢ 4 T
0, £<0 }

3. Unit ramp sequence

It is denoted by Y n ], and is defined as
oi [e]={¢g, Q¢ & T
0, Q¢ 8 <0}

4. Exponential sequence

a.lf aisreal, x[n] is a real exponential.
It is defined a$¢] = 3 "Q€ @ &G
a>1
a<l
b. If a is complex valued, then a candgressed as a 5 reso that x[n] can be represented as
-1<a<O0
a<-1
[£]=i¢re=[cos¢& -+ Bine }-
So, x [ n ] is represented graphically by plotting the real part and imaginary parts separately as
functions of n, which arex[£] = it cose —

wde] =iesing —

If r < 1, the above two functions are damped cosine and sine functions, whose amplitude is a
decaying exponential
If r = 1, then both the functions have fixed amplitude of unity.
If r > 1, then they are cosine and sine functions respectively, with exponentially growing amplitudes.
Alternatively, x [ n ] can be represented by the amplitude and phase functions:
Amplitude function, §] = |[€]| =1 ¢
Phase functiom [& oeJ=¢ —
Although the phase functioH&] = ¢ s a linear function of n, it is defined only over an interval of
2" (since it is ani"&dgl e).ri .Oesdidbacrvaecr$ oanmuditnitpelrevsa
n[¢] before plotting .i.e., we plat[¢] modulo 2 instead of [£]. This results in a piecewise linear
graph for the phase function, instead of a linear graph.



Analog signal:
A continuoustime signal with a continuousmlitude is usually called samalog signal. A

speech signal is an example of an analog signal.

:
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A with continuous valued amplitudes is called a sampledata signal. digital signal is thus a
guantized sampleddata signal.

Discrete time signal :

——— e e e e e o o o o o o o e e e

Classification of signals
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One dimensional and two Dimensional signal
} 1D signals are a function of a singlendependent variable.

}  The speech signal is an example of a 1 D signal where the independent variable is time.

} 2D signals are a function of two independent variables.

} Animage signal such as a photograph is an example of a 2D signal where the two

independent variables are the two spatial variables.

Random signal

} asignal that is generated in a random fashion and can not be predicted ahead of time is

called a random signal

} The 6shhhhé sound is

a good exa
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Classification of Discretei Time Sequences:
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1. Energy Signals and Power Signals

The energy of a signal x[n] is defined@sf E]°De=1 D
I f this energy is finiteEnemgySgna, 0 < E < B, then
For signals having infinite energy, the average power can be calculated, which is defined as
Oalimsopl/20+1+ §]l2oe 6 & |
O &lim 5o p1/ 20 +1'Q,
0" M i B = signal energy of x[n] over the finite intervidll < n <N, .i.e.,
O=limbY DOy
For signals with finite energy .i.e., for Energy Signals, E is finite, thus resulting in zero average
power. So, for energy signalsvR0.
A Signals with infinite energy may have finite
and nonero, such signals are callPdwer Signals
9 Signals with finite power have infinite energy.
A I'f both energy, Eavo@assignaleate Infinite sthem thiessigrealdseneitipeoan e r P
energy signal nor a power signal.
A Per i od iveinfirité emergy.Tiseir &average power is equal to its average power over one
period.
A A signal cannot both be an energy signal and
A Al practical signals are energy signal s.

2. Periodic and aperiodic signals

A signal x[n] is peridic with period N if and only if§+0]=¢j¢]} €

The smallest N for which the above relation holds is calleduth@amental period.

If no finite value of N satisfies the above relation, the signal is saidapdxédic or non i
periodic.

The sunmof M periodic Discreté time sequences with periods,NNz, e w, is &lways periodic
with period N wherg)=0 0 (01,0 2h & &)

3. Even and Odd Signals

A reali valued discreté time signal is called aBven Signalif it is identical with its reflection
about the origin .i.e., it must be symmetrical about the vertical@tis=w ¢ ¢!

A reali valued discreté time signal is called a®@dd Signd if it is antisymmetrical about the
vertical axis.of€ w ¢ ¢!

From the above relation, it can be inferred that an odd signal must be zero at time origin, n = 0.
Every signal x[n] can be expressed as the sum of its even and odd compdadniafe ]+ ai[€]
Wherearf¢]= dj¢]+ o €]2 w[e]=afe @ €]2

Product of even and odd sequences results in
A Product of two odd sequences results in an ev
A Product of two evenegeseecguences results in an e

4. Conjugate Symmetric and Conjugate Antisymmetric sequences



A complex discreté time signal isconjugatei symmetricif [E]=w €& €&

And conjugatei antisymmetric if [€ w ¢ ¢!

Any complex signal can be expressed as the dwargugate’ symmetric and conjugaie
antisymmetric partiE]= ab[E]+ ab €]

Where[e]= o]+ w  €]2

And[¢]=af¢ @ £]2

5. Bounded and Unbounded sequences

A discretel time sequence x[n] is said to beundedif each of its samples is of finite magnitude
de,|[¢ shabD! €

For example,

The unit step sequence u[n] is a bounded sequence,

but the sequence nu[n] is an unbounded sequence.

6. Absolutely summable and square summable sequences
A discreteg time sequence x[n] is said to lsolutely summablef,t+ €]|x¢ « <K
And it is said to bssquare summablef + g]j2pt o<D (= g»] €] ) £n

1.Discretei Time Systems

A system accepts an input such as voltage, displacement, etc. and produces an output in response to
this input. A system can be viewed as a process that results in transforming input signals into output
signals.

A discretel time system can be representedas €] € i[€]= "uiE]}

2. Time1 Variant and Time T Invariant Systems

A system idime T invariant if its characteristics and behavior are fixed over time .i.e., aitigtnft
in input signal causes an identitiahe i shift in output signal.

Qe 1oMéEeE €0 ofE €0 &b

If the above the relation is not satisfied, then the syst¢imési variant.

1.Determine if the following systems are time invariant or time variant.
(a) yIn] = x[-n]
Solution:
(a) Now if we delay y[n] by k units in time, we obtain
y[n,k] = H[x(n -k)]
= X[-(n-K)]
= X[-n+k] (7
The response to this system to xff] is
yIn-k] =z Hx(n)]
= X[-n-K] (8)
which is different from (7). This means the system is timeariant.
2. Determine if the following systems are time invariant or time variant.



(@) y[n] = &t
Solution:
(a) The response to this system to xfR] is
y[n.K] = H[x(n-k)]

= ax[n-k] (9)

Now if we delay y[n] by k units in time, we obtain

y[n-k] = z* H[x(n)]
= gk (20)
(9)=(10)
which is same from (D). This means the system is timivariant.

3. Causal and Nori causal Systems

A system icausal or noni anticipatory or physically realizable, if the output at any timeon
depends only on present and past inputs (1),<ont not on future inputs.

In other words, if the inputs are equal upto some tiopéhe corresponding outputs must also be
equal upto that timeonfor acausal system.

Let x(n) = present input and y(n) = present output

x(n-)x(n2) , €éééé. . are past inputs
yin-l),yin2) , éé€éé. . are past outputs
The output of a causal system
y(n) = Fx(n),x(rl),x(n2) , é é éée. . ,-1)|rE2n), ,éye(ére . . ] .

1.Determine if the systems described by the followmmut-output equations are causal or
noncausal.

(@) y[n] = x[n]7 x[n-1] (b) y[n] = ax[n] (c)

(d) yIn] = x[n] + 3x[n+4] () y[n] = x[A

(f) yIn] = x[-n]

Solution: The systems (a), (b) and (c) are causal, others ai@anoeal.

() y[n] = x[n]7 x[n-1]

Solution:

When n=0,y(0) =x(0x(-1) The response at n=0, y(0) depends on the present input x(0) and past
input x(-1)

When n=1,y(1) =x(:x(0) The response at n=1, y(1) depends on the present input x(1) and past
input x(0)

From the above anais, any value of n the system output depends on present and past inputs. Hence
the system is causal.

(b) y[n] = ax[n]

Solution:
When n=0,y(0) =ax(0) The response at n=0, y(0) depends on the present input x(0)
When n=1,y(1) =ax(1) The reponse at n=1, y(1) depends on the present input x(1)

From the above analysis, any value of n the system output depends on present and past inputs. Hence
the system is causal.

© yin] = & K]

k=- ©



Solution:
When n=0,

y(0) = e x2)+x(-1)+x(0)
When n=1,

y(1) =

= é x4)+x(-1)+x(0)+x(1)
From the above analysis, any value of n the system output depends on present and past inputs. Hence
the system isausal.

(d) y[n] = x[n] + 3x[n+4]

Solution:

When n=0,y(0) =x(0)+3x(4) The response at n=0, y(0) depends on the present input x(0) and
futureinput x(4)
The response at n=1, y(1) depends on the present input x(1) and
future input x(5)

From the above ahgis, any value of n the system output depends on present and future inputs.

Hence the system is noncausal.

4. Stable and unstable systems

A stable systems one in which, a bounded input results in a response that does not diverge. Then
the system is said to ®BO stable.

For a system, if the input is bounded €8x s <D/l €

And if the corresponding output is also bounded .i&., ) &< P £

Then the system is said to BEBO stable.

(a)Y(n)= cos[x(n)] check whether the system is stable or not

Solution
The impulse response of the system must be absolutely summable
The impulse response is obtained when impulse input is sigras applied
When x(n)=t(n) , y(n)=h(n)
Hence impulse response of the given system

h(n) = cosfi(n)] WKT, t(n) = 1; when n=0

=0; when n [ O

When n=0, h(0) =cos 20.5403
When n=1, h(1) =cos 0 =1
When n=2, h(2) =cos 0 =1

When n= D, h(b) = cos 0 =1
hnméé. +1+10.5403+1+1+eéeéé&=b
the stability condition is not satisfied, hence the system is Unstable

5. Memory and memoryless systems



A system is said to possasgmory, or is called alynamic system if its output depends on past or
future values of the input.
If the output otthe system depends only on the present input, the system is saichéonoeyless.
Static versus Dynamic Systems

A discrete time system is called static or merdess if its output at any instant n depends at
most on the input sample at the same timénbtion the past or future samples of the input.

In any other case, the system is said to be dynamic or to have memory.

Examples: y[n] = 4n] is a memoryless system, whereas the following are the dynamic systems:
(a) y[n] = X[n] + x[n-1] + x[n-2]
(b) y[n] = 2x[n] + 3x[n4]

1.Compute the signal energy and signal power for
x[nT] = (-0.5y'u(nT), T =0.01 seconds
solution:
2 2

N o
E,=m T A [x(nT) =001 |- 05)°
Y n=0

o 2n o
=0.013 (- 05) =0.013 0.25"
n=0

n=0

=0.011+0.25+(0.25] +(0.25 +.....]

- 00l =1/75
1- 0.25

Sampling Theorem:

The time interval T between successive symbols is calle8aheling Periodr Sampling interval
and its reciprocal 1/T =¢ks called theSampling Rat¢samples per second) or tBampling
Frequency(Hertz).

t=nT=—
S
A relationship between the time variables t and n of continuous time and discrete time signals
respectively, can be obtained as
If x(t) is bandlimited with no components of frequencies greater thaHg, then it is completely
specified by samples taken at the uniform rate BFrnaxHz.

The minimum sampling frequency must be at least twice that of the highest frequency component
present in the original signalhe minimum sampling rate or minimum sampling frequengy, F

2Fmax, is referred to as the Nyquist Rate or Nyquist Frequeheycdrresponding time interval is
called the Nyquist Interval.



Sampling process
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PREREQISTING DISCUSSION ABOUT Z TRANSFORM

For analysis of continuous time LTI system Laplace transform is used. And for analysis of
discrete time LTI system z transfoimused. Z transform is mathematical tool used for
conversion of time domain into frequency domain (z domain) and is a function of the complex

valued variable Z. The z transform of a discr
X(z) =z% x (n)

zTransformbé&(tyansform is an infinite power
variesfromb t o D. But i1t is useful for values of z
which f (z) i1s finite and lie within the regi

ADVANTAGES OF Z TRANSFORM

1. The DFT can be determined by evaluating z transform.

2. Z transform is widely used for analysis and synthesis of digital filter.

3. Z transform is used for linear filtering. z transform is also used for finding Linear convolution,
crosscorrelation and autoorrelations of sequences.

4. In z transform user can characterize LTI system (stable/unstable, causzdizsdl) and its
response to various signals by placements of pole and zero plot.

ADVANTAGES OF ROC(REGION OF CONVERGENCE)

1. ROC is going to decide whether system is stable or unstable.
2. ROC decides the type of sequences causal ecaumsal.

3. ROC also decidegniite or infinite duration sequences.

SOLUTION OF DIFFERENTIAL EQUATION

One sided Z transform is very efficient tool for the solution of difference equations with nonzero
initial condition. System function of LSI system can be obtained from its differetmgation.
Z{x(n-1) } =-1)2"(®r(esided Z transform) n=0

,,,,,,

Z{x(n-1) } = 21 X(2) + x(-1)

Z{x(n-2) } = 2?2 X(z) + Z x(-1) + x(-2)

Similarly Z{ x(n+1) } = z X(z)- z x(0)

Z{ x(n+2) } = 22 X(2) - z* x(0) + x(1)

1. Difference equations are used to find out the relation between input and output sequences. It is
also used to relate systdonction H(z) and Z transform.

2. The transfer function H(Y) can be obtained
Magnitude and phase response plot can be obt a



INTRODUCTION TO DFT:
Frequencyanalysis of discrete time signals is usually performed on digital signal processor,
which may be general purpose digital computer or specially designed digital hardware. To
perform frequency analysis on discrete time signal, we convert the time domans=tuan
equivalent frequency domain representation. We know that such representation is given by The
Fourier transform X(ejw) of the sequence x(n). However, X(ejw) is a continuous function of
frequency and therefore, It is not a computationally connwénépresentation of the sequence.
DFT is a powerful computational tool for performing frequency analysis of discrete time signals.

FFTDecimation in frequency method

} The decimation of the frequency domain sequence can be continued Until the results
sequence are reduced to twoint sequences.

} The entire process of decimation involves stages of decimatidreguency FFT where m =
log,N. algorithm requireShe N/2 computation of the-point log,N complex multiplications
DFT via the complex additions.

l l

d > 0 A=a+Db

l w n
b L B=(a-b) W'

Fig 2.13 : Basic signal flow graph
or butterfly computation of DIF - FFT.
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pauned wsimg oquations (2.67) & (2.68) respectively.

g ()= x(n) + x(n+N72)

« x(n) + x{atd) forn=0,1,2,3
Whea n = 0, g (n) = g (0) = x{0} + x(4) ol
Whenn = 1, g ()= g (1) = x(1) + x(5)
When 8 = 2, g,(n) = §,(2) = x(2) + x(6)
Whenn = 3, g(n) = g,(3) = x3) + x(T) o0

gAn) = i-tm - *-' -';-]] we s

« [um - win + H]W; ; foen = 012 %

| : g

ul)

o B11)
o 53}

g n

When 5 = 0, g(n) = 8,(0) = [x{0) - AW )
Whenn = 1, g,(n) = g{1) = [x(}) - MW,

When n = 2, g,(n) = g2) = [x(2)- aew,; <
When 8 = 3, g(n) = £3) = [x3) - (MW, Fig L14: First stage of bumerfTy for

mmduwg(u)dqw st tdnd
e cdasinad by the bunerfly mm.ﬁz.l“




From equation (2.79) we gl 2004
d (o) = gim * B (NS
- gn) = g0+ 2K form~ 0}
Wheos n = 0,4, (m) = d,(0) = g£0) + 212 2
Whean= 1,4 (@ =d (=g(l)* g3
From oqeation (1.79) we get, o
d_An) = [g,(m) - g (n+NE)) W_*

i

= 18,(n) g =)W forn = 0.1 y o0
When n =0, d_{n) = d,£0) = [g,(0) - g (W] &1} —
Whean = l.d,,(n)-dd(ll-(l.(l)-t.ﬂ)lw.' .
From equatvon (2.80) we pet i T A
d_(n) = g,(n) + g (a~N/4) i) 'n'; - &1
-"(.)Q‘,(mz);ful-o.l 4
When n = 0, d, (s) = d,,(0) = [g£0) + ££2)] i mogm
When s = 1, d, (n) = d, (1) = [(1) = ££3)]
From equation (1.830) we get
din) = [g,in) - gl NEIW " = [gin) - gAn=2)WS"; forn=10,]
When n =0, d [n}=d (00 = [gi0) - gA21]W° | 1 |

Whenn = 1, dyfn) = (1) = (1) - IV, '“"'E : —u
The sequences d, (n). d, (), d_(n}, d,{n) are 4.0 v -

wained by the bunesfly operation shown in fig 115,



From equation (2 80) we get

d. (n) = [,(n) - gn-N4)W,* = [g,0) - g{n=2)]W'; forn = 0,]
Whenn=0,d_(n) =d (0) = [g0) - g D)W £ , e
When 8= 1, dn) = d,(1) = [g,(1) - g )W, '}< &
The sequences 4, (n), d, (), & (n), d,n) are ¢ (o=l —

obuined by the bunerfly operation shown i fig 2.15.

Third Stage of computation 4 e\
The 2-point DFTs of the 2-pomt sequences are : w'
camputed a5 shows beiow tneey bt V¥

DFT{d, o} = D, k)= S, (o)W sfork =

st e
Waen k=, D, (0}« 14, (] G X " :w

'%M’%(fl : '

Wheak +L D, 1) £, e]¥ o v
~d J0W +, (1w, i e
"‘U“]'Q.('w

Fig2.16; Mmdw""
B-point DFT vis OIF
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Fk!.":&gu!ﬁm graph or butierfly diagram for the

Compute the 8 point DFT fa(n)={2,2,2,2,1,1,1,1} Using HBIT algorithm

Step 1: Basic Butterfly structure.

1 | A=a+b WN"

b . B=a-b W}




Step2 : Find the twiddle &or

Step 3: arrange the given sequence in bit reversed order

The given sequence is first arranged in the bit reversed order.

The sequence x(n) The sequence x(n) in
in normal order bit reversed order
x(0) =2 x(0) =2
x(1)=2 x(4) =1
x(2) =2 - x(2)=2
x(3) =2 x(6) =1
x(4) = | v x(1)=2
x(5) =1 x(5) =1
x(6) = | x(3) =2

x(7) =1 x(7) =1



Step 4:
First stage computation:

- >4 1 =3

(O —2

2—1=1

x{<3)—1 >

Z2+1=3

x(2)=—2

2—1=1

x(6)—1

I
= -
o;::>x<::i:
>
— 1
x(1)—2 < e 24+ 1—3
X
x(5)—=1 — 2—1—1
. 1
P
1
1
—
—2

2+1=3

x(3)=2

2—1==1

x(7)=1



Step 5: Second stage computation

3 3+3=6

; 1+1x(—j) = 1-j

3 3-3=0

1 . ke
l-lX(-J) — l*,

3 3+3=6

i .
l"’lX(-—J) P "’j

2 3-3=0

1=1x(—j) = 14]



Step 6 : Third stage computation

T ssapT WU Shown belows

bt F 25 1T

e peit—jpt . 1 '
"T: .:". =~ ) l"‘" _'
e s w3 v3 <2 4‘7
ON]n:-‘H’.x‘:. - HAIL « X1
. 1
”’.-"“’-"-—~'|—-n-.-, L-'~ ’1-.'
va vi va v "E . "j
“l=jMla=Xin

-1 ;J i - b 4
OO —f Pt X184 - N3l x5

i ,‘i -
I i Vi iv’-; -1 - g
Ry- - LR L TN | Asloleitnatt o¢.t e
-z 'R L R P by o+

e - e ..

il QAAGw XIS

The Output sequence of third stage computatign
{12,12j2.414, 0 ,30.414, 0 ,1+j0.414, 0 ,1+j2.414There fore
X(K)={12,42.414,0,1j0.414,0,1+j0.414,0,1+j2.414}

2.Using the 8 point redi® DITFFT algorithm to nd the DFT of the sequence
x(n)={0.707,1,0.707,.707,-1,-0.707,0}

Step 1: Basic Butterfly diagram

a l l Afa 2 b “’Nk

b N B=a-b WN“




Step 2: Find the twiddle factor.

he phase factors involved in third stage computation are WAW W2 and W
Y T4 " .

)
W,=¢ ‘el

Combing Two-4 point DF TS

Combine Z2point OF TS
X0 =0

Z-paint OFT . 0 = -0
o = 0T ] H i
L : L i Fil=1414-71.414 . £ X(1)=2.B284 - j21HIEY

x4} =TT

X{2)=0

i F(3)=1414+ jlAI W Porim=-o

FPTPEIRIFETRIF. PRSI

Combine 2-poirt DFTs .

- ;
W :
F.{X} =0 N i (=10
1
e e |/ \ E N i
F [5}=2 " ; X(T)=2EFEd + j2.RIRA

w2} =0.707

)= 0707

xilp=1

x5} =~I

nii=0

o Th=




Multiple choice questions with answers

1.The complex valued twiddle factorMgan be represented as

A gl 2 IN
B. @i 2’
C. gl 2 kN
D. @i 2° N

2.The twiddle factors are multiplied before the add and subtract operations in
A. DIT radix-2 FFT
B. DIF radix-2 FFT
C. Inverse DFT
D. None of the options

3.In DIF butterfly diagram thewiddle factoris multiplied add and
subtract operations
A. Before
B. After
C. In between
D. None of the above
4. The structures that uses separate delays for input and output samples is
A. Direct formi Il
B. Direct formi |
C. Cascade form
D. Parallel form

5.In bilinear mapping the poles-pfame are mapped into
of unit circle@ane

A. Right half , exterior
B. Right half,interior
C. Left half, exterior
D. Left half,interior

6.1n transformation any strip of w'rgfth’n s-plane is mapped in
1

to the entire plane



A. pre warping
B. impulse invariant
C. Dbilinear
D. none of the options
7. In Butterworth approximation the IS decreasing

function of frequency.

A. Magnitude ,monotonically
B. Phase, monotonically
C. Phase angle , monotoniaall
D. None of the options

8. The direct form |l realization of Norder IR system requires delaysand

memory locations

A. N-1
B. N
C. N+1
D. N-2

9. In type | chebyshev approximation the magnitude response is in
the passband and in the stopband.
A. equiripple,monotonic
B. Monotonic, equiripple
C. Equiripple, equi ripple
D. None of the options

10.The relation between analog and digital frequency is nonlinear in case of
A. Impulse nvariant transformation
B. Bilinear transformation
C. Frequency sampling
D. All of the above

11.The poles of Butterworth transfer function lie
A. symmetrically on a circle in-plane
B. Antisymmetrically on a circle in-plane
C. symmetrically on an ellge in splane
D. Antisymmetrically on an ellipse ingane

12.In butteworth approximation ,when N is even, the nature of poles are
A. One pole is real and other poles are complex
B. One pole is complex and other poles are real




C. Complex but notonjugate pair
D. Complex and exist as conjugate pair

13.Which of the following is true for chebyshev analog filter?
A. Intype 2 the magnitude response is monotonic in passband and
equiripple in stopband
B. Intype 2 the magnitude response is equiripple in passband and
stopband
C. Intypel the magnitude response is monotonic in passband and
stopband

D. Intype 1 the mgnitude response is monotonic in passband and
equiripple in stopband

14.The unnormalized transfer function of lowpass Butterworth filter is obtained
from normalized transfer function by replacindyg

15.Inimpulseina r i an't

A. s/ g
B. s/cq
C. sQc
D. s g
freque
A v =
B. v =
C. ¥
D. v =

ncy
Tq
q/
T/ q
tan

0qo
.

Tq

transformation the digit:
I's given by

16. An analog filter has poles at s=0,-8=s= -1 .if impulse invariant
transformation is employed then tberresponding poles of digital filters are

respectively

A. 0,Q T.Q
B. 0,Q ,Q
C. 0,Q7.,Q
D. 1,Q ,Q



17.The number of complex addition and multiplications in direct DFT are

and
A. (N-1) , N2
B. N, N2
C. N(N-1), N
D. N(N-1) , N
18. The sequence of x(n) is rearranged in the forms the

input of first stage in
A. Dbitreversed, radi2 DIT FFT
B. Dbitreversed tadix-2 DIF FFT
C. radix-2 DIT FFT, radix-2 DIF FFT
D. None of the options

19.In DIF radix2 FFT, I f 2 complex numbers nao
resulting complex number A and B is
A" A Anh" A Ao

"8! A Ax h" A A
#8 ! A AR A A
D.None of the options

20.In Bilinear transformation H(z) is obtained by replacing

A ss=——
B. ss=——-
C. s=——
D. s=——



21. In chebyshev filter the parametéris calculated using
from which0 is calculated.

X p




