
 

 

 

 

 

 

 

Study Material for DSP and its 

Applications 

 

 

Prepared by: S. Bharathi AP/ EEE 

 

 

 

 

 

 



Aim:  

 

To generate PWM pulses using TMS 320 F2182 DSP Processor. 

 

 

Pre MCQ 

 

1. In pulse width modulated inverters, the output voltage is controlled by controlling the 

a) input frequency 

b) modulating index 

c) amplification factor 

d) none of the mentioned 

Ans: b 

 

2. In case of sinusoidal pulse width modulation with MI < 1, if the number of pulses per 

half cycle (N) = 5, then 

a) harmonics of order 5 and 7 become significant 

b) harmonics of order 5 and 7 are eliminated 

c) harmonics of order 9 and 11 become significant 

d) harmonics of order 9 and 11 are eliminated 

Ans: c 

 

3. In case of sinusoidal pulse width modulation with MI < 1, the order of the dominate 

harmonic can be raised by 

a) increasing the number of pulses 

b) reducing the number of pulses 

c) lowering the input voltage frequency 

d) raising the input voltage frequency 

Ans: a 

 

4. In case of sinusoidal pulse width modulation with MI < 1, if the number of pulses per 

half cycle (N) = 6, then 

a) harmonics of order 7 and 9 become significant 

b) harmonics of order 7 and 9 are eliminated 



c) harmonics of order 11 and 13 become significant 

d) harmonics of order 11 and 13 are eliminated 

Ans: c  

5. Increasing the number of pulses (N), ____________ 

a) reduces the output voltage amplitude 

b) reduces the inverter efficiency 

c) improves the inverter efficiency 

d) none of the mentioned 

Ans: b 

 

PWM Output and General Purpose Timer Compare Operation 

 

A PWM waveform is a sequence of pulses with fixed frequency but varying pulse widths. The 

width of the pulse might vary from 0% to 100% of the fixed period. The pulse widths are 

modulated by another signal called the modulation signal. In order to generate a PWM signal 

digitally, a timer is set to continuously repeat a counting period. This period is known as the 

PWM carrier period. The inverse of the carrier period is called the carrier frequency. 

The counting pattern of the timer will either be a ñsaw-toothò (asymmetric) or ñtriangleò 

(symmetric) wave depending on what counting mode the timer has been configured for. As 

always, the compare value is constantly being compared with the value of the timer counter. 

When a match occurs, the output toggles High to Low, or Low to High. When the timer period 

value is reached or a second match occurs, the output toggles again. The on and off time of the 

pulse is directly dependent on the value loaded into the timerôs compare register. By varying the 

number in the compare register by the modulation signal (usually a sinusoid), a PWM signal that 

represents the modulating signal can be produced. 

The ñoutputò discussed above refers to each GP Timerôs associated PWM output pin (TxPWM). 

The logic level of the PWM output pin is determined automatically by hardware. This level is 

based on the value of the associated compare register and timer count value (see Fig. 1, note the 

compare match points and the output change at these points). If the compare operation is enabled 

in TxCON, the following events occur on a compare match: 

1. The compare interrupt flag of the timer is set one clock cycle after the match. 



2. A transition occurs on the associated PWM output pin one device clock cycle   

    after the match according to the bit configuration in GPTCONA/B.  

3. If the compare interrupt flag has been selected by the appropriate GPTCONA/B  

    bits to start the ADC, an ADC start signal is generated at the same time the  

    compare interrupt flag is set. 

4. A peripheral interrupt request is generated by the compare interrupt flag if it is  

    unmasked. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The polarity of the compare output of a GP Timer can be specified active high, active low, 

forced high, or forced low. This polarity is determined by setting the bits in the GPTCONA/B 

register. If active low, the output changes from high to low on the first compare match. It then 

goes from low to high on the second compare match if the GP Timer is in an up/down-counting 

mode, or on period match if the GP Timer is in up-counting mode. If active high, the output 

changes from low to high on the first compare match. It then goes from high to low on the 

second compare match if the GP Timer is in an up-/down counting mode, or on period match if 

the GP Timer is in up-count mode. If forced low, the timer compare output becomes low 

immediately when it is specified. If forced high, the timer compare output becomes high 

immediately when it is specified. 



By default (after a reset or power-on) all GP Timer PWM output pins are put in a high-

impedance (HI-Z) state. The PWM output must be made active by configuring the GPTCONA/B 

registers. At anytime the PWM outputs will be made HI-Z whenever the power drive protection 

pin PDPINTx is active and is pulled low. Additionally, the corresponding PWM pin will be 

made HI-Z when bit 1 of the TxCON register is zeroed by software. 

The transition on the PWM output pin is controlled by the asymmetric or symmetric timer 

waveform and the associated output logic. For an asymmetric wave form, the timer is set up in 

continuous up-count mode. To generate a symmetric waveform, the timer needs to be configured 

to continuous up/down counting. 

Example 1 - Generation of an Asymmetric Waveform: 

 

 The asymmetric waveform in Fig. 2 is generated when the GP Timer is in continuous up-

counting mode. When in this mode the output changes in the following: 

1. Output pin at ñinactive levelò before the counting operation starts 

2. Output pin remains at ñinactive levelò until the compare match happens 

3. Output toggles to ñactive levelò on the compare match 

4. Output remains unchanged at ñactive levelò until the end of the period 

5. At end of period, output resets to ñinactive levelò; that is if the new 

    compare value is not zero 

 

 

 

 

 

 

Figure 2 Asymmetric timer waveform generated by a GP timer in continuous up-count mode. 

If the compare value is zero at the very beginning of the period, then a compare match is made at 

the very beginning and, consequently, the output is the active level for the period. If the output is 

ñactiveò for the whole period and the new compare value for the next period is zero, then the 

output will stay at the active level so as not to cause a glitch. If the value in the compare register 



is greater than the value in the period register, then a compare match will never be made and 

consequently the output will be at the inactive level through the whole period. 

The above allows the duty cycle of the PWM to range from 0 to 100% without glitches being 

present. If the compare value is the same as the period value, which causes a compare match, 

then the output pin will be at the active level for exactly one pre-scaled clock cycle. 

Example 2 - Symmetric Waveform Generation:  

When the GP Timer is configured in continuous up/down-counting mode, a symmetric 

waveform is generated as in Fig. 3. The output changes in the following sequence: 

1. ñinactive levelò before the counting operation starts 

2. remains at ñinactive levelò until the compare match 

3. toggles to ñactive levelò on the first compare match 

4. remains unchanged at ñactive levelò until the second compare match 

5. toggles to ñinactive levelò on the second compare match 

6. remains unchanged at ñinactive levelò until the end of the period and 

    remains unchanged until next compare match 

 

 

 

 

 

 

 

Figure 3 Symmetric timer waveform from continuous up/down count mode. 

 

If the compare value is zero at the beginning of the period, the output is set to the active level at 

the beginning of a period and remains unchanged until the second compare match. After the first 

transition, the output remains at the active level until the end of the period if the compare value 

becomes zero for the second half of the period. When this happens, the output does not reset to 

zero if the new compare value for the following period is still zero. 



This is done again to assure the generation of PWM pulses of 0% to 100% duty cycle without 

any glitches. The first transition does not happen if the compare value is greater than or equal to 

that of the period register for the first half of the period. However, the output still toggles when a 

compare match happens in the second half of the period. This error in output transition, often as 

a result of calculation error in the application routine, is corrected at the end of the period 

because the output resets to zero, unless the new compare value for the following period is zero. 

In this case, the output remains one, which again puts the output of the waveform generator in 

the correct state. 

 

Calculations for Active and Inactive Time Periods 

 

In order to utilize the GP Timer PWM outputs, it is sometimes necessary to calculate the active 

and inactive pulse times for the PWM output pins. We can find the active and inactive times for 

both the asymmetrical (Continuous Up-Count  Mode) and symmetrical (Continuous Up/Down 

Count Mode). The calculation criteria for these times are as follows: 

Continuous Up-Count Mode: 

Active Output Pulse Time = [(TxPR) ï (TxCMPR) + 1] cycles of the scaled input clock. 

Inactive Output Pulse Time = (period of the scaled input clock) * (value of TxCMPR) 

¶ When the value in TxCMPR is zero, the GP Timer compare output is 

           active for the whole period. 

¶ When TxCMPR is  TxPR, the length of the active phase (the output pulse 

           width) is zero. 

 

 

 

 

Continuous Up/Down Counting Mode: 

For the continuous up-/down-counting mode, the compare register can have different values 

while counting down and while counting up. 

Active Output Pulse Time = [(TxPR) ï (TxCMPR)up + (TxPR) ï (TxCMPR)dn]** cycles of the 

scaled input clock  

¶ If (TxCMPR) up is zero, the compare output is active at the beginning of            the 

period. If (TxCMPR)dn is also zero, then output remains active until            the end of the 

period. 



¶ When (TxCMPR)up is  (TxPR), the first transition is lost. Similarly, the            second 

transition is lost when (TxCMPR)dn is  (TxPR). 

¶ If both (TxCMPR)up and TxCMPR)dn are greater than or equal to (TxPR),            then 

the GP Timer compare output is inactive for the entire period. 

**where (TxCMPR)up is the compare value on the timerôs way up and 

(TxCMPR)dn is the compare value on the way down. 

GP Timer PWM Generation -Practical Steps 

To generate a PWM output signal on the GP Timer PWM outputs, make sure the following are 

configured to allow for PWM generation (also see Example 6.3): 1. Note what the PLL module 

is set to. The PLL provides the clock signal to 

the DSP and hence to the EV. In the timer control registers we have the 

option of pre-scaling (dividing) the clock signal to choose a time base for 

the GP Timers. 

2. The corresponding EV pins need to be configured for their primary 

function in the appropriate MCRx register. 

3. Initialize TxCNT (we usually set the count vale to zero) 

4. Set TxPR according to the desired PWM (carrier) period. The TxPR value 

is calculated by the following formulas: 

 

Asymmetric PWM: 

 

 

 

 

 

 

Symmetric PWM: 

 

 
 

5.  Initialize TxCMPR to first desired compare value 

6. To create a PWM signal, the registers GPTCONA/B and TxCON need to be   

    configured for TxCMP enabled, desired counting mode etc. 

7. To create an asymmetric PWM signal, the timer is set to the Continuous-Up   



    Count Mode. If a symmetric PWM signal is desired, then the Timer should be set  

    to the Continuous-Up/Down Mode. 

8. During run time, the GP Timer compare register (TxCMPR) will need to be  

    periodically updated with new compare values corresponding to the modulation  

    signal or new duty cycle. This can be done during an interrupt service routine. 

Example 3 - Fixed Duty Cycle PWM 

 

The following block of code is an example of generating a simple fixed-duty cycle PWM signal 

by using the GP Timer Compare function. The PLL needs to be set to CLKIN x 4, the watchdog 

needs to be disabled, and the wait state generator (WSGR) set for zero wait states. 

LDP  #SCSR1>>7 

SPLK #000Ch,SCSR1  ;EVA & EVB modules clock enable 

LDP #0E1h   ;Set Mux pins for 

SPLK #0FFFFh,MCRA  ;PWM function 

SPLK #0FFFFh,MCRC  ;EVA PWM output initialization 

LDP  #GPTCONA >> 7h ;Load EVA data-page 

SPLK #00000h, T1CNT ;this just zeros the counter T1 the 

;counters are auto zeroed after a DSP 

;reset 

SPLK #0FFFFh, T1PR  ;the T1PR value sets the frequency in 

;this case, it is 500 Hz cont up-cnt mod 

SPLK #08000h, T1CMPR;50 % duty cycle PWM bits--- 

SPLK #0000000001000010b, GPTCONA 

SPLK #1001000001000010b, T1CON 

LOOP2 B LOOP2   ;after the control registers are setup 

;the program can loop endlessly while 

;PWM is generated automatically 

4 Compare Units 

A PWM signal can also be generated using the compare unit (CMPRx). The compare units 

(CMPRx) in the LF2407 function identically to the GP Timer compare units (TxCMPR) 

discussed above. Unlike the GP Timer compare function, each compare unit has two associated 

PWM outputs which both toggle on the same compare match. The PWM outputs associated with 

the compare units allow for the generation of six PWM outputs per EV. 

As shown in Fig. 4 the Compare Units Include: 

¶ Three 16-bit compare registers (CMPR1, CMPR2, and CMPR3 for EVA; and CMPR4, 

CMPR5, and CMPR6 for EVB), all double-buffered  

¶ One 16-bit compare control register (COMCONA for EVA, and COMCONB for EVB)  



¶ One 16-bit action control register (ACTRA for EVA, and ACTRB for EVB), with an 

associated buffer register  

¶ Six PWM (3-state; Low, High, High Z) output (compare output) pins (PWMy, y = 1, 2, 3, 

4, 5, 6 for EVA and PWMz, z = 7, 8, 9, 10, 11, 12 for EVB)  

 
 

Figure 4 Compare unit block diagram. 

For EVA: x = 1, 2, 3; y = 1, 3, 5; z = 1 

  For EVB: x = 4, 5, 6; y = 7, 9, 11; z = 3 

  

 

4.1 Inputs and Outputs of the Compare Units 

The inputs to a compare unit include: 

¶ Control signals from compare control registers  

¶ GP Timer 1/3 (T1CNT/T3CNT) count value, underflow, and period match signals 

¶ System RESET 

¶ The time base (counter value) for the compare units in EVA (CMPR1,2 ,3) is GP Timer 

1, and for EVB (CMPR4, 5, 6 ) is GP Timer 3. 

When any reset event occurs, all register bits associated with the compare units are reset to zero 

and all compare output pins are put in the high-impedance state. The output of a compare unit is 

a compare match output, or in other words, a PWM output. If the compare operation is enabled, a 



compare match signal sets the corresponding interrupt flag and the two output pins associated 

with the compare unit to toggle. Either of the two outputs can be configured as either active high 

or active low, but will toggle upon the same event. 

4.2 Operation of Compare Units 

 

The sequence below is an example of the compare unit operation in EVA. For 

EVB operation, GP Timer 3 and ACTRB are used instead: 

1. The value of the GP Timer 1 counter is continuously compared with that of 

the compare register. 

2. When a compare match occurs, a transition appears on the two outputs of 

the compare unit according to the bits in the action control register (ACTRA). The bits in the 

ACTRA can individually specify each output to toggle active high or toggle active-low (if not 

forced high or low) on a compare match. 

3. The compare interrupt flag associated with a compare unit is set when a compare match is 

made between GP Timer 1 and the compare register of a compare unit, if compare is enabled. 

4. A peripheral interrupt request will then be generated if the interrupt is 

unmasked. The timing of output transitions, setting of interrupt flags, and 

the generation of interrupt requests are similar to the GP Timer compare 

operation. 

5. The outputs of the compare units in compare mode are subject to modification by the output 

logic, dead band units, and the space vector PWM logic. 

Having two outputs controlled by the same compare unit is useful in applications such as the 

control of a power inverter (see Fig. 5). With a power inverter, PWM signals can be used to gate 

the power transistors for creating currents through the legs of the inverter of any frequency or 

amplitude. This is useful in controlling electric motors their operation depends on the current 

flowing through the windings. By controlling the current flowing through motor windings, 

torque and speed control of the motor can be accomplished. 

In inverter circuits such as those shown in Fig. 5, two power transistors are placed in series on 

each phase ñlegò with the output being between them. This  allows the output of the leg to be 

connected either to the DC supply voltage (Vdc) or ground. A potential hazard with these circuits 

is that if both transistors are turned on at the same time, a short circuit condition will exist 



through the leg and power transistors, causing the transistors to rapidly heat up and, in most 

cases, explode. 

The solution to this problem is to make sure that only one transistor in each leg is on at a time. In 

theory, this is accomplished by feeding complementary PWM gating signals to each of the two 

transistors in a leg. So when one transistor is on, the other is off. In reality, all transistors turn on 

faster than they turn off. Therefore, it is necessary to add a time delay (dead-band) between the 

PWM signals to allow for the first transistor to fully turn off before the second one is turned on. 

 
Figure 5 Basic three-phase inverter circuit. 

 

 

 

 

 

1. Which among the below stated components should be filtered for determining the cut-off 

frequency corresponding to the PW period of low-pass filter ? 

a. Fundamental FPWM & higher harmonics 

b. Resonant FPWM & higher harmonics 

c. Slowly Varying DC components 

d. Slowly Varying AC components 

Ans: a 

 

2. Three methods for modulating a digital signal with analog data are 

a) PAM, ASM, PPM 

b) PAM, PWM, PPM 

c) FSK, QAM, PAM 

d) QAM, PAM, PWM,  

 

Ans: b 

 

3. Pulse amplititude modulation makes use of 

a) a successive approximator 



b) a dual-slope ADC 

c) an R/2R set up 

d) a sample and hold circuit 

 

Ans: d 

 

4. A certain number of bits (D) are encoded by a single pulse in one of 2D possible 

positions during a specified fixed period (T) in 

 

a) TDM 

b) PAM 

c) PPM 

d) PWM 

 

Ans: c     

 

 

 

Aim 
 To understand the working of various instructions of TMS320c2407 
processor. 
 
How To Use the Instruction Descriptions 
The description for each instruction presents the following categories of information: 

 Syntax 
 Operands 
 Opcode 
 Execution 
 Status Bits 
 Description 
 Words 
 Cycles 
 Examples 

 Syntax 
Each instruction begins with a list of the available assembler syntax expressions and the addressing 
mode type(s) for each expression. For example, the description for the ADD instruction begins with: 
 
ADD dma [ , shift ] Direct addressing 
ADD dma, 16 Direct with left shift of 16 
ADD ind [ , shift [ , ARn] ] Indirect addressing 
ADD ind, 16 [ , ARn] Indirect with left shift of 16 
ADD #k Short immediate addressing 
ADD #lk [ , shift ] Long immediate addressing 
These are the notations used in the syntax expressions: 
italic 
symbols 
Italic symbols in an instruction syntax represent variables. 
Example: For the syntax  
ADD dma 
you may use a variety of values for dma. 
Samples with this syntax follow: 



ADD DAT 

ADD 15 

Boldface characters in an instruction syntax must be typed as shown. 
Example:  
For the syntax 
ADD dma, 16 
you may use a variety of values for dma, but the word ADD and the number 16 must be typed 
as shown. Samples with this syntax follow: 
ADD 7h, 16  

ADD X, 16  

 [, x] Operand x is optional. 
Example: For the syntax 
ADD dma, [, shift] 
you must supply dma, as in the instruction: 
ADD 7h 

and we have the option of adding a shift value,as in the instruction: 
ADD 7h, 5  

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot include x2 without also including x1. 
Example: For the syntax 
ADD ind, [, shift [, ARn]] 
you must supply ind, as in the instruction: 
ADD *+  

You have the option of including shift, 
as in the instruction: 
ADD *+, 5  

If we wish to include ARn, you must also include shift, as in: 
ADD *+, 0, AR2  

# The # symbol is a prefix for constants used in immediate addressing. For short- or long- immediate 
operands, it is used in instructions where there is ambiguity with other addressing modes. 
Example: RPT #15 uses short immediate addressing. It causes the next instruction to be repeated16 

times. But RPT 15 uses direct addressing.The number of times the next instruction repeats is determined 

by a value stored in memory. Finally, consider this code example: 
MoveData BLDD DAT5, #310h ;move data at address  

;referenced by DAT5 to address  

;310h.  

Note the optional MoveData label is used as a reference in front of the instruction mnemonic. Place labels 
either before the instruction mnemonic on the same line or on the preceding line in the first column. (Be 
sure there are no spaces in your labels.) An optional comment field can conclude the syntax expression. 
At least one space is required between fields (label, mnemonic,operand, and comment). 

Operands 
Operands can be constants, or assembly-time expressions referring to memory, I/O ports, register 
addresses, pointers, shift counts, and a variety of other constants. The operands category for each 
instruction description defines the variables used for and/or within operands in the syntax expressions. 
For example, for the ADD instruction, the syntax category gives these syntax expressions: 
 
ADD dma [ , shift ] Direct addressing 
ADD dma, 16 Direct with left shift of 16 
ADD ind [ , shift [ , ARn] ] Indirect addressing 
ADD ind, 16 [ , ARn] Indirect with left shift of 16 
ADD #k Short immediate addressing 
ADD #lk [ , shift ] Long immediate addressing 
 
The operands category defines the variables dma, shift, ind, n, k, and lk. For ind, an indirect addressing 
variable, you supply one of the following seven symbols: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 

Opcode 



The opcode category breaks down the various bit fields that make up each instruction word. When one of 
the fields contains a constant value derived directly from an operand, it has the same name as that 
operand. The contents of fields that do not directly relate to operands have other names;  
the ADDC instruction:  
 
ADDC dma 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 0 0 0 dma 
 

ADDC ind [,ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 0 0 1 ARU N NAR 

 
The field called dma contains the value dma, which is defined in the operands category. The contents of 
the fields ARU, N, and NAR are derived from the operands ind and n but do not directly correspond to 
those operands;  

 Execution 
The execution category presents an instruction operation sequence that describes the processing that 
takes place when the instruction is executed. If the execution event or events depend on the addressing 
mode used, the execution category specifies which events are associated with which addressing modes. 
Here are notations used in the execution category: 
(r) The content of register or location r. 
Example: (ACC) represents the value in the accumulator. 

x " y Value x is assigned to register or location y. 

Example: (data-memory address) " ACC means: 
The content of the specified data-memory address is put into the accumulator. 
 
r(n:m) Bits n through m of register or location r. 
 
Example: ACC(15:0) represents bits 15 through 0 of the accumulator. 
 
(r(n:m)) The content of bits n through m of register or location r. 
 
Example: (ACC(31:16)) represents the content of bits 31 through 16 of the accumulator. 
nnh Indicates that nn represents a hexadecimal number. 

Status Bits 
The bits in status registers ST0 and ST1 affect the operation of certain instructions 
and are affected by certain instructions. The status bits category of each 
instruction description states which of the bits (if any) affect the execution of 
the instruction and which of the bits (if any) are affected by the instruction. 

 Description 
The description category explains what happens during instruction execution 
and its effect on the rest of the processor or on memory contents. It also discusses 
any constraints on the operands imposed by the processor or the assembler. 
This description parallels and supplements the information given in 
the execution category. 

 Words 
The words category specifies the number of memory words required to store the instruction (one or two). 
When the number of words depends on the addressing mode used for an instruction, the words category 
specifies which addressing modes require one word and which require two words. 

 
 
 
 
 



Examples 
Example code is included for each instruction. The effect of the code on memory and/or registers is 
summarized. Consider this example of the ADD instruction: 
ADD*+,0,AR0  

Before Instruction After Instruction 
ARP 4 ARP 0 
AR4 0302h AR4 0303h 
Data Memory Data Memory 
302h 2h 302h 2h 
ACC X 2h ACC 0 04h 

Here are the facts and events represented in this example: 
 The auxiliary register pointer (ARP) points to the current auxiliary register. 

Because ARP = 4, the current auxiliary register is AR4. 
 When the addition takes place, the CPU follows AR4 to data-memory address 0302h. The content of 

that address, 2h, is added to the content of the accumulator, also 2h. The result (4h) is placed in the 
accumulator.(Because the second operand of the instruction specifies a left shift of 0, the data-memory 
value is not shifted before being added to the accumulator value.) 

 The instruction specifies an increment of 1 for the contents of the current auxiliary register (*+); 
therefore, after the addition is performed, the content of AR4 is incremented to 0303h.  The instruction 
also specifies that AR0 is the next auxiliary register; therefore,after the instruction ARP = 0. 

 Because no carry is generated during the addition, the carry bit (C) is cleared to 0. 

Instruction Descriptions 
The instructions are presented alphabetically, and the description for each instruction 
presents the following categories of information: 

 Syntax 
 Operands 
 Opcode 
 Execution 
 Status Bits 
 Description 
 Words 
 Cycles 
 Examples 

ABS Absolute Value of Accumulator 

 
Syntax ABS 
Operands None 
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

Execution Increment PC, then ... 

|(ACC)| " ACC; 0 " C 
Status Bits Affected by Affects 
OVM C and OV 
This instruction is not affected by SXM 
 
Description If the contents of the accumulator are greater than or equal to zero, the accumulator 
is unchanged by the execution of ABS. If the contents of the accumulator are less than zero, the 
accumulator is replaced by its 2s-complement value. The carry bit (C) on the ôC20x is always reset to zero 
by the execution of this instruction. 
Note that 8000 0000h is a special case. When the overflow mode is not set (OVM = 0), the ABS of 8000 
0000h is 8000 0000h. When the overflow mode is set (OVM = 1), the ABS of 8000 0000h is 7FFF FFFFh. 
In either case, the OV status bit is set. 
 Example 1 ABS 

 
Before Instruction   After Instruction 
ACC X 1234h   ACC  0 1234h 
C C 
 



Example 2 ABS 

 
Before Instruction   After Instruction 
ACC X 0FFFFFFFFh  ACC 0 1h 
C C 
 

Example 3 ABS ;(OVM = 1)  

 
Before Instruction   After Instruction 
ACC X 80000000h   ACC 0 7FFFFFFFh 
C C 
X 1 
OV OV 
 

Example 4 ABS ;(OVM = 0)  

 
Before Instruction   After Instruction 
ACC X 80000000h   ACC 0 80000000h 
C C 
X 1 
OV OV 
 

ADD Add to Accumulator 

 

Syntax ADD dma [ , shift ] Direct addressing 
ADD dma, 16 Direct with left shift of 16 
ADD ind [ , shift [ , ARn] ] Indirect addressing 
ADD ind, 16 [ , ARn] Indirect with left shift of 16 
ADD #k Short immediate addressing 
ADD #lk [ , shift ] Long immediate addressing 
Operands dma: 7 LSBs of the data-memory address 
 
shift: Left shift value from 0 to 15 (defaults to 0) n: Value from 0 to 7 designating the next auxiliary register 
k: 8-bit short immediate value 
lk: 16-bit long immediate value 
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
ADD dma [ , shift ] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 shift 0 dma 
 

ADD dma, 16 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 0 1 0 dma 
 

ADD ind [ , shift [ , ARn ]] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 shift 1 ARU N NAR 
 

ADD ind, 16 [, ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 0 1 1 ARU N NAR 
 

ADD #k 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 0 0 0 k 

 
ADD #lk [, shift] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 1 1 0 0 1  



Shift llk 

Opcode 

Add to Accumulator ADD  
 

Execution Increment PC, then ... 
Event Addressing mode 

(ACC) + ((data-memory address)  2shift ) " ACC Direct or indirect 

(ACC) + ((data-memory address)  216 ) " ACC Direct or indirect 
(shift of 16) 

(ACC) + k " ACC Short immediate 

(ACC) + lk  2shift " ACC Long immediate 
 
Status Bits Affected by Affects Addressing mode 
SXM and OVM C and OV Direct or indirect 
OVM C and OV Short immediate 
SXM and OVM C and OV Long immediate 
 
Description The content of the addressed data memory location or an immediate constant 
is left-shifted and added to the accumulator. During shifting, low-order bits are zero filled. High-order bits 
are sign extended if SXM = 1 and zero filled if SXM = 0. The result is stored in the accumulator. When 
short immediate addressing is used, the addition is unaffected by SXM and is not repeatable.If you are 
using indirect addressing and update the ARP, you must specify a shift operand. However, if you do not 
want a shift to occur, enter a 0 for this operand. For example: 
ADD *+,0,AR2  

Normally, the carry bit is set (C = 1) if the result of the addition generates a carry and is cleared (C = 0) if 
it does not generate a carry. However, when adding with a shift of 16, the carry bit is set if a carry is 
generated but otherwise, the carry bit is unaffected. This allows the accumulator to generate the proper 
single carry when adding a 32-bit number to the accumulator. 
Words Words Addressing mode 
1 Direct, indirect, or 
short immediate 
2 Long immediate 

ADD Add to Accumulator 

 

Example 1 ADD 1,1 ;(DP = 6)  

 

Before Instruction   After Instruction 
Data Memory   Data Memory 
301h  1h   301h  1h 
ACC  X 2h   ACC  0 04h 
C C 
 

Example 2 ADD *+,0,AR0  

 

Before Instruction    After Instruction 
ARP  4   ARP  0 
AR4  0302h   AR4 0303h 
Data Memory   Data Memory 
302h  2h   302h  2h 
ACC  X 2h   ACC  0 04h 
C C 
 

Add to Accumulator ADD 
 
Example 3 ADD #1h ;Add short immediate  

 
Before Instruction   After Instruction 
ACC  X 2h   ACC  0 03h 
C C  



 

Example 4 ADD #1111h,1 ;Add long immediate with shift of 1  

Before Instruction   After Instruction 
ACC  X 2h   ACC  0 2224h 
C C 
 

ADDC Add to Accumulator With Carry 

 

Syntax ADDC dma Direct addressing 
ADDC ind [, ARn] Indirect addressing 
Operands dma: 7 LSBs of the data-memory address 
n: Value from 0 to 7 designating the next auxiliary register 
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
ADDC dma 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 0 0 0 dma 
 

ADDC ind [,ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 0 0 1 ARU N NAR 
 

Execution Increment PC, then ... 

(ACC) + (data-memory address) + (C) " ACC 
Status Bits Affected by Affects 
OVM C and OV 
This instruction is not affected by SXM. 
Description The contents of the addressed data-memory location and the value of the carry bit are 
added to the accumulator with sign extension suppressed. The carry bit is then affected in the normal 
manner: the carry bit is set (C = 1) if the result of the addition generates a carry and is cleared (C = 0) if it 
does not generate a carry. 
The ADDC instruction can be used in performing multiple-precision arithmetic. 
 
Example 1 ADDC DAT300 ;(DP = 6: addresses 0300h ï037Fh;  

;DAT300 is a label for 300h)  

 
Before Instruction   After Instruction 
Data Memory   Data Memory 
300h  04h   300h  04h 
ACC  1 13h   ACC  0 18h 
C C 

 
Example 2 ADDC *ï,AR4 ;(OVM = 0)  

 

Before Instruction   After Instruction 
ARP  0   ARP    4 
AR0  300h   AR0  299h 
Data Memory   Data Memory 
300h  0h   300h  0h 
ACC  1 0FFFFFFFFh  ACC  1 0h 
C C   X 0 
OV   OV 
 

ADDS Add to Accumulator With Sign Extension Suppressed 

Syntax ADDS dma Direct addressing 
ADDS ind [,ARn] Indirect addressing 
 

Operands dma: 7 LSBs of the data-memory address n: Value from 0 to 7 designating the next auxiliary 
register ind: Select one of the following seven options: 



* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
ADDS dma 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 1 0 0 dma 

ADDS ind [,ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 1 0 1 ARU N NAR 
 

Execution Increment PC, then ... 

(ACC) + (data-memory address) " ACC 
Status Bits Affected by Affects 
OVM C and OV 
This instruction is not affected by SXM. 
Description The contents of the specified data-memory location are added to the accumulator 
with sign extension suppressed. The data is treated as an unsigned 16-bit number, regardless of SXM. 
The accumulator contents are treated as a signed number. Note that ADDS produces the same results as 
an ADD instruction with SXM = 0 and a shift count of 0. The carry bit is set (C = 1) if the result of the 
addition generates a carry and is cleared (C = 0) if it does not generate a carry. 
 
Example 1 ADDS 0 ;(DP = 6: addresses 0300h ï037Fh)  

 

Before Instruction   After Instruction 
Data Memory   Data Memory 
300h  0F006h   300h  0F006h 
ACC       X 00000003h  ACC  0 0000F009h 
C C 
 

 
Example 2 ADDS *  

 

Before Instruction   After Instruction 
ARP  0   ARP   0 
AR0  0300h   AR0  0300h 
Data Memory   Data Memory 
300h  0FFFFh   300h  0FFFFh 
ACC  X 7FFF0000h  ACC  0 7FFFFFFFh 
C C 
 
 

ADDT Add to Accumulator With Shift Specified by TREG 

 
Syntax ADDT dma Direct addressing 
ADDT ind [,ARn] Indirect addressing 
Operands dma: 7 LSBs of the data-memory address n: Value from 0 to 7 designating the next auxiliary 
register  ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
ADDT dma 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 1 1 0 dma 
 

ADDT ind [, ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 0 0 1 1 1 ARU N NAR 
 

Execution Increment PC, then ... 

(ACC) + [(data-memory address)  2(TREG(3:0))] " (ACC) 
 
Status Bits Affected by Affects 



SXM and OVM C and OV 
 
Description The data-memory value is left shifted and added to the accumulator, and the result replaces 
the accumulator contents. The left shift is defined by the four LSBs of the TREG, resulting in shift options 
from 0 to 15 bits. Sign extension on the data-memory value is controlled by SXM. The carry bit (C) is set 
when a carry is generated out of the MSB of the accumulator; if no carry is generated,the carry bit is 
cleared. 
Example 1 ADDT 127 ;(DP = 4: addresses 0200h ï027Fh,  ;SXM = 0)  

 
Before Instruction    After Instruction 
Data Memory    Data Memory 
027Fh  09h    027Fh  09h 
TREG  0FF94h    TREG  0FF94h 
ACC  X 0F715h   ACC  0 0F7A5h 
C C 
 

Example 2 ADDT *ï,AR4 ;(SXM = 0)  

 
Before Instruction    After Instruction 
ARP  0    ARP  4 
AR0  027Fh    AR0  027Eh 
Data Memory    Data Memory 
027Fh  09h    027Fh  09h 
TREG  0FF94h    TREG  0FF94h 
ACC X  0F715h    ACC  0 0F7A5h 
C C 
 

ADRK Add Short-Immediate Value to Auxiliary Register 

Syntax ADRK #k Short immediate addressing 
Operands k: 8-bit short immediate value 
 
ADRK #k 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 1 1 0 0 0 k 

 
Execution Increment PC, then ... 

(current AR) + 8-bit positive constant " current AR 
Status Bits None 
Description The 8-bit immediate value is added, right justified, to the current auxiliary register (the one 
specified by the current ARP value) and the result replaces the auxiliary register contents. The addition 
takes place in the ARAU, with the immediate value treated as an 8-bit positive integer. All arithmetic 
operations on the auxiliary registers are unsigned. 
 
Syntax AND dma Direct addressing 
 
AND ind [,ARn] Indirect addressing 
AND #lk [,shift] Long immediate addressing 
AND #lk,16 Long immediate with left shift of 16 
Operands dma: 7 LSBs of the data-memory address shift: Left shift value from 0 to 15 (defaults to 0) 
n: Value from 0 to 7 designating the next auxiliary register lk: 16-bit long immediate value 
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
AND dma 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 1 1 1 0 0 dma 

 
AND ind [,ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 1 1 1 0 1 ARU N NAR 



 
AND #lk [,shift] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 1 1 0 1 1 shift 
lk 

 
AND #lk,16 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1 
lk 

Execution Increment PC, then ... 
Event(s) Addressing mode 

(ACC(15:0)) AND (data-memory address) " ACC(15:0) Direct or indirect 

0 " ACC(31:16) 
 

(ACC(31:0)) AND lk  2shift " ACC Long immediate 

(ACC(31:0)) AND lk  216" ACC Long immediate with left shift of 16 
 
Opcode 

AND AND With Accumulator 

 
Status Bits None 
This instruction is not affected by SXM. 
 
Description If direct or indirect addressing is used, the low word of the accumulator is ANDed with a 
data-memory value, and the result is placed in the low word position in the accumulator. The high word of 
the accumulator is zeroed. If immediate addressing is used, the long-immediate constant can be shifted. 
During the shift, low-order and high-order bits not filled by the shifted value are zeroed. The resulting 
value is ANDed with the accumulator contents. 
 
Words Words Addressing mode 
1 Direct or indirect 
2 Long immediate 
 
Example 1 AND 16 ;(DP = 4: addresses 0200h ï027Fh)  

 
Before Instruction   After Instruction 
Data Memory   Data Memory 
0210h  00FFh   0210h  00FFh 
ACC  12345678h  ACC  00000078h 

 
Example 2 AND *  

 
Before Instruction   After Instruction 
ARP  0    ARP  0 
AR0  0301h   AR0  0301h 
Data Memory   Data Memory 
0301h  0FF00h   0301h  0FF00h 
ACC  12345678h  ACC  00005600h 

 
Example 3 AND #00FFh,4  

 
Before Instruction   After Instruction 
ACC  12345678h  ACC  00000670h 
 

 
 
 
 



APAC Add PREG to Accumulator 

 
Syntax APAC 
 
Operands None 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 

Execution Increment PC, then ... 

(ACC) + shifted (PREG) " ACC 
 
Status Bits Affected by Affects 
PM and OVM C and OV 
This instruction is not affected by SXM. 
 
Description The contents of PREG are shifted as defined by the PM status bits of the ST1 register (see 
Table 7ï7) and added to the contents of the accumulator. The result is placed in the accumulator. APAC 
is not affected by the SXM bit of the status register. PREG is always sign extended. The task of the APAC 
instruction is also performed as a subtask of the LTA, LTD, MAC, MACD, MPYA, and 
SQRA instructions. 

 
PM Bits 
Bit 1 Bit 0 Resulting Shift 
0 0 No shift 
0 1 Left shift of 1 bit 
1 0 Left shift of 4 bits 
1 1 Right shift of 6 bits 

Example APAC ;(PM = 01)  

 
Before Instruction   After Instruction 
PREG  40h   PREG  40h 
ACC X  20h   ACC 0  A0h 
C C 

 
 
 
B Branch Unconditionally 

 

Syntax B pma [, ind [,ARn]_] Indirect addressing 

 
Operands pma: 16-bit program-memory addressn: Value from 0 to 7 designating the next auxiliary 
register 
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 

B pma [, ind [,ARn]_] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 1 1 0 0 1 1 ARU N NAR    pma 

 

Execution pma " PC 
Modify (current AR) and (ARP) as specified. 
 
Status Bits None 
 
Description The current auxiliary register and ARP contents are modified as specified, and 
control is passed to the designated program-memory address (pma). The pma 
can be either a symbolic or numeric address. 
 



Example B 191,*+,AR1  

The value 191 is loaded into the program counter, and the program continues to execute from that 
location. The current auxiliary register is incremented by1, and ARP is set to point to auxiliary register 1 
(AR1). 
 
 
 
 

Branch to Location Specified by Accumulator BACC 
 

Syntax BACC 
 
Operands None 
 
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 

 

Execution ACC(15:0) " PC 
 
Status Bits None 
 
Description Control is passed to the 16-bit address residing in the lower half of the accumulator. 
 
Example BACC ;(ACC contains the value 191)  

The value 191 is loaded into the program counter, and the program continues 
to execute from that location. 
 

BANZ Branch on Auxiliary Register Not Zero 

 
Syntax BANZ pma [, ind [, ARn]] Indirect addressing 
 
Operands pma: 16-bit program-memory address n: Value from 0 to 7 designating the next auxiliary 
register  
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
 
BANZ pma [, ind [,ARn] ] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 1 1 0 1 1 1 ARU N NAR pma 
 

Execution If (current AR) p 0 

Then pma " PC 

Else (PC) + 2 " PC 
Modify (current AR) and (ARP) as specified 
 
Status Bits None 
 
Description Control is passed to the designated program-memory address (pma) if the contents of the 
current auxiliary register are not zero. Otherwise, control passes to the next instruction.The default 
modification to the current AR is a decrement by one. N loop iterations can be executed by initializing an 
auxiliary register (as a loop counter) to Nï1 prior to loop entry. The pma can be either a symbol ic or a 
numeric address. 
 

Branch on Auxiliary Register Not Zero BANZ 
 



Example 1 BANZ PGM0 ;(PGM0 labels program address 0)  

 

Before Instruction   After Instruction 
ARP  0   ARP  0 
AR0  5h   AR0  4h 

 
Because the content of AR0 is not zero, the program address denoted by PGM0 is loaded into the 
program counter (PC), and the program continues executing  from that location. The default auxiliary 
register operation is a decrement of the current auxiliary register content; thus, AR0 contains 4h at the 
end of the execution. 
 
Before Instruction   After Instruction 
ARP  0   ARP  0 
AR0  0h   AR0  FFFFh 

 
Because the content of AR0 is zero, the branch is not executed; instead, the PC is incremented by 2, and 
execution continues with the instruction following the BANZ instruction. Because of the default 
decrement, AR0 is decremented by 1, becoming ï1. 
 
Example 2 MAR *,AR0 ;Set ARP to point to AR0.  

 

LAR AR1,#3 ;Load AR1 with 3.  

LAR AR0,#60h ;Load AR0 with 60h.  

PGM191 ADD *+,AR1 ;Loop: While AR1 not zero,  

BANZ PGM191,* ïAR0 ;add data referenced by AR0;to accumulator and increment  

;AR0 value.  

 

The contents of data-memory locations 60hï63h are added to the accumulator. 

 
 
BCND Branch Conditionally 

 
Syntax BCND pma, cond 1 [,cond 2] [,...] 
 
Operands pma: 16-bit program-memory address cond Condition 
EQ ACC = 0 

NEQ ACC p 0 
LT ACC < 0 

LEQ ACC 3 0 
GT ACC > 0 

GEQ ACC . 0 
NC C = 0 
C C = 1 
NOV OV = 0 
OV OV = 1 
BIO BIO low 
NTC TC = 0 
TC TC = 1 
UNC Unconditionally 
Opcode 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 0 0 0 TP ZLVC ZLVC  pma 
 

Execution If cond 1 AND cond 2 AND ... 

Then pma " PC 
Else increment PC 
 
Status Bits None 



Description A branch is taken to the specified program-memory address (pma) if the specified 
conditions are met. Not all combinations of conditions are meaningful. For 
example, testing for LT and GT is contradictory. In addition, testing BIO is mutually 
exclusive to testing TC. 
 
 

Branch Conditionally BCND 
 
Example BCND PGM191,LEQ,C 

 

If the accumulator contents are less than or equal to zero and the carry bit is 
set, program address 191 is loaded into the program counter, and the program 
continues to execute from that location. If these conditions do not hold, execution 
continues from location PC + 2. 

 
 
 
BIT Test Bit 

 
Syntax BIT dma, bit code Direct addressing 
 
BIT ind, bit code [, ARn] Indirect addressing 
 
Operands dma: 7 LSBs of the data-memory address bit code: Value from 0 to 15 indicating which bit to 
test (see Figure 7ï1)  
n: Value from 0 to 7 designating the next auxiliary register 
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
BIT dma, bit code 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 0 0 bit code 0 dma 
 

BIT ind, bit code [ ,ARn ]  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 0 0 bit code 1 ARU N NAR 
 

Execution Increment PC, then ... 

(data bit number (15 ï bit code)) " TC 
Status Bits Affects 
TC 
Description The BIT instruction copies the specified bit of the data-memory value to the TC bit of status 
register ST1. Note that the BITT, CMPR, LST #1, and NORM instructions also affect the TC bit in ST1. A 
bit code value is specified that corresponds to a certain bit number of the data-memory value. For 
example, if you want to copy bit 6, you specify the bit code as 9, which is 15 minus six (15ï6). 

 
Bit Numbers and Their Corresponding Bit Codes for BIT Instruction 
Bit code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

    MSB       Data-memory value               LSB 

 

Test Bit BIT 
Example 1 BIT 0h,15 ;(DP = 6). Test LSB at 300h  

 
Before Instruction   After Instruction 
Data Memory   Data Memory 
300h  4DC8h   300h  4DC8h 



TC  0   TC  0 

 
Example 2 BIT *,0,AR1 ;Test MSB at 310h, then set ARP = 1  

 
Before Instruction   After Instruction 
ARP  0   ARP  1 
AR0  310h   AR0  310h 
Data Memory   Data Memory 
310h  8000h   310h  8000h 
TC  0   TC  1 

 
BITT Test Bit Specified by TREG 

 
Syntax BITT dma Direct addressing 
BITT ind [, ARn] Indirect addressing 
Operands dma: 7 LSBs of the data-memory addressn: Value from 0 to 7 designating the next auxiliary 
register 
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
BITT dma 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 1 1 1 1 0 dma 
 

BITT ind [, ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 1 0 1 1 1 1 1 ARU N NAR 
 

Execution Increment PC, then ... 

(data bit number (15 ïTREG(3:0))) " TC 
 
Status Bits Affects 
TC 
 
Description The BITT instruction copies the specified bit of the data-memory value to the 
TC bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM 
instructions also affect the TC bit in status register ST1. The bit number is specified 
by a bit code value contained in the four LSBs of the TREG. 

 Bit Numbers and Their Corresponding Bit Codes for BITT Instruction 
Bit code (in 4 LSBs of TREG) 
 

     0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
                       MSB Data-memory value                    LSB 

 
 
 
 

Test Bit Specified by TREG BITT 
 
 
Example 1 BITT 00h ;(DP = 6) Test bit 14 of data  ;at 300h  

 

Before Instruction   After Instruction 
Data Memory   Data Memory 
300h  4DC8h   300h  4DC8h 
TREG  1h   TREG  1h 
TC  0   TC  1 
 

 



Example 2 BITT * ;Test bit 1 of data at 310h  

 
Before Instruction   After Instruction 
ARP  1   ARP  1 
AR1  310h   AR1  310h 
Data Memory   Data Memory 
310h  8000h   310h  8000h 
TREG  0Eh   TREG  0Eh 
TC  0   TC  0 

 
 
BLDD Block Move From Data Memory to Data Memory 

 
Syntax General syntax: BLDD source, destination 
 
BLDD #lk, dma Direct with long immediate source 
BLDD #lk, ind [, ARn] Indirect with long immediate source 
BLDD dma, #lk Direct with long immediate destination 
BLDD ind, #lk [, ARn] Indirect with long immediate destination 
Operands dma: 7 LSBs of the data-memory address n: Value from 0 to 7 designating the next auxiliary 
register 
lk: 16-bit long immediate value 
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
BLDD #lk, dma 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 0 1 0 0 0 0 dma      lk 

 
BLDD #lk, ind [, ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 0 1 0 0 0 1 ARU N NAR lk 

 
BLDD dma, #lk 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 0 1 0 0 1 0 dma lk 

 
BLDD ind, #lk [, ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 0 1 0 0 1 1 ARU N NAR lk 
 

Block Move From Data Memory to Data Memory BLDD 
Assembly Language Instructions 7-49 

Execution Increment PC, then ... 

(PC) " MSTACK 

lk " PC 

(source) " destination 
For indirect, modify (current AR) and (ARP) as specified 

(PC) + 1 " PC 

While (repeat counter) p 0: 

(source) " destination 
For indirect, modify (current AR) and (ARP) as specified 

(PC) + 1 " PC 

(repeat counter) ï1 " repeat counter 

(MSTACK) " PC 
Status Bits None 



Description The word in data memory pointed to by source is copied to a data-memoryspace pointed to 
by destination. The word of the source and/or destination space can be pointed to with a long-immediate 
value or by a data-memory address.Note that not all source/destination combinations of pointer types are 
valid. 
 
BLDD will not work with memory-mapped registers.RPT can be used with the BLDD instruction to move 
consecutive words in data memory. The number of words to be moved is one greater than the number 
contained in the repeat counter (RPTC) at the beginning of the instruction. 
When the BLDD instruction is repeated, the source (destination) address specified by the long immediate 
constant is stored to the PC. Because the PC is incremented by 1 during each repetition, it is possible to 
access a series of source (destination) addresses. If you use indirect addressing to specify the 
destination (source) address, a new destination (source) address can be accessed during each repetition. 
If you use the direct addressing mode, the specified destination (source) address is a constant; it will not 
be modified during each repetition. 
The source and destination blocks do not have to be entirely on chip or off chip. 
Interrupts are inhibited during a BLDD operation used with the RPT instruction. 
When used with RPT, BLDD becomes a single-cycle instruction once the RPTpipeline is started. 

 
 

BLDD Block Move From Data Memory to Data Memory 

 

Example 1 BLDD #300h,20h ;(DP = 6)  

 
Before Instruction   After Instruction 
Data Memory   Data Memory 
300h  0h   300h  0h 
320h 0Fh   320h  0h 
 

Example 2 BLDD *+,#321h,AR3  

 
Before Instruction   After Instruction 
ARP  2   ARP  3 
AR2  301h   AR2    302h 
Data Memory   Data Memory 
301h  01h   301h  01h 
321h  0Fh   321h  01h 
 
 

Block Move From Program Memory to Data Memory BLPD 
 
Syntax General syntax: BLPD source, destination 
 
BLPD #pma, dma Direct with long immediate 
source 
BLPD #pma, ind [, ARn] Indirect with long immediate source 
 
Operands pma: 16-bit program-memory address dma: 7 LSBs of the data-memory address 
n: Value from 0 to 7 designating the next auxiliary register 
 
ind: Select one of the following seven options: 
* *+ *ï *0+ *0ï *BR0+ *BR0ï 
 
 
BLPD #pma, dma 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 1 0 0 1 0 1 0 dma pma 
 

BLPD #pma, ind [, ARn] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 



1 0 1 0 0 1 0 1 1 ARU N NAR pma 

 
Execution Increment PC, then ... 

(PC) " MSTACK 

pma " PC 

(source) " destination 
For indirect, modify (current AR) and (ARP) as specified 

(PC) + 1 " PC 

While (repeat counter) p 0: 

(source) " destination 
For indirect, modify (current AR) and (ARP) as specified 

(PC) + 1 " PC 

(repeat counter) ï1 " repeat counter 

(MSTACK) " PC 
 
Status Bits None 

 
BLPD Block Move From Program Memory to Data Memory 

 
Description A word in program memory pointed to by the source is copied to data-memory 
space pointed to by destination. The first word of the source space is pointed to by a long-immediate 
value. The data-memory destination space is pointed to by a data-memory address or auxiliary register 
pointer. Not all source/destination combinations of pointer types are valid. 
 
RPT can be used with the BLPD instruction to move consecutive words. The number of words to be 
moved is one greater than the number contained in the repeat counter (RPTC) at the beginning of the 
instruction. When the BLPD instruction is repeated, the source (program-memory) address specified by 
the long immediate constant is stored to the PC. Because the PC is incremented by 1 during each 
repetition, it is possible to access a series of program memory addresses. If you use indirect addressing 
to specify the destination (data-memory) address, a new data-memory address can be accessed during 
each repetition. If you use the direct addressing mode, the specified data memory address is a constant; 
it will not be modified during each repetition. The source and destination blocks do not have to be entirely 
on chip or off chip. 
Interrupts are inhibited during a repeated BLPD instruction. When used with RPT, BLPD becomes a 
single-cycle instruction once the RPT pipeline is started. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

Space vector PWM. 

 
 Squirrel cage motors, like all induction machines, are asynchronous machines with speed depending upon 

applied frequency, pole number, and load torque. In order to use the poly-phase ac motor as an adjustable speed 

device, it is necessary to control and adjust the frequency of the three-phase voltages applied to its terminals. The 

operating speed of the motor is determined by the following relationship  

)1(120sPfNīẗ= (11.1)  

where N is the shaft speed in rpm, f is the supplied frequency in Hz, P is the number of poles, and s is the operating 

slip.  

A switching power converter can be used to control both the supplied voltage and frequency. Consequently, 

higher efficiency and performance can be achieved. The most common control principle for induction motors is the 

constant volts per hertz (V/Hz) principle, which will be explained in the next section.  

Principle of Constant V/Hz Control for Induction Motors  

 

For us to understand the V/Hz control, we will first assume that the voltage applied to a three-phase ac 

induction motor is sinusoidal, and neglect the voltage drop across the stator resistor. At steady state the machine 

terminal voltage is given by  

ȿåĔĔ◗jV 

or  

ȿåĔĔ◗V 
      where and ȿ are the phasors of stator voltage and stator flux, and V and ȿ are their respective magnitudes. VĔ Ĕ 

fVV́ ◗ 21=åȿ  

It follows that if the ratio V/f remains constant with the change of f, then ȿ also remains constant and the torque is 

independent of the supply frequency. 

In actual implementation, the ratio between the magnitude and frequency of the stator voltage is usually based on the 

rated values of these variables, also known as motor ratings. However, when the frequency and voltage are low, the 

voltage drop across the stator resistance cannot be neglected. At frequencies higher than the rated value, to avoid 

insulation break, the constant V/f principle has to be violated. 

 Space Vector PWM Technique 

Space Vector PWM (SVPWM) refers to a special technique of determining the switching sequence of the upper 

three power transistors of a three-phase voltage source inverter (VSI). It has been shown to generate less harmonic 

distortion in the output voltages or current in the windings of the motor load. SVPWM provides more efficient use 

of the dc bus voltage, in comparison with the direct sinusoidal modulation technique. 

The structure of a typical three-phase voltage source inverter is shown in The voltages, Va , Vb, and Vc are the output 

voltages applied to the windings of a motor. Q1 through Q6 are the six power transistors which are controlled by a, 

aô, b, bô, c and cô gating signals and shape the output voltages. When an upper transistor is switched on, i.e., when a, 

b, and c are 1, the corresponding lower transistor is switched off, i.e., the corresponding aô, bô or cô is 0. The on and 

off 

 

 



 
Figure 11.2 Three-phase power inverter supplying an induction motor. 

 

 

 

 Stator Voltages in the (d-q) Frame 

Assuming q and d are the horizontal and vertical axes of the stator coordinate frame, the d-q transformation given in 

(11.6) can transform a three-phase voltage vector into a vector in the d-q coordinate frame. This vector represents 

the spatial vector sum of the three-phase voltage. The phase voltages corresponding to the eight combinations of 

switching patterns can be mapped into the d-q plane by the same d-q transformation .This mapping results in 6 non-

zero vectors and 2 zero vectors. The non-zero vectors form the axes of a hexagonal as shown in Fig. 11.3. The angle 

between any two adjacent non-zero vectors is 600. The 2 zero vectors are positioned at the origin and apply zero 

voltage to a motor. The group of the 8 vectors are referred to as the basic space vectors and are denoted byV , 

through V . The d-q transformation can be applied to the reference a, b, and c voltages to obtain the reference V in 



the d-q plane.

 

Space Vector PWM Control for Induction Motors with the LF2407 DSP 227 

 

 Approximation of Output with Basic Space Vectors 

 

The objective of the space vector PWM technique is to approximate the reference voltage vector V by a combination 

of the eight switching patterns. One simple means of approximation is to require the average output voltage of the 

inverter (in small period T) to be the same as the average of V in the same outout period 

For every PWM period, the desired reference voltage can be approximated by having the power inverter in a 

switching pattern of V and V for T and T periods of time, respectively. Since the sum of and is less than or equal to T 

, the inverter needs to have a 0 ((000) V or (111)V ) pattern for the rest of the period.  

 

The reference voltage vector V is obtained by mapping the desired three-phase output voltages to the d-q plane 

through the d-q transform. When the desired output voltages are in the form of three sinusoidal voltages with a 

120out0 phase shift between them, V becomes a vector rotating around the origin of the d-q plane with a frequency 

corresponding to that of the desired three-phase voltages. The envelope of the hexagon formed by the basic space 

vectors, is the locus of maximum V . Therefore, the magnitude of V must be limited to the shortest radius of this 

envelope because V is a rotating vector. This gives a maximum magnitude of outout outout2dcV for V . The maximum 

root mean square (rms) values of the fundamental line-to-line and line-to-neutral output voltages are out2 and 6dcV . 

Notice that these values are 32 times higher than what a standard sinusoidal PWM technique can generate. 

An example of a symmetric space vector PWM waveform is shown .It is assumed that the reference voltage V lies in 

Sector 0, which is bordered by vectors V and V. out46 



 
 

 

 

 



 

 

 DSP Implementation 

 

the space vector switching scheme discussed previously is implemented on a LF2407 DSP processor. The DSP-

based algorithm is interrupt driven, meaning that the functionality of the code depends on a hardware interrupt, in 

this case the Timer 1 underflow interrupt.  a flowchart depicting the algorithm implemented on the LF2407 DSP 

processor. 

 

 

 

 

The major features of this DSP implementation are:  
ω  32-Bit integration to obtain the phase of the reference voltage vector  

ω  Quarter mapping to calculate sine and cosine functions  

ω  Sector-based look-up table for the decomposition matrix  

¶ Sector-based look-up table for the channel toggling order or Action Control Register reload pattern  



 
 

 
Space vector PWM algorithm flowchart.  

 

 

 

 

 

 



Introduction  to DSP 

Signal  

A signal is any physical quantity that carries information, and that varies with time, space, or any 

other independent variable or variables. Mathematically, a signal is defined as a function of one or 

more independent variables.  

1 ï Dimensional signals mostly have time as the independent variable. For example,  

Eg., S1 (t) = 20 t2  

2 ï Dimensional signals have two independent variables. For example, image is a 2 ï D signal whose 

independent variables are the two spatial coordinates (x,y)  

Eg., S2 (t) = 3x + 2xy + 10y2  

Video is a 3 ï dimensional signal whose independent variables are the two spatial coordinates, (x,y) 

and time (t).  

Similarly, a 3 ï D picture is also a 3 ï D signal whose independent variables are the three spatial 

coordinates (x,y,z).  

Signals S1 (t) and S2 (t) belong to a class that are precisely defined by specifying the functional 

dependence on the independent variables.  

Natural signals like speech signal, ECG, EEG, images, videos, etc. belong to the class which cannot 

be described functionally by mathematical expressions.  

 

System  

 

A system is a physical device that performs an operation on a signal. For example, natural signals are 

generated by a system that responds to a stimulus or force.  

For eg., speech signals are generated by forcing air through the vocal cords. Here, the vocal cord and 

the vocal tract constitute the system (also called the vocal cavity). The air is the stimulus.  

The stimulus along with the system is called a signal source.  

An electronic filter is also a system. Here, the system performs an operation on the signal, which has 

the effect of reducing the noise and interference from the desired information ï bearing signal.  

When the signal is passed through a system, the signal is said to have been processed.  

 

Processing  

 

The operation performed on the signal by the system is called Signal Processing. The system is 

characterized by the type of operation that it performs on the signal. For example, if the operation is 

linear, the system is called linear system, and so on.  

 

Digital Signal Processing  

 

Digital Signal Processing of signals may consist of a number of mathematical operations as specified 

by a software program, in which case, the program represents an implementation of the system in 

software. Alternatively, digital processing of signals may also be performed by digital hardware 

(logic circuits). So, a digital system can be implemented as a combination of digital hardware and 

software, each of which performs its own set of specified operations.  

 

 

 

 

 

 



Basic elements of a Digital Signal Processing System  

 

Most of the signals encountered in real world are analog in nature .i.e., the signal value and the 

independent variable take on values in a continuous range. Such signals may be processed directly by 

appropriate analog systems, in which case, the processing is called analog signal processing. Here, 

both the input and output signals are in analog form.  

These analog signals can also be processed digitally, in which case, there is a need for an interface 

between the analog signal and the Digital Signal Processor. This interface is called the Analog ï to 

ï Digital Converter (ADC) , whose output is a digital signal that is appropriate as an input to the 

digital processor.  

In applications such as speech communications, that require the digital output of the digital signal 

processor to be given to the user in analog form, another interface from digital domain to analog 

domain is required. This interface is called the Digital ï to ï Analog Converter (DAC).  

In applications like radar signal processing, the information extracted from the radar signal, such as 

the position of the aircraft and its speed are required in digital format. So, there is no need for a DAC 

in this case.  

 

Advantages of Digital Signal Processing over Analog Signal Processing  

 

1. A digital programmable system allows flexibility in reconfiguring the digital signal processing 

operations simply by changing the program.  

 

Reconfiguration of an analog system usually implies a redesign of the hardware followed by testing 

and verification.  

2. Tolerances in analog circuit components and power supply make it extremely difficult to control 

the accuracy of analog signal processor.  

 

A digital signal processor provides better control of accuracy requirements in terms of word length, 

floating ï point versus fixed ï point arithmetic, and similar factors.  

3. Digital signals are easily stored on magnetic tapes and disks without deterioration or loss of signal 

fidelity beyond that introduced in A/D conversion. So the signals become transportable and can be 

processed offline.  

4. Digital signal processing is cheaper than its analog counterpart.  

5. Digital circuits are amenable for full integration. This is not possible for analog circuits because 

inductances of respectable value (ɛH or mH) require large space to generate flux.  

6. The same digital signal processor can be used to perform two operations by time multiplexing, 

since digital signals are defined only at finite number of time instants.  
7. Different parts of digital signal processor can work at different sampling rates. 8. It is very difficult 

to perform precise mathematical operations on signals in analog form but these operations can be 

routinely implemented on a digital computer using software.  

 

Disadvantages of Digital Signal Processing over Analog Signal Processing  

 

1. Digital signal processors have increased complexity.  

2. Signals having extremely wide bandwidths require fast ï sampling ï rate ADCs. Hence the 

frequency range of operation of DSPs is limited by the speed of ADC.  

3. In analog signal processor, passive elements are used, which dissipate very less power.  



 

In digital signal processor, active elements like transistors are used, which dissipate more power.  

The above are some of the advantages and disadvantages of digital signal processing over analog 

signal processing.  

Discrete ï time signals  

A discrete time signal is a function of an independent variable that is an integer, and is represented by 

x [ n ] , where n represents the sample number (and not the time at which the sample occurs).  

A discrete time signal is not defined at instants between two successive samples, or in other words, 

for non ï integer values of n. (But, it is not zero, if n is not an integer).  

 

Discrete time signal representation  

The different representations of a discrete time signal are  

1. Graphical Representation  

-4-3-2-101234-3-2-101234sample number nDT signal x[n]Graphical Representation 

2. Functional representation  

 

x[ὲ]= {1, ὲ=1,  2 34,Ὢέὶ ὲ=2 ,  0,ὩὰίὩύὬὩὶὩ  
 

3. Tabular representation  

N   
- - - - - - -2 -1 0 1 2 3 4 5 - - - - - -  

 

x [ n ]   
- - - - - - 0 0 1 1 4 1 0 0 - - - - - -  

 
4. Sequence representation  

x [ n ] = { - , -, -. -, - , 0, 0, 1, 4, 1, 0, 0, - , - , - , - }  

the above is a representation of a two ï sided infinite duration sequence, and the symbol indicates the 

time origin (n = 0). If the sequence is zero for n < 0, it can be represented as  

x [ n ] = { 1, 4, 1, 2, - , - , - , - }  

Here the leftmost point in the sequence is assumed to be the time origin, and so the symbol is 

optional in this case.  

A finite duration sequence can be represented as  

x[ n ] = { 3, -1, -2, 5, 0, 4, -1}  

This is referred to as a 7 ï point sequence.  

 

Elementary discrete time sequences  

These are the basic sequences that appear often, and play an important role. Any arbitrary sequence 

can be represented in terms of these elementary sequences.  

1. Unit ï Sample sequence It is denoted by ŭ [ n ]. It is defined as  

 

ŭ [ὲ]= {1, fέὶ ὲ=0  
               0,ὶ ὲ π } 
It is also referred as discrete time impulse.  

It is mathematically much less complicated than the continuous impulse ŭ (t), which is zero 

everywhere except at t = 0. At t = 0, it is defined in terms of its area (unit area), but not by its 

absolute value.  



 
 

2. Unit step sequence  

 

It is denoted by u [ n ] and defined as ό[ὲ]= {1,Ὢέὶ ὲ  π 
            0,ὶ ὲ<0  } 
 

 
3. Unit ramp sequence  

 

It is denoted by Ur [ n ], and is defined as  

όὶ [ὲ] = {ὲ, Ὢέὶ ὲ  π  
                  0, Ὢέὶ ὲ < 0 }  

 

4. Exponential sequence 

  a. If a is real, x[n] is a real exponential.  

It is defined as [ὲ] = ὥὲ Ὢέὶ ὥὰὰ ὲ  
a > 1  

a < 1  
b. If a is complex valued, then a can be expressed as a = rejɗ, so that x[n] can be represented as  

-1 < a < 0  

a < -1  

[ὲ] = ὶὲὩὮὲ— = [cos ὲ— + Ὦ sin ὲ—]  
So, x [ n ] is represented graphically by plotting the real part and imaginary parts separately as 

functions of n, which are ὼὙ [ὲ] = ὶὲ cos ὲ—  
                                              ὼὍ [ὲ] = ὶὲ sin ὲ—  
If r < 1, the above two functions are damped cosine and sine functions, whose amplitude is a 

decaying exponential 

If r = 1, then both the functions have fixed amplitude of unity.  

If r > 1, then they are cosine and sine functions respectively, with exponentially growing amplitudes.  

Alternatively, x [ n ] can be represented by the amplitude and phase functions:  

Amplitude function, [ὲ] = |[ὲ]| = ὶὲ  
Phase function, ɲ[ὲ   ᷁ὼ[ὲ] = ὲ—  
Although the phase function ɲ[ὲ] = ὲ— is a linear function of n, it is defined only over an interval of 

2ˊ (since it is an angle).i.e., over an interval ḯ <ɗ<ˊ or 0<ɗ<2ˊ. So we subtract multiples of 2ˊ from 

[ɲὲ] before plotting .i.e., we plot ɲ[ὲ] modulo 2́  instead of ɲ [ὲ]. This results in a piecewise linear 

graph for the phase function, instead of a linear graph.  

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1



 

Analog signal : 

A continuous-time signal with a continuous amplitude is usually called an analog signal. A 

speech signal is an example of an analog signal.  

 

    
 

Discrete time signal : 

 

A with continuous valued amplitudes is called a sampled-data signal. digital signal is thus a 

quantized sampled-data signal.  

 
 

 

 

 

 

 

 

 

 

Classification of signals 



 
 

One dimensional and two Dimensional signal: 

} 1 D signals are a function of a single independent variable. 

}  The speech signal is an example of a 1 D signal where the independent variable is time. 

}  2D signals are a function of two independent variables. 

} An image signal such as a photograph is an example of a 2D signal where the two 

independent variables are the two spatial variables. 

 

 

Random signal: 

} a signal that is generated in a random fashion and can not be predicted ahead of time is 

called a random signal 

} The óshhhhô sound is a good example  

 
 

Classification of Discrete ï Time Sequences:  



 

1. Energy Signals and Power Signals  

 

The energy of a signal x[n] is defined as Ὁ=Ɇ|[ὲ]|2 Ðὲ=īÐ  

If this energy is finite, i.e., 0 < E < Ð, then x[n] is called an Energy Signal.  

For signals having infinite energy, the average power can be calculated, which is defined as 

ὖὥὺ=lim ὔO Ð1/ 2ὔ+1ɫȿὲ]| 2ὔὲ ὔ έὶ, 
ὖὥὺ=lim ὔO Ð1/ 2ὔ+1Ὁὔ,  
ύὬὩὶὩ EN = signal energy of x[n] over the finite interval ïN < n < N, .i.e.,  

Ὁ=limὔŸÐὉὔ  

 For signals with finite energy .i.e., for Energy Signals, E is finite, thus resulting in zero average 

power. So, for energy signals, Pav =0.  

Å Signals with infinite energy may have finite or infinite average power. If the average power is finite 

and nonzero, such signals are called Power Signals.  

¶ Signals with finite power have infinite energy.  

Å If both energy, E as well as average power, Pav of a signal are infinite, then the signal is neither an 

energy signal nor a power signal.  

Å Periodic signals have infinite energy. Their average power is equal to its average power over one 

period.  

Å A signal cannot both be an energy signal and a power signal.  

Å All practical signals are energy signals.  

 

2. Periodic and aperiodic signals  

 

A signal x[n] is periodic with period N if and only if [ὲ+ὔ]=ὼ[ὲ]  ᶅὲ  
The smallest N for which the above relation holds is called the fundamental period.  

If no finite value of N satisfies the above relation, the signal is said to be aperiodic or non ï 

periodic.  

The sum of M periodic Discrete ï time sequences with periods N1, N2, é, NM, is always periodic 

with period N where ὔ=ὒὅὓ(ὔ1,ὔ2ȟȣȟὔὓ)  
 

 

3. Even and Odd Signals  

 

A real ï valued discrete ï time signal is called an Even Signal if it is identical with its reflection 

about the origin .i.e., it must be symmetrical about the vertical axis. ὼ[ὲ]=ὼ ὲ  ὲᶅ  
A real ï valued discrete ï time signal is called an Odd Signal if it is antisymmetrical about the 

vertical axis. ὼ[ὲ ὼ ὲ  ὲᶅ  
From the above relation, it can be inferred that an odd signal must be zero at time origin, n = 0.  

Every signal x[n] can be expressed as the sum of its even and odd components. ὼ[ὲ]=ὼὩ[ὲ]+ὼέ[ὲ]  
Where ὼὩ[ὲ]=ὼ[ὲ]+ὼ ὲ]2 ὼέ[ὲ]=ὼ[ὲ ὼ ὲ]2  
Å Product of even and odd sequences results in an odd sequence.  

Å Product of two odd sequences results in an even sequence.  

Å Product of two even sequences results in an even sequence.  

 

 

4. Conjugate Symmetric and Conjugate Antisymmetric sequences  



 

A complex discrete ï time signal is conjugate ï symmetric if [ὲ]= ὼz ὲ  ὲᶅ  
And conjugate ï antisymmetric if [ὲ ὼz ὲ  ὲᶅ  
Any complex signal can be expressed as the sum of conjugate ï symmetric and conjugate ï 

antisymmetric parts [ὲ]=ὼὧί[ὲ]+ὼὧὥ[ὲ]  
Where [ὲ]=ὼ[ὲ]+ ὼz ὲ]2  
And [ὲ]=ὼ[ὲ ὼz ὲ]2  
 

5. Bounded and Unbounded sequences  

 

A discrete ï time sequence x[n] is said to be bounded if each of its samples is of finite magnitude 

.i.e., |[ὲ ȿὓὼ<Ð ᶅὲ  
For example,  

The unit step sequence u[n] is a bounded sequence,  

but the sequence nu[n] is an unbounded sequence.  

 

 

6. Absolutely summable and square summable sequences  

 

A discrete ς time sequence x[n] is said to be absolutely summable if, ɫȿὲ]|қὲ қ<қ  

And it is said to be square summable if ɫȿὲ]| 2Ðὲ Ð<Ð (╔▪▄►▌◐ ╢░▌▪╪■)  
 

1.Discrete ï Time Systems  

A system accepts an input such as voltage, displacement, etc. and produces an output in response to 

this input. A system can be viewed as a process that results in transforming input signals into output 

signals.  

A discrete ï time system can be represented as [ὲ  ᴼ ὲ] έὶ,[ὲ]= Ὕ {ὼ[ὲ]}  
 
2. Time ï Variant and Time ï Invariant Systems  

A system is time ï invariant if its characteristics and behavior are fixed over time .i.e., a time ï shift 

in input signal causes an identical time ï shift in output signal.  

ὭὪ [ὲ  ᴼ ὲ] ὸὬὩὲ,[ὲ ὲ0  ώO[ὲ ὲ0  ᶪ ὲ0  

If the above the relation is not satisfied, then the system is time ï variant .  

 

 

1.Determine if the following systems are time invariant or time variant. 

 (a) y[n] = x[-n]   

Solution: 

(a) Now if we delay y[n] by k units in time, we obtain 

    y[n,k] = H[x(n -k)]  

   = x[-(n-k)]   

                =  x[-n+k]                 (7) 

  The response to this system to x[n-k] is  

 y[n-k]  = z-k H[x(n)]  

  = x[-n-k]                 (8) 

 which is different from (7). This means the system is time-variant.  

2. Determine if the following systems are time invariant or time variant. 



 (a) y[n] = ax[n]   

Solution: 

(a) The response to this system to x[n-k] is  

      y[n,k] = H[x(n -k)]  

   = ax[n-k]                                     (9) 

 Now if we delay y[n] by k units in time, we obtain 

  y[n-k]  = z-k H[x(n)]  

    = ax[n-k]      (10) 

    (9)=(10) 

 which is same from (10). This means the system is time-Invariant.  

 

 

3. Causal and Non ï causal Systems  

 

A system is causal or non ï anticipatory or physically realizable, if the output at any time n0 

depends only on present and past inputs (n < n0), but not on future inputs.  

In other words, if the inputs are equal upto some time n0, the corresponding outputs must also be 

equal upto that time n0, for a causal system.  

Let x(n) = present input   and y(n)  = present output 

           x(n-1),x(n-2),éééé..are past inputs 

   y(n-1),y(n-2),éééé..are past outputs 

The output of a causal system 

  y(n) = F[x(n),x(n-1),x(n-2),éééé.., y(n),y(n-1),y(n-2),éééé..]. 

 

1.Determine if the systems described by the following input-output equations are causal or 

noncausal. 

 (a) y[n] = x[n] ï x[n-1]   (b) y[n] = ax[n]  (c)  

 (d) y[n] = x[n] + 3x[n+4]    (e) y[n] = x[n2]  

 (f) y[n] = x[-n] 

Solution: The systems (a), (b) and (c) are causal, others are non-causal.  

 

(a) y[n] = x[n] ï x[n-1] 

Solution: 

When n=0,y(0) =x(0)-x(-1)   The response at n=0, y(0) depends on the present input x(0) and past 

input x(-1) 

When n=1,y(1) =x(1)-x(0)   The response at n=1, y(1) depends on the present input x(1) and past 

input x(0) 

From the above analysis, any value of n the system output depends on present and past inputs. Hence 

the system is causal.  

 

(b) y[n] = ax[n] 

Solution: 

When n=0,y(0) =ax(0)     The response at n=0, y(0) depends on the present input x(0) 

When n=1,y(1) =ax(1)             The response at n=1, y(1) depends on the present input x(1) 

From the above analysis, any value of n the system output depends on present and past inputs. Hence 

the system is causal.  

 

(c) 

  
ä
-¤=

=
n

k

kxny ][][



Solution: 

When n=0,                    

            y(0)   =éx(-2)+x(-1)+x(0) 

When n=1, 

y(1) = 

                       =éx(-2)+x(-1)+x(0)+x(1) 

From the above analysis, any value of n the system output depends on present and past inputs. Hence 

the system is causal.  

 

(d) y[n] = x[n] + 3x[n+4] 

Solution: 

When n=0,y(0) =x(0)+3x(4)   The response at n=0, y(0) depends on the present input x(0) and 

future input x(4) 

The response at n=1, y(1) depends on the present input x(1) and 

future  input x(5) 

From the above analysis, any value of n the system output depends on present and future inputs. 

Hence the system is noncausal.  

 

 

4. Stable and unstable systems  

 

A stable system is one in which, a bounded input results in a response that does not diverge. Then 

the system is said to be BIBO stable.  

For a system, if the input is bounded .i.e, ὭὪ |[ὲ ȿὓὼ<Ð ᶅὲ  
And if the corresponding output is also bounded .i.e., |[ὲ]|Òὓώ<Ð ᶅὲ  
Then the system is said to be BIBO stable.  

 

(a)Y(n)= cos[x(n)], check whether the system is stable or not 

 

Solution 

The impulse response of the system must be absolutely summable  

The impulse response is obtained when impulse input is signal ŭ(n) is applied   

When x(n)= ŭ(n) , y(n)=h(n) 

Hence impulse response of the given system  

   h(n) = cos[ŭ(n)]    WKT, ŭ(n) = 1; when n=0 

                   =0; when n Í 0 

When n=0,  h(0) =cos 1 =0.5403 

When n=1,  h(1) =cos 0 =1  

When n=2,  h(2) = cos 0 =1  

  . 

  . 

When n= Ð,  h(Ð) = cos 0 =1 

    h(n)=éé.+1+10.5403+1+1+ééé=Ð  

the stability condition is not satisfied, hence the system is Unstable  

 

 

 

5. Memory and memoryless systems  



 

A system is said to possess memory, or is called a dynamic system, if its output depends on past or 

future values of the input.  

If the output of the system depends only on the present input, the system is said to be memoryless. 

Static versus Dynamic Systems 

 A discrete time system is called static or memory-less if its output at any instant n depends at 

most on the input sample at the same time, but not on the past or future samples of the input. 

  In any other case, the system is said to be dynamic or to have memory. 

 

Examples:  y[n] = x2[n] is a memory-less system, whereas the following are the dynamic systems: 

      (a) y[n] = x[n] + x[n-1] + x[n-2] 

      (b) y[n] = 2x[n] + 3x[n-4]  

 

1.Compute the signal energy and signal power for 

 x[nT] = (-0.5)nu(nT),      T = 0.01 seconds 

solution: 

  

 

 

 

   

 

 

 

 

    

 

 

Sampling Theorem: 

 

The time interval T between successive symbols is called the Sampling Period or Sampling interval 

and its reciprocal 1/T = Fs is called the Sampling Rate (samples per second) or the Sampling 

Frequency (Hertz). 

  

 

 

A relationship between the time variables t and n of continuous time and discrete time signals 

respectively, can be obtained as 

If x(t) is bandlimited with no components of frequencies greater than Fmax Hz, then it is completely 

specified by samples taken at the uniform rate Fs > 2Fmax Hz.  

 

 The  minimum sampling frequency  must be at least twice that of the highest frequency component 

present in the original signal. The minimum sampling rate or minimum sampling frequency, Fs = 

2Fmax, is referred to as the Nyquist Rate or Nyquist Frequency. The corresponding time interval is 

called the Nyquist Interval.  

( ) ( )
2

0

2

5.001.0lim ää
¤

=-=
¤­

-==
n

n
N

Nn
N

dx nTxTE

( ) ää
¤

=

¤

=

=-=
0

2

0

25.001.05.001.0
n

n

n

n

( ) ( )[ ].......25.025.025.0101.0
32
++++=

75/1
25.01

01.0
=

-
=

sF

n
nTt ==



Sampling process 

 

 
 

 



PREREQISTING DISCUSSION ABOUT Z TRANSFORM  

For analysis of continuous time LTI system Laplace transform is used. And for analysis of 

discrete time LTI system z transform is used. Z transform is mathematical tool used for 

conversion of time domain into frequency domain (z domain) and is a function of the complex 

valued variable Z. The z transform of a discrete time signal x(n) denoted by X(z) and given as Ð 

X(z) = × x (n) z ïn  

z-Transform.éé(1) n=-Ð Z transform is an infinite power series because summation index 

varies from -Ð to Ð. But it is useful for values of z for which sum is finite. The values of z for 

which f (z) is finite and lie within the region called as ˈregion of convergence (ROC).  

 

ADVANTAGES OF Z TRANSFORM  

1. The DFT can be determined by evaluating z transform.  

2. Z transform is widely used for analysis and synthesis of digital filter.  

3. Z transform is used for linear filtering. z transform is also used for finding Linear convolution, 

cross-correlation and auto-correlations of sequences.  

4. In z transform user can characterize LTI system (stable/unstable, causal/anti- causal) and its 

response to various signals by placements of pole and zero plot.  

 

ADVANTAGES OF ROC(REGION OF CONVERGENCE)  

1. ROC is going to decide whether system is stable or unstable.  

2. ROC decides the type of sequences causal or anti-causal.  

3. ROC also decides finite or infinite duration sequences.  

 

SOLUTION OF DIFFERENTIAL EQUATION  

One sided Z transform is very efficient tool for the solution of difference equations with nonzero 

initial condition. System function of LSI system can be obtained from its difference equation. 

 Z{x(n-1)} = × x(n-1) z -n (One sided Z transform) n=0  

                  = x(-1) + x(0) z-1 + x(1) z-2 + x(2) z-3 +éééééé  

                  = x(-1) + z-1 [x(0) z-1 + x(1) z-2 + x(2) z -3 +.......................]  

Z{ x(n-1) } = z-1 X(z) + x(-1)  

Z{ x(n-2) } = z-2 X(z) + z-1 x(-1) + x(-2)  

Similarly Z{ x(n+1) } = z X(z) - z x(0)  

Z{ x(n+2) } = z2 X(z) - z 1 x(0) + x(1)  

1. Difference equations are used to find out the relation between input and output sequences. It is 

also used to relate system function H(z) and Z transform. 

 2. The transfer function H(ɤ) can be obtained from system function H(z) by putting z=ejɤ. 

Magnitude and phase response plot can be obtained by putting various values of ɤ. 

 

 

 

 

 

 

 

 

 



INTRODUCTION TO DFT: 

Frequency analysis of discrete time signals is usually performed on digital signal processor, 

which may be general purpose digital computer or specially designed digital hardware. To 

perform frequency analysis on discrete time signal, we convert the time domain sequence to an 

equivalent frequency domain representation. We know that such representation is given by The 

Fourier transform X(ejw) of the sequence x(n). However, X(ejw) is a continuous function of 

frequency and therefore, It is not a computationally convenient representation of the sequence. 

DFT is a powerful computational tool for performing frequency analysis of discrete time signals.  
 

FFT-Decimation in frequency method 

} The decimation of the  frequency  domain  sequence  can be continued Until the results  

sequence are reduced to two-point sequences.  

} The entire process of decimation involves stages of decimation  in-frequency FFT  where m  =  

log,N.  algorithm requires  The  N/2  computation  of  the N-point  log,N complex multiplications  

DFT via the  complex additions. 

 



 

 



 

 



 



 

Compute the 8 point DFT for x(n)={2,2,2,2,1,1,1,1} Using FFT-DIT algorithm 

Step 1: Basic Butterfly structure. 

 

 



Step2 : Find the twiddle factor 

 

Step 3: arrange the given sequence in bit reversed order 

 

 

 



Step 4: 

First stage computation: 

 

 

 

 

 

 

 

 

 

 

 



Step 5: Second stage computation 

 

 

 

 

 

 

 

 

 

 



Step 6 : Third stage computation 

 

The Output sequence of third stage computation  is 

{12,1-j2.414, 0 ,1-j0.414, 0 ,1+j0.414, 0 ,1+j2.414}  . There fore   

X(K)={12,1-j2.414,0,1-j0.414,0,1+j0.414,0,1+j2.414} 

2. Using the 8 point redix-2 DIT-FFT algorithm to nd the DFT of the sequence      

x(n)={0.707,1,0.707,0,-0.707, -1,-0.707,0} 

Step 1: Basic Butterfly diagram

 



Step 2: Find the twiddle factor. 

 

 

 

 

 



     Multiple choice questions with answers 

1.The complex valued twiddle factor WN can be represented as 

A. e-j2ˊ/N  
B. e-j2ˊ 

C. e-j2ˊkN  

D. e-j2ˊN 

 

2.The twiddle factors are multiplied before the add and subtract operations in 

A. DIT radix-2 FFT 

B. DIF radix-2 FFT 

C. Inverse DFT 

D. None of the options 

 

3.In DIF butterfly diagram the twiddle factor is multiplied  ________ add and 

subtract operations 

A. Before 

B. After 

C. In between 

D. None of the above 

4. The structures that uses separate delays for input and output samples is 

A. Direct form ïII  

B. Direct form ïI 

C. Cascade form 

D. Parallel form 

5.In bilinear mapping the ____________ poles of s-plane are mapped into 

_____________ of unit circle z-plane 

A. Right half , exterior 

B. Right half,interior 

C. Left half, exterior 

D.  Left half,interior 

6. In _____________ transformation any strip of width 
Ⱬ

╣
  in s-plane is mapped in 

to the entire z-plane 



A.  pre warping  

B.  impulse invariant  

C.  bilinear 

D. none of the options 

7. In Butterworth approximation the ____________ is ______________ decreasing 

function of frequency. 

A. Magnitude ,monotonically  

B. Phase , monotonically 

C. Phase angle , monotonically  

D. None of the options 

8. The direct form II realization of Nth order IIR  system requires ______delays and 

memory locations 

       A. N-1 

       B. N 

       C. N+1 

       D. N-2   

9. In type I chebyshev approximation the magnitude response is ___________ in 

the passband and ________________ in the stopband. 

A. equiripple,monotonic 

B. Monotonic, equiripple 

C. Equiripple, equi ripple 

D. None of the options 

10. The relation between analog and digital frequency is nonlinear in case of  

A. Impulse invariant transformation 

B. Bilinear transformation 

C. Frequency sampling 

D. All of the above 

11. The poles of Butterworth transfer function lie 

A. symmetrically on a circle in s-plane 

B. Antisymmetrically on a circle in s-plane 

C. symmetrically on an ellipse in s-plane 

D. Antisymmetrically on an ellipse in s-plane  

12. In butteworth approximation ,when N is even, the nature of poles are 

A. One pole is real and other poles are complex 

B. One pole is complex and other poles are real 



C. Complex but not conjugate pair 

D. Complex and exist as conjugate pair 

 

13. Which of the following is true for chebyshev analog filter? 

A.  In type 2 the magnitude response is monotonic in passband  and 

equiripple in stopband 

B. In type 2 the magnitude response is equiripple  in passband  and 

stopband 

C. In type1 the magnitude response is monotonic in passband and 

stopband 

D. In type 1 the magnitude response is monotonic in passband  and 

equiripple in stopband 

 

14. The unnormalized transfer function of lowpass Butterworth filter is obtained 

from normalized transfer function by replacing sn by 

A. sn/ɋC  

B. s/ɋC 

C. snɋC 

D. sɋC 

15. In impulse invariant transformation the digital frequency óɤô for a given analog 

frequency óɋô is given by 

A. ɤ = Tɋ 

B. ɤ =  ɋ/T 

C. ɤ = T/ɋ 

D. ɤ =tan Tɋ 

16. An analog filter has poles  at s=0, s=-2, s= -1 .if impulse invariant 

transformation is employed  then the corresponding poles of digital filters are 

respectively 

A. 0, Ὡ Ⱦ , Ὡ 

B. 0, Ὡ , Ὡ  

C. 0, ὩȾ , Ὡ  

D.    1, Ὡ , Ὡ   

  

 



17. The number of complex addition and multiplications in direct DFT are 

______________and ________ 

A.  (N-1) ,  N2 

B.  N,  N2   

C.        N(N-1) ,  N2 

D.  N(N-1) ,  N 

 

18. The sequence of x(n) is rearranged in the __________________ forms  the 

input of first stage in _____________ 

A. bit reversed, radix-2 DIT FFT 

B. bit reversed , radix -2 DIF FFT 

C.   radix-2 DIT FFT, radix-2 DIF FFT 

D. None of the options 

 

 

19. In DIF radix-2 FFT, if 2 complex numbers ñaò and ñbò are considered and the 

resulting complex number A and B is  

A.   !  Á Â  ȟ" Á Âύ   

"Ȣ    !  Á Â ×  ȟ" Á Âύ   

#Ȣ    !  Á× Â  ȟ" Á× Â 

D.None of the options 

 

 

20. In Bilinear transformation H(z) is obtained by replacing  

A.  s=  

B.  s=  

C.  s=  

D.  s=  

 

  . 

 

 



 

 

 

21. In chebyshev filter the parameter ὔis calculated using _________________ 

from which ὔ is calculated. 

A.       ở

Ở
ờ

Ợ

ỡ
Ỡ

 

B.   ở

Ở
ờ

Ợ

ỡ
Ỡ

 

 

C.  ở

Ở
ờ

Ợ

ỡ
Ỡ

 

 

D.      ở

Ở
ờ

Ợ

ỡ
Ỡ

 

  

 


