SRI CHANDRASEKHARENDRA SARASWATHI VISWA

MAHAVIDYALAYA

(University established under section 3of UGC Act 1956) (Accredited with 'A' Grade by NAAC)

CURRICULUM FOR FULL TIME ELECTRONICS AND COMMUNICATION ENGINEERING

(Applicable for the Students admitted from 2023-24 onwards)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT VISION AND MISSION

VISION

To emerge as a centre of excellence in the field of Electronics and Communication Engineering for producing talented engineers by imparting quality education, innovation, research and Indian values towards growth and development of the society.

MISSION

- To provide essential knowledge and skills to the students for enhancing employable potential to compete globally.
- To establish state of art laboratories for fostering innovation and research in the emerging fields.
- To establish a centre of excellence in collaboration with industries, research laboratories and other organizations to meet the changing needs of society.
- ◆ To develop ethical integrity among the students for facing the real life challenges.
- To promote curricular and co-curricular activities among the students for instilling social responsibility, creativity and entrepreneurship.

Curriculum (2023-24) B.E. (Electronics and Communication Engineering)

Program Outcomes (POs)

1. Engineering knowledge:

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis:

Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions:

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems:

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage:

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society:

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability:

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics:

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work:

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication:

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance:

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Curriculum (2023-24) B.E. (Electronics and Communication Engineering)

12. Life-long learning:

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Professional Educational Objectives (PEOs) for B.E (ECE):

PEO 1: Core Competence

To produce graduates with an understanding of fundamentals and applications of Electronics and Communication Engineering.

PEO 2: Professional Development

To instill students with engineering breadth to create, innovate and contribute effective solutions for multidisciplinary real-life problems.

PEO 3: Learning Attitude

To augment the ability and attitude to adapt towards the growth of technology and social challenges.

PEO 4: Professionalism

To inculcate in students, professional and ethical attitude with spiritual exposure, effective communication skills and teamwork to become a successful professional.

DEFINITION OF CREDIT:

No of hours per week	No of credits
1 Hr. Lecture (L) per week	1
1 Hr. Tutorial (T) per week	1
1 Hr. Practical (P) per week	0.5

COURSE CODE AND DEFINITION:

COURSE CODE	DEFINITIONS
L	Lecture
Т	Tutorial
Р	Practical
BSC	Basic Science Courses
ESC	Engineering Science Courses
HSMC	Humanities / Social Sciences / Management Courses
PCC	Programme Core Courses
PEC	Professional Elective Courses
OEC	Open Elective Courses
LC	Laboratory Course
MC	Mandatory Courses
PIIC	Project / Industrial Practice / Internship

CREDIT DISTRIBUTION:

SL.NO	CATEGORY	CREDITS
1.	Basic Science Courses (BSC)	29
2.	Engineering Science Courses (ESC)	20
3.	Programme Core Courses (PCC)	75
4.	Professional Elective Courses (PEC)	21
5.	Humanities / Social Sciences / Management Courses (HSMC)	06
6.	Project / Industrial Practice / Internship (PIIC)	12
7.	Open Elective Courses (OEC)	09
8.	Mandatory Course (MC) *	14*
	Total Credits	172

• Not calculated for CGPA

Curriculum (2023-24)

B.E. (Electronics and Communication Engineering)

CURRICULUM FOR FULL TIME BE (ECE) REGULATIONS

(For candidates admitted during the year 2023-24 onwards)

<u>SEMESTER – I</u>

Sl.No	Subject Code	Subject Name	Categor y	L	Т	Р	С	IA	EA	ТМ
1.	CHSEN18T10	ENGLISH	HSMC	2	1	0	3	40	60	100
2.	CBSMA18T20	MATHEMATICS –I (CALCULUS AND DIFFERENTIAL EQUATIONS)	BSC	3	1	0	4	40	60	100
3.	CBSPH18T30	ENGINEERING PHYSICS	BSC	3	0	0	3	40	60	100
4.	CESCS18T40	PROGRAMMING FOR PROBLEMSOLVING	ESC	2	1	0	3	40	60	100
Labor	ratory									
5.	CBSPH18P50	PHYSICS LABORATORY	BSC	0	0	3	2	40	60	100
6.	CESCS18P60	PROBLEM SOLVING PROGRAMMING LABORATORY	ESC	0	0	3	2	40	60	100
7.	CESME18P70	E18P70 WORKSHOP/MANUFACTURING PRACTICES		0	0	3	2	40	60	100
			Total	10	3	9	19	-	-	700

<u>SEMESTER –II</u>

Sl.No	Subject Code	Subject Name	Category	L	Т	Р	С	IA	EA	ТМ
1.	CBSMA68T10	MATHEMATICS – II (LINEAR ALGEBRA, TRANSFORMCALCULUS AND NUMERICAL METHODS)	BSC	3	1	0	4	40	60	100
2.	CBSCH18T20	ENGINEERING CHEMISTRY	BSC	3	0	0	3	40	60	100
3.	CESME18P50	ENGINEERING GRAPHICS ANDDESIGN	BSC	1	0	2	3	40	60	100
4.	CESEE18T30	BASIC ELECTRICAL ENGINEERING	ESC	3	0	0	3	40	60	100
5.	CMCCH28T50	ENVIRONMENTAL SCIENCE AND ENGINEERING *	MC*	2	0	0	2 *	40	60	100
Labora	itory									
6.	CBSCH18P60	CHEMISTRY LAB	BSC	0	0	3	2	40	60	100
7.	CESEE18P70	BASIC ELECTRICAL ENGINEERING LABORATORY	ESC	0	0	3	2	40	60	100
			Total	12	1	8	17	-	-	700

Curriculum (2023-24) B.E. (Electronics and Communication Engineering)

SEMESTER-III

Sl.No	Subject Code	Subject Name	Category	L	Т	Р	С	IA	EA	ТМ
1.	BECF183T10	MATHEMATICS –III (PROBABILITY AND STATISTICS)	BSC	3	1	0	4	40	60	100
2.	BECF183T30	ELECTRONIC DEVICES	PCC	3	0	0	3	40	60	100
3.	BECF183T40	DIGITAL SYSTEM DESIGN	PCC	3	0	0	3	40	60	100
4.	BECF183T50	SIGNALS AND SYSTEMS	PCC	3	0	0	3	40	60	100
5.	BECF183T60	NETWORK THEORY	PCC	3	0	0	3	40	60	100
6.	BECF183T20	OBJECT ORIENTED PROGRAMMINGUSING C++	ESC	2	1	0	3	40	60	100
7.	BECF183MC2	SANSKRIT AND INDIAN CULTURE *	MC^*	2	0	0	2*	40	60	100
8.	BETF183MC3	SOFT SKILLS – I *	MC^*	-	0	0	1*	-	-	-
Labora	tory									
9.	BECF183P80	ELECTRONIC DEVICES LABORATORY	PCC	0	0	3	2	40	60	100
10.	BECF183P90	DIGITAL SYSTEM DESIGN LABORATORY	PCC	0	0	3	2	40	60	100
11.	BECF183P70	OBJECT ORIENTED PROGRAMMING LABORATORY USING	ESC	0	0	3	2	40	60	100
		C++	Total	19	2	9	25			1100

SEMESTER-IV

Sl.No	Subject Code	Subject Name	Catego ry	L	Т	Р	С	IA	E A	ТМ
1.	CBSMAJ8T10	MATHEMATICS-IV (CALCULUS, SPECIAL FUNCTIONS AND DESIGN OF EXPERIMENTS)	BSC	3	1	0	4	40	60	100
2.	BECF184T20	ANALOG ELECTRONICS	PCC	3	0	0	3	40	60	100
3.	BECF184T30	ANALOG AND DIGITAL COMMUNICATION	PCC	3	0	0	3	40	60	100
4.	BECF184T40	MICROPROCESSOR AND MICROCONTROLLERS	PCC	3	0	0	3	40	60	100
5.	BECF186T10	CONTROL SYSTEMS	PCC	3	0	0	3	40	60	100
6.	BECF184T60	ELECTROMAGNETIC FIELDS ANDWAVEGUIDES	PCC	3	0	0	3	40	60	100
7.	BETF184MC4	SOFT SKILLS – II *	MC^*	0	0	0	1*	40	60	100
Labora	tory		•			•	•	•		
8.	BECF184P70	ANALOG ELECTRONICS LABORATORY	PCC	0	0	3	2	40	60	100
9.	BECF184P80	ANALOG AND DIGITAL COMMUNICATION LABORATORY	PCC	0	0	3	2	40	60	100
10.	BECF184P90	MICROPROCESSOR AND MICROCONTROLLERS LABORATORY	PCC	0	0	3	2	40	60	100
			Total	18	1	9	25	-	-	1000

Curriculum (2023-24) B.E. (Electronics and Communication Engineering)

SEMESTER-V

Sl.No	Subject Code	Subject Name	Category	L	Т	Р	С	IA	EA	ТМ
1.	BECF184P70	MICROWAVE ENGINEERING	PCC	3	0	0	3	40	60	100
2.	BECF184P80	COMPUTER ARCHITECTURE	PCC	3	0	0	3	40	60	100
3.	BECF184P90	DIGITAL SIGNAL PROCESSING	PCC	3	0	0	3	40	60	100
4.	BECF184P70	COMPUTER AIDED SYSTEM DESIGN	PCC	3	0	0	3	40	60	100
5.	PEC - I	PROFESSIONAL ELECTIVE COURSE -I	PEC	3	0	0	3	40	60	100
6.	OEC - I	OPEN ELECTIVE COURSE- I	OEC	3	0	0	3	40	60	100
7.	BETF18MC05	SOFT SKILLS – III *	MC^*	-	0	-	1*	-	-	-
Labora	atory									
8.	BECF185P60	ELECTROMAGNETIC FIELDS AND MICROWAVE LABORATORY	PCC	0	0	3	2	40	60	100
9.	BECF185P70	DIGITAL SIGNAL PROCESSING LABORATORY	PCC	0	0	3	2	40	60	100
10.	BECF185P80	COMPUTER AIDED SYSTEM DESIGN LABORATORY	PCC	0	0	3	2	40	60	100
			Total	18	0	9	24	-	-	1000

<u>SEMESTER –VI</u>

Sl.No	Subject Code	Subject Name	Category	L	Т	Р	С	IA	EA	ТМ
1.	BECF184T50	MEASUREMENTS AND INSTRUMENTATION	ESC	3	0	0	3	40	60	100
2.	BECF186T20	COMPUTER NETWORKS	PCC	3	0	0	3	40	60	100
3.	PEC - II	PROFESSIONAL ELECTIVE COURSE -II	PEC	3	0	0	3	40	60	100
4.	OEC - II	OPEN ELECTIVE COURSE - II	OEC	3	0	0	3	40	60	100
5.	BECF185EA0	VLSI DESIGN	PCC	3	0	0	3	40	60	100
6.	BECF186T40	EMBEDDED SYSTEMS	PCC	3	0	0	3	40	60	100
7.	BETF18MC06	SOFT SKILLS – IV*	MC^*	0	0	-	1*	-	-	-
Labora	ntory									
8.	BECF186P70	COMPUTER NETWORKS LABORATORY	PCC	0	0	3	2	40	60	100
9.	BECF186P80	EMBEDDED SYSTEMS DESIGN LABORATORY	PCC	0	0	3	2	40	60	100
10.	0. BECF186P90 VLSI DESIGN LABORATORY		PCC	0	0	3	2	40	60	100
			Total	15	0	9	24	-	-	1000

SEMESTER –VII

Sl.No	Subject Code	Subject Name	Category	L	Т	Р	С	IA	EA	ТМ
1.	PEC - III	PROFESSIONAL ELECTIVE COURSE -III	PEC	3	0	0	3	40	60	100
2.	PEC - IV	PROFESSIONAL ELECTIVE COURSE- IV	PEC	3	0	0	3	40	60	100
3.	PEC - V	PROFESSIONAL ELECTIVE COURSE -V	PEC	3	0	0	3	40	60	100
4.	OEC - III	OPEN ELECTIVE COURSE III	OEC	3	0	0	3	40	60	100
5.	BECF187T50	OPTICAL COMMUNICATION	PCC	3	0	0	3	40	60	100
6.		CYBER SECURITY	MC^*	3	0	0	1^*	40	60	100
Labor	atory									
7.	BECF197P60	OPTICAL COMMUNICATION LABORATORY	PCC	0	0	3	2	40	60	100
8.	BECF187P70	INDUSTRIAL VISIT / INTERNSHIP TRAINING**	MC^*	0	0	0	2*	-	-	100
9.	BECF187Z80	PIIC	0	0	0	2	40	60	100	
			Total	15	0	3	19	-	-	800

** To be completed before end of VI Semester

SEMESTER –VIII

Sl.No	Subject Code	Subject Name	Category	L	Т	Р	С	IA	EA	ТМ
1.	PEC - VI	PROFESSIONAL ELECTIVE COURSE VI	PEC	3	0	0	3	40	60	100
2.	PEC - VII	PROFESSIONAL ELECTIVE COURSE VII	PEC	3	0	0	3	40	60	100
3.	BECF186T30	PRINCIPLES OF MANAGEMENT AND PROFESSIONAL ETHICS	HSMC	3	0	0	3	40	60	100
4.		UNIVERSAL HUMAN VALUES	MC^{*}	2	1	0	3*	40	60	100
Labora	atory									
5.	BECF188Z40	PROJECT WORK - PHASE-II	PIIC	0	0	0	10	40	60	100
			Total	9	0	0	19	-	-	400

Total Credits: 172

SUMMARY OF CREDIT DISTRIBUTION

CLN	C				Se	mester	•			T ()
Sl.No.	Course	Ι	II	III	IV	V	VI	VII	VIII	Total
1.	HSMC	3	-	-	-	-	-	-	3	06
2.	BSC	9	12	4	4	-	-	-	-	29
3.	ESC	7	5	5	-	-	3	-	-	20
4.	PCC	-	-	16	21	18	15	5	-	75
5.	PEC	-	-	-	-	3	3	9	6	21
6.	OEC	-	-	-	-	3	3	3	-	09
7.	PIIC	-	-	-	-	-	-	2	10	12
8.	MC*	-	2 [*]	3*	1^{*}	1*	1^{*}	3*	3*	14*
9.	TOTAL	19	17	25	25	24	24	19	19	172

* Not calculated for CGPA

AICTE RECOMMENDATIONS

Sl.No.	CATEGORY	CREDITS [AICTE]	CREDITS [SCSVMV- ECE]
1.	Basic Science Courses (BSC)	25	29
2.	Engineering Science Courses (ESC)	24	20
3.	Programme Core Courses (PCC)	48	75
4.	Professional Elective Courses (PEC)	18	21
5.	Humanities/Social Science/ Management Courses (HSMC)	12	06
6.	Project/ Industrial Practice/ Internship (PIIC)	15	12
7.	Open Elective Courses (OEC)	18	09
8.	Mandatory Course (MC)	-	14*
	Total Credits	160	172

• Not calculated for CGPA

LIST OF PROFESSIONAL ELECTIVES COURSES [PEC]

PROFI	ESSIONAL ELECTIVE COU	JRSE - I
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF185EA0	ANTENNAS AND PROPAGATION
2.	BECF185EB0	INFORMATION THEORY AND CODING
3.	BECF187EJ0	ADVANCED MICROCONTROLLERS
PROFI	ESSIONAL ELECTIVE COU	JRSE - II
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF185EB0	MULTIMEDIA COMPRESSION TECHNIQUES
2.	BECF185EC0	NANO ELECTRONICS
3.	BECF187ER0	RF DESIGN
PROFI	ESSIONAL ELECTIVE COU	JRSE - III
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF187EG0	DIGITAL IMAGE AND VIDEO PROCESSING
2.	BECF187EH0	WIRELESS SENSOR NETWORKS
3.	BECF187EI0	ASIC DESIGN
4.	BECF185EC0	INTRODUCTION TO MEMS
PROFI	ESSIONAL ELECTIVE COU	JRSE - IV
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF187EK0	MOBILE COMMUNICATION AND NETWORKS
2.	BECF187EL0	CMOS IC DESIGN
3.	BECF187EM0	SPEECH AND AUDIO PROCESSING
4.	BECF187EN0	HIGH SPEED ELECTRONICS
PROF	ESSIONAL ELECTIVE COU	JRSE - V
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF187EO0	BIO-MEDICAL ELECTRONICS
2.	BECF187EP0	MIXED SIGNAL DESIGN
3.	BECF187EQ0	ADAPTIVE SIGNAL PROCESSING
4.	BECF187OEL	ADHOC NETWORKS
5.		EMBEDDED PRODUCT DEVELOPMENT

Curriculum (2023-24) B.E. (Electronics and Communication Engineering)

PROFI	ESSIONAL ELECTIVE CO	URSE - VI
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF188ES0	NEURAL NETWORKS AND FUZZY LOGIC
2.	BECF188ET0	5G / 4G CELLULAR SYSTEMS
3.	BECF188EU0	ERROR CORRECTING CODES
4.	BECF188EV0	VLSI TESTING
5.		SMART ANTENNA FOR MOBILE COMMUNICATION AND GPS
PROFI	ESSIONAL ELECTIVE COU	JRSE - VII
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF188EW0	SATELLITE COMMUNICATION
2.	BECF188EX0	RADAR AND NAVIGATIONAL AIDS
3.	BECF188EY0	WAVELETS AND ITS APPLICATIONS
4.	BECF188EZ0	SOFTWARE DEFINED RADIO
5.	BECF188OET	IOT ARCHITECTURE & PROTOCOLS
6.		5G WIRELESS COMMUNICATION SYSTEMS

LIST OF OPEN ELECTIVES COURSES [OEC]

OPEN	ELECTIVE COURSE -	[
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF1850EA	DISASTER MANAGEMENT
2.	BECF185OEB	CRYPTOGRAPHY & NETWORK SECURITY
3.	BECF185OEC	NANO SCIENCE
4.	BECF185OED	PLC AND DISTRIBUTED CONTROL SYSTEM
5.	BECF185OEE	AUTOTRONICS
OPEN	ELECTIVE COURSE - 1	Π
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF186OEF	REMOTE SENSING & GIS
2.	BECF186OEG	BIG DATA ANALYTICS
3.	BECF186OEJ	3D PRINTERS & APPLICATIONS
4.	BECF187OEO	GLOBAL POSITIONING SYSTEMS
5.		MACHINE LEARNING
OPEN	ELECTIVE COURSE - 1	Ш
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF187OEK	SENSORS & ACTUATORS
2.	BECF187OEM	ARTIFICIAL INTELLIGENCE
3.	BECF188OEP	ROBOTICS & AUTOMATION
4.	BECF188OES	CLOUD COMPUTING
5.		BLOCK CHAIN TECHNOLOGY
FORE	IGN LANGUAGES	
S.NO	SUBJECT CODE	SUBJECT NAME
1.	BECF18OECO1	FRENCH PRIMER
2.	BECF18OECO2	GERMAN PRIMER
3.	BECF18OECO3	JAPANESE PRIMER

Curriculum (2023-24) B.E. (Electronics and Communication Engineering)

VALUE ADDED COURSES

The ever-changing global scenario makes the world more competitive and requires high levels of lateral thinking and the spirit of entrepreneurship to cope up with the emerging challenges. Many a times, the defined skill sets that are being imparted to students today with Programme Specific Objectives in educational institutions become redundant sooner than later due to rapid technological advancements. These courses supplement the curriculum to make students better prepared to meet the industrial demands as well as to develop their own interests and aptitudes.

The number of hours will be 30 hours per course and the certificate shall be awarded by the department.

Objectives:

- ✤ To improve employability skills of students.
- ✤ To bridge the skill gaps and make students industry ready.
- ✤ To provide students an understanding of the expectations of industry.
- ✤ To cast students as job providers rather than job seekers.
- ✤ To provide an opportunity to students to develop inter-disciplinary skills.

List of Courses Offered:

S.No	Course Name									
1.	HANDS ON TRAINING ON "DIGITAL IMAGE PROCESSING AND									
1.	MACHINE LEARNING APPLICATIONS"									
2.	REAL TIME APPLICATIONS USING MATLAB/PYTHON/R STUDIO									
3.	CONSUMER ELECTRONICS FOR SMART HOME AUTOMATION									
4.	PCB DESIGN AND FABRICATION									
5.	WEARABLE ELECTRONICS IN HEALTHCARE									
6.	ROBOTICS USING ARDUINO FOR AUTOMATION									
7.	SERVICING OF ELECTRONIC GADGETS									

SEMESTER - I

Course Cod	le		CHSE	N18T	10			Ι		Т	Р	C	IA	EA	\ '	ГМ	
Course Nan	ne		ENGL	ISH				2	2	1	0	3	40	60)]	00	
Course Cat	egory			NCE/		OCIAI AGEM			;	Sylla	abus	Revis	ion		V.1.0)	
Pre-requisit	te																
Course Obj		es:															
The course s	•		le the s	tudent	s:												
1. To e	nhanc	e stud	ent pro	ficien	cy in E	english	langu	age sk	ills	5.							
2. To d	evelor	stude	ents ab	ility to	think	analyti	ically,	specu	lati	ively	, and	imagi	native	ly.			
			s see th												and		
abilit	tiesval	luable	in busi	ness, te	eaching	g, publis	shing,	etc.									
Course Out	come	s:															
On completi	ion of	the co	ourse, t	he stuc	lent w	ill be a	ble to	:									
Course						Desc	criptio	n]	Highe	st	
Outcomes	;											Bloom's					
														Ta	axono	my	
CO1		Understand the nuances of grammar and vocabulary in speaking and writing.									aking		K2				
CO2			0	mnrah	and di	fforon	tanal	con ov	0.01	nta	mitico	11	for		K1		
02			and conditional co	-		merem	i spok		cerj	pis (linca	шу, п	nei		N1		
CO3	S	peak	convin	cingly	, exp	ress th	heir c	pinior	ıs	clea	rly, i	initiate	e a		K4		
	di	iscussi	ion, ne	gotiate	e, and	argue	using	appro	pria	ate c	comm	unicat	ive				
	st	rategi	es.														
CO4	R	ead di	ifferent	genre	es of te	exts, ir	nfer in	nplied	me	eanir	ngs ar	nd crit	ically		K2		
	ar	nalyze	and	evalua	te the	m for	ideas	s as v	vell	l as	for	Metho	od of				
	pr	resenta	ation.														
CO5	W	/rite	effecti	vely	and p	persuas	sively	and	by	y u	sing	differ	ent		K4		
		-	ues of	•					-		-						
		0	nt as y	well a	s crea	tive, c	ritical	, anal	ytic	cal a	and E	valuat	ive				
	W	riting.															
Correlation	hater	oon (OURSe	Outor	mag	COa) -	and D	rara	n (Juto	omor)•				
Correlation		cen C	Juise	Juico	mes (rogral	n	Juic	omes	(1 US)•	l n	rogra	<u>m</u>	
															Specifi		
				P	rogra	m Out	tcome	s (PO	5)						-		
COs															Outcomes (PSOs)		
	PO	PO	PO	PO	PO	PO	PO	PO	Р	0	PO	PO	PO	PS	PS	PS	
	1	2	3	4	5	6	7	8		9	10	11	12	01	02	03	
			-	I -		-			<u> </u>	-	_ •			· · ·			

			_	_						_	_	_	_	_	
CO1	-	-	-	-	М	L	L	L	М	М	L	М	_	-	-
CO2	-	-	-	-	М	L	L	L	L	L	L	М	-	-	-
CO3	-	-	-	-	L	L	L	L	L	L	L	L	-	-	-
CO4	_	_	-	-	L	L	L	L	L	L	L	L	-	_	-
C05	_	-	-	-	М	L	L	L	М	М	L	М	-	-	-
		I			.	•		L	L		1	1	1		I
UNIT-I			_		BUI	-	-							9 Ho	
The conce Acquainta Synonyms	nce wit	h pref	fixes a	ind su	ffixes	from	foreig		0	0 0				U	
UNIT-II		BAS	IC W	RITIN	G SK	ILLS								9 Ho	urs
Sentence S - Creating precisely.			-						-		-				riting
UNIT-III		IDF	NTIFY	VINC	COM	MON	ERR	ORS I	NWR	TTIN	r.			9 Ho	urs
Subject-ve												Article	c _ Dr		
Redundan	-			in pio	noun	agreen	nent -	mspi	aceu I	nounn	5 15 - <i>1</i>	AITICIE	S - FI	epositi	0115 -
Reduitdan		menes.													
UNIT-IV		NAT	URE	AND	STYL	E OF	SENS	IBLE	WRI	ΓING				9 Ho	urs
Describing	g – Det	fining	– Cla	ssifyiı	ng - F	Providi	ing ex	ample	s or e	eviden	ce -W	riting	intro	ductior	and
conclusion	1.	C			C		U	•				U			
		I													
UNIT-V					CTIC									9 Ho	urs
Comprehe	ension -	Précis	Writin	ng - Es	say W	riting.									
UNIT-VI		ORA		MMI	JNICA		N								
(This invo								Lab)							
Listening			-						ress a	nd Rh	vthm	- Co	mmor	n Ever	vdav
ituations:	-										-				
Presentati		5001011		2 101	8	000				, or np					
											T	'otal H	lours	45 H	ours
Text Boo	k(s)													1	
1.	Practica	al Engl	ish Us	age. N	/lichae	lSwan	.OUP.	4 th edi	tion.						
2.	Remedi	0		0)14.					
3.	On Wri										May 2	006.			
Reference					-		_				5				
1.	Study V		, Liz I	Hamp	– Lvoi	ns and	Ben F	leasly.	Camb	ridge	Unive	rsitv P	ress. 2	2 nd editi	on.
			,, I	' P			1				• •	~-• j 1	, -	- 0101	,

	31 st Jan2007.
2.	Communication Skills, Sanjay Kumar and PushpaLata, Oxford University Press, 2 nd Edition,
	2015.

Course (Code	CBSMA18T20	L	Т	Р	C	IA	EA	ТМ
Course N	Name	MATHEMATICS -I	3	1	0	4	40	60	100
		(CALCULUS AND							
		DIFFERENTIAL							
		EQUATIONS)							
Course (Category	BASIC SCIENCE COURSE		Sylla	ous Re	vision	"		V.1.0
Pre-requ									
	Objectives								
The cour	se should	enable the students							
1. T	he obiecti	ve of this course is to familiarize	the pr	ospect	ive en	oineer	s with	techni	aues in
	•	ferential equations and sequence and	-	-		Smeet	5 11 11	teenin	ques m
		quip the students with standard con			ols at a	n inter	media	te to a	lvanced
		ill serve them well towards tackling	-						
Course (Dutcomes								
On comp	letion of the	he course, the student will be able to)						
Course		Description						Hi	ghest
Outcom	e	-							oom's
S								Tax	onomy
CO1	The c	concept of convergence and diverge	nce an	d their	testin	σ that	is		K3
		umental to application of analysis to				-	15		
CO2		effective mathematical tools for th	_	_	-		ıl		К5
	equat	ions that model physical processes.							
CO3		pply differential and integral calculu	s to no	otions	of cur	vature	and		K5
		proper integrals. Apart from some							
	have	a basic understanding of Beta and	Gamm	a func	tions.				
CO4	The r	nathematical tools needed in evalua	ating n	nultiple	e integ	rals ar	ıd		К5
	their	usage. To deal with functions of s	several	l varia	bles th	nose ar	e		
	essen	tial in most branches of engineering							
CO5	To i	mprove the ability of numerical	com	putatic	ons to	find	the		K3
	soluti	ons of a given polynomial and tra	anscen	dental	equati	ions al	ong		
	know	ing the process of inter and extra	apolati	ons th	at imp	proves	the		
	abilit	y of solving helps to perform	com	outatio	nal ei	nginee	ring		
	probl	ems.							
Correlat	ion betwe	en Course Outcomes (COs) and H	Progra	m Ou	tcome	s (POs):		
								Pro	ogram
COs		Program Outcomes	(POc)					Sp	ecific
003		i iogram Outcomes	(1 (3)						comes
								(P	SOs)

	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	S	S	S	S	-	М	-	-	М	М	М	-	-	-
CO2	S	S	S	S	S	-	-	-	М	М	L	М	-	-	-
CO3	S	S	S	S	S	-	М	-	L	М	L	М	-	-	-
CO4	S	S	S	S	S	-	М	L	М	М	М	М	-	-	-
CO5	S	S	S	S	S	-	L	-	L	М	L	Μ	-	-	-

UNIT-I

SEQUENCESAND SERIES

Convergence of sequence and series -Tests for convergence -Comparison,-Ratio- Cauchy's Root-Raabe's test-logarithmic test- Fourier series: Half range sine and cosine series-Parseval's theorem.

UNIT-II DIFFERENTIAL EQUATIONS

Second order linear differential equations with constant coefficients–Cauch Euler equation, Legendre equation-Method of variation of parameters-First order partial differential equations: Formation of PDE -solutions of first order linear PDEs.

UNIT-III CALCULUS

Evaluation of definite integral-Applications of definite integrals- To evaluate surface areas and volumes of revolutions; Beta and Gamma functions and their properties.

UNIT-IV MULTIVARIABLE CALCULUS

Multiple Integration-double and triple integrals (Cartesian and polar)-change of order of integration in double integrals-Change of variables(Cartesian and polar) Applications - areas and volumes by double integration-Center of mass and Gravity (constant and variable densities).

UNIT-V NUMERICAL METHODS

Solution of polynomial and transcendental equations–Bisection method-Newton-Raphson method-Regula-Falsi method- Finite differences-Interpolation using Newton's forward and backward difference formulae- Central difference interpolation-Gauss's forward and backward formulae.

Total Hours 60 Hours

Text Book(s)

1. B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition Jan2010. **Reference Book(s)**

1. G.B.Thomas and R.L.Finney, Calculus and Analytic geometry, Pearson, 9th Edition Jan2010.

2. T.Veerarajan, Engineering Mathematics, Mc Graw-Hill, New Delhi, 3rd Edition 2011.

3. B.V.Ramana, Higher Engineering Mathematics, Mc Graw Hill, New Delhi, 2010.

4. N.P.Baliand M.Goyal, A text book of Engineering Mathematics, Laxmi Publications, 9th Edition, 2016.

12 Hours

12 Hours

12 Hours

12 Hours

12 Hours

Course Code	CBSPH18T30	L	Т	Р	С	IA	EA	TM
Course Name	ENGINEERING PHYSICS	3	0	0	3	40	60	100
Course	BASIC SCIENCE COURSE	Syllabus Revision						V.1.0
Category								
Pre-requisite							•	

Course Objectives:

The course should enable the students -

- 1. Theory of Interference-Newton strings, Michelson Interferometer and Fresnel and Fraunhoffer diffraction, Diffraction due to "n" slits Plane Transmission grating.
- 2. Energy distribution in black body Planck's law, De Broglie matter waves dual nature and expression, Schrodinger Time Independent and Dependent, wave equation, Expression for particle in1-D box and applications.
- Laser Principles and Properties, Einstein's theory, Types of lasers Nd: YAG and CO2 laser Applications of lasers – IR Thermograph, Optical fibers-Types of optical fibers, Acceptance angle and numerical aperture, Fiber losses, Applications in engineering and medicine.
- 4. PN Junction diode and Zener diode V-I characteristics, BJT, SCR, FET, D-MOSFET, E-MOSFET Characteristics, Characteristics of CMOS, Logic Gates and Universal Building Blocks.
- 5. Fundamentals of dielectric materials, Internal field and Clausius Mossotti relation, Super conductors–properties and types BCS theory, Nano materials Synthesis, Ball milling and PVD method.Principle and properties of SMA and Biomaterials.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest Bloom's
Outcom		Taxonomy
es		
CO1	To develop an understanding of the principles of optics.	K2
CO2	Experience the diverse applications of the wave equation. Learn	K4
	the mathematical tools needed to solve quantum Mechanics	
	problems.	
CO3	To provide adequate knowledge on laser fundamentals types and	K2
	applications and to expose the basics of signal propagation	
	through	
	fiber optics	
CO4	Understand the principles and concepts of semiconductor Physics.	K2
	Understand and utilize the mathematical models of Semi conductor	
	junctions and MOS transistors for circuits and systems.	
CO5	Acquire basic knowledge on various newly developed smart	K2
	materials.	

				Pr	ogran	n Out	come	s (POs	5)					0	n Specific es (PSOs)
COs	РО	PO	PO	PO	PO	P	PO	PO	PO	PO	P	PO	PS	P	PSO3
COS	1	2	3	4	5	06	7	8	9	10	0	12	01	S	
											1			0	
											1			2	
CO1	S	S	М	М	М	L	М	L	М	М	L	L	-	-	-
CO2	S	S	S	S	S	М	М	L	М	М	L	L	-	-	-
CO3	S	S	S	S	S	М	М	М	М	S	S	S	-	-	-
CO4	S	S	S	S	S	L	L	L	М	М	Μ	М	-	-	-
CO5	М	М	М	М	М	S	S	М	М	М	М	М	-	-	-
UNIT-	I	WAY	VE O	PTIC	S									9 Ho	urs
Iuvgei	ıs' pr	inciple	e, sun	erposi	ition a	of wa	ves –	Theory	y of i	interfe	renc	e of	light -	Young	's double s
	-	-	· •	-				•	•				0	•	
-						-								-	g. Fresnel a
Fraunh	ofer d	iffract	tion-	diffrac	ction d	lue to	'n' s	lits- pl	lane t	ransm	issio	n grat	ing. R	ayleigł	n criterion f
imit of	resol	ution -	- resol	ving p	ower	ofgra	ting.								
UNIT-		•			IYSIC									9 Ho	
Black b	ody r	adiatio	on-Pla	nck's	law –	Energ	gy dist	tributi	on fur	nction,	Wa	ve – j	particle	e duali	ty-de Brog
natter	waves	- Co	oncept	of w	ave fi	inctio	n and	its pł	nysica	l sign	ifica	nce –	Heise	nberg'	s Uncertain
Princip	le – S	chrodi	inger's	s wav	e equa	tion –	- Time	e indep	pender	nt and	Tim	e dep	endent	equati	ons – Partic
n a on	e dime	ension	al rigi	d box	– tuni	neling	(Qual	litative	e) - Sc	cannin	g tu	nnelin	g micr	oscope	•
UNIT-	III	PHC	DTON	ICS										9 Ho	urs
Einstei	n's th	eory	of ma	atter	radiati	on in	teract	ion ar	nd A	and	B co	oeffici	ients;	Proper	ties of lase
pontar	neous	and st	imulat	ted en	nissior	n, amp	olificat	tion of	f light	by po	pula	tion i	nversio	on, diff	erent types
-									0	• •	-		rmogra		~ 1
				•		-							-		xpression f
-		-	-		• •								1010	1033-17	
accept	ance a	ingle a	inu nu	meric	ai apei	iture.	дри	auon	-Com	mume	at 101	1.			
UNIT-	IN/	SEM		NDU	TOD		ICES	AND			TIO	NIC		9 Ho	1180
													da ar i		
															haracteristic
				-	-										ET, MOSFE
1 01	10S c	haract	eristic	es. Bas	sic log	ic gat	es - N	AND,	NOR	as Ur	niver	sal bu	ilding	block.	
and CN				<u> </u>		0.35								0.77	
	• 7					1 ' N/L	ATER	TALS						9 Ho	urc
UNIT-			V ENO								- /				
UNIT- Dielect	ric n	nateri	als: I	Defini						vn –	Die	lectric	loss		
UNIT-	ric n	nateri	als: I	Defini						vn –	Die	lectric	loss		ernal field
U NIT- Dielect Claussi	ric n us Mo	n ateri ossotti	als : I relatio	Defini on.	tion -	– Die	electric	Brea	akdow					– Inte	

Nanomaterials: Introduction – Synthesis of nano materials – Top down and Bottom up approach-Ball milling- PVDmethod- Applications.

Smart materials: Shape memory alloys-Biomaterials (properties and applications).

Total Hours 45

Text	Book(s)
1.	Optics by Subramaniam N &BrijLal, S Chand & Co. Pvt. Ltd., New Delhi, [unit 1].
2.	Modern Physics by R Murugeshan, Kiruthiga, Sivaprasath S Chand [all units].
3.	Quantum Mechanics by Sathyaprakash, PragatiPrakashan, Meerut. [unit 2].
4.	Applied Engineering Physics – Rajendran&Marikani (Tata McGraw Hill) [unit 3,5] 2009.
5.	Engineering Physics – Bhattacharya, Bhaskaran – Oxford Publications [unit 2,3,5] 2012.
6.	Engineering Physics I & II – G.Senthilkumar, VRB publications [unit 2,3] 2012.
7.	Applied Physics for Engineers – K. Venkatramanan, R. Raja, M. Sundarrajan (Scitech) [3,5] 2014.
8.	Principles of Electronics by V.K.Mehta, (S.Chand) [unit 5].
Refe	rence Book(s)
1.	Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New
	Delhi.
2.	Quantum Mechanics by V. Devanathan, Narosa, Chennai.
3.	Engineering Physics by M.N.Avadhanulu, S.Chand& Company Ltd.
4.	Concepts of Modern Physics by Arthur Beisser, McGraw Hill, 7th edition.
5.	Optics byR.Agarwal, S.Chand publishers.
6.	Basic Electronics by B.L.Theraja, S.Chand publishers.
7.	Fundamentals of Physics, 6th Edition, D. Halliday, R. Resnick and J. Walker, John Wiley and
	Sons, New York.

Course	Cod	e	CESC	S18T	40				L	Т	P	C	IA	EA	TM	
														0		
Course	Nan				4 FOI	R PRO	BLEN	1	2	1	0	3	40	60	100	
Course			SOLV		ING	SCIEN	CE			Su	llobuc	s Revisi	ion	N.	7.1.0	
Catego			COUH			SCIEN	CE			Зу	napus	s Revis	IOII	v	.1.0	
Pre-rec	-		0001													
Course	-		s:													
The cou	•			e the s	tudent	S										
						ne synta	ax of C									
		2.	Be f	àmilia	r with	progra	ammin	g in C	2.							
		3.	Lea	rn to u	se arra	ays, str	ings, fi	inctio	ons, p	ointe	rs, stru	ictures	and unions	s in C.		
Course	Out	comes	:													
On com	pleti	on of t	the co	urse, tl	he stu	lent wi	ill be al	ble to								
Course	e						Descri	iptio	1						ghest	
Outcor	n	n Bloom's														
es		Тахопоту														
CO1		Develop algorithms for solving simple mathematical and engineering problems and examine the suitability of appropriate repetition and or K3														
	-	problems and examine the suitability of appropriate repetition and or selection structures for given problems.														
000										•	1		• 1			
CO2				-			-	-		-		-	nipulation		K3	
CO3				-								icable.	ing using			
COS		tructu		s to pe		text of	peratio	IIS IIK	e eui	ting, j	pattern	isearch	ing using		K3	
CO4				e aloc	rithm	s for n	natrix r	roble	me	mergi	ng se	arching	, sorting,			
COT		-		-			-			-	-	-	ising any		K3	
			U	-		langua	-	orenn	, une		ag und		ising uny		110	
	P			0.01.000		8	8									
Correla	ntion	betw	een C	ourse	Outco	mes (COs) a	nd P	rogra	am O	utcom	es (PO	s):			
												、 -		ram Sp	ecific	
00				ł	rogra	m Out	tcomes	5 (PO	S)				U	omes (I		
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO 1	PSO	PSO3	
	1	2	3	4	5	6	7	8	9	10	11	12		2		
CO1	S	S	S	S	S	М	L	L	М	М	_	М	-	_	-	
CO2	S	S	S	S	S	М	L	L	М	М	_	М	-	-	-	
CO3	S	S	М	М	S	М	L	L	Μ	М	-	М	-	-	-	
CO4	S	S	S	S	S	М	L	L	S	S	-	S	-	-	-	
				_												
UNIT-I		Mod	lule -	l										9 Hou	rs	

Introduction to components of computer system-Generation of programming languages-Types of

	-	Organization of Computers-Types of memory, Number systems- Idea of A Chart with examples.	lgorithm-Pseudo
coue	- 110w (chart with examples.	
UNI	T-II	Module - II	9 Hours
	duction essions a	to C-Character set, Constants, Variables, Data Types-Operators and precedence-Decision Making statement - Looping statements.	s – Arithmetic
UNI	T-III	Module - III	9 Hours
	•	ts types-Functions –Parameter passing in functions-call by value- call by refactors-Recursive function.	Ference Passing
UNI	T-IV	Module - IV	9 Hours
		nd array of structures –Union, Basic searching –Linear and Binary, Basic	
oper	ations.		
UNI	T-V	Module - V	9 Hours
Intro	duction	to Pointer, Pointer arithmetic-notion of linked list (no implementation) - File	handling.
		Total Hours	45 Hours
Text	Book(s)	
1.	Byron	Gottfried, Schaum's Outline of Programming with C, McGraw-Hill.	
2.	Balagu	rusamy. E, "Programming in ANSI C", Tata McGraw Hill, Third edition, 200)6.
3.		nentals of Computing and Programming- V.RameshBabu, R.Samyuktha,M.M	Iuniratham by
	VRB F	Publishers 2012 edition.	
	rence B	· · ·	
1.		'C' - YashawantKanetkar, (Unit 2 to 5), BPB publications, 10th Edition, 2010	
2.		N Kamthane, "Computer Programming", Pearson education, Second Impre	
3.		han Venugopal.K and Kavichithra.C, "Computer Programming", New Aners, First Edition, 2007.	Age International
4.	B.W a	nd Ritchie, D.M, The C programming language: second edition, Pearson edu	ication,2006.

Course	Cod	e	CBSP	H18P	50			L	Т	F	,	C	IA	EA	TM
Course			PHYS	-		RAT	ORY	0	0	3		2	40	60	100
Course			BASI						-	abus			10	00	V.1.0
Catego			21101						~,1						
Pre-rec		te													
Course			es:												
The cou				the s	tudent	S									
							owled	ge in	Physic	cs and	l its a	applic	ations	s releva	ant to various
			of Eng						•						
Course															
On com		on of	the cou	ırse, tl	ne stud	dent w	vill be	able to)						
Cours	-					De	script	ion							est Bloom's
Outcor	n													T	axonomy
es															
CO1	1		nstrate	the	proce	dural	prepa	ration	skil	l to	cond	luct	the		K3
	e	xperii	ment.												
CO2	ļ	Ability	to pe	erform	the e	experi	ment	and ta	abulat	e the	obse	ervatio	ons		K3
		nade.	- r•			r							~		
CO3		1-:11 4	a alata			tad a					b	1:66-1	a		K6
			o obta		-		-								
CO4		techniques and impart practical knowledge in real Time solution. Interpretation of experimental results and conclusions.													
	I	nterpr	etation	ofex	perim	ental r	esults	and co	onclus	sions.					
CO5	τ	Jnders	stand p	orincip	ole, co	oncept	, wor	king a	nd ap	plica	ions	of n	ew		K2
	ť	heory	and ar	ticulat	ion of	the re	elevant	theor	у.	-					
Correla	ation	betw	een Co	ourse	Outco	omes ((COs)	and I	Progra	am O	utco	mes (
				Pr	ogran	n Out	comes	s (POs	6)					-	m Specific
	D O	DO	DO			-			-	DO	D	DO	-	1	nes (PSOs)
COs	PO			-	PO	P O	PO	PO		PO	P	PO	PS	P	PSO3
	1	2	3	4	5	06	7	8	9	10	0	12	01		
											1 1			0 2	
CO1	~	~		36	-		.		7.6		-			<u> </u>	
	S	S	M	M	L	L	L	-	Μ	Μ	Μ	L	-	-	-
CO2	S	S	S	S	S	L	L	-	Μ	Μ	Μ	L	-	-	-
CO3	S	S	S	S	S	L	L	-	Μ	Μ	Μ	L	-	-	-
CO4	S	S	S	S	S	М	М	-	L	L	L	-	-	-	-
CO5	S	S	S	S	L	L	L	-	L	L	L	L	-	-	_
				-		-	-	-		•	•		·		
							of Ex			0.7		• -			Hours
					-	-		& Moi	nent o	of Iner	tia u	sing]	orsio	nal Pe	ndulum.
			ninatio		-										
			termin			-			-	-		missio	on gra	ting.	
	((b) Me	easurer	nent o	f num	erical	apertu	ire of	an opt	ical fi	ber.				
	4 7	D - 4	minatio	n of r	adine	of cur	vature	of the	giver	lens	usin	n New	ton's	Rings	

Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

- 5. Determination of Velocity of sound waves in liquid using Ultrasonic interferometer.
- 6. Determination of wavelength of prominent colours of mercury spectrum using grating.

7. Determination of number of lines per meter of the grating using normal incidence method.

- 8. Determination of refractive index of the given prism using minimum deviation method.
- 9. Determination of emissivity of the surface of a black body.
- 10. Basic logic gates- Verification of truth tables
- 11. NAND-Universal building block
- 12. NOR-Universal building block
- 13. Zener diode- I-V characteristics
- 14. Study of LCR circuit

Text	Book(s)
1.	Practical Physics - Ouseph and Rangarajan.
2.	Engineering Practical Physics-K. Srinivasan.
3.	Engineering Practical Physics - M.N. Avadhanulu.
4.	Experimental Physics – K. Venkatramanan, R. Raja, M. Sundarrajan (Scitech)

PROBLEM SOLVING LABORATORY Image: Construct of the state of the	Course	Cod	e	CESC	S18P	50			L	T	P		C	IA	EA		TM						
LABORATORYNote: CourseCourseENGINEERING SCIENCESyllabus RevisionV.1.0Course Objectives:V.1.0Course Objectives:V.1.0Course Objectives:V.1.0Course Objectives:V.1.0Course Objectives:V.1.0Course Objectives:V.1.0Course Objectives:V.1.0Course Objectives:V.1.0Course Objectives:V.1.0Course Objective:V.1.0Course Objective:V.1.0Course objective:V.1.0Course objective:V.1.0Course objective:V.1.0Course objective:V.1.0Course objective:V.1.0Course objective:Villes abjective:Course objective:Highest BloodOutcome:PropertiesCourse objective:Highest BloodCourse objective:Villes abjective:Course objective:Villes abjective:Course objective:Villes abjective:Course objective:Villes abjective:<	Course	Nam	ne	PRO	GRAN	MIN	G FC	DR	0	0	3	;	2	40	60		100						
Course COURSESyllabus RevisionV.1.0Course Objectives: The course should enable the students 1. To get a clear understanding of C Concepts.Course Objectives: 	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>VINO</td> <td>r J</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								VINO	r J													
COURSE Image: coll of the course objectives: The course should enable the students 1. To get a clear understanding of C Concepts. Highest Bloom Course Outcomes: On completion of the course, the student will be able to Course Outcomes: On completion of the course, the student will be able to Course Outcomes: On completion of the course, the student will be able to Course Description Mathematical and engineering problems and examine the suitability of appropriate repetition and/or selection structures forgiven problems. K3 CO2 Solve matrix problems, merging, searching, sorting and string Manipulation problems using iteration, modularization or recursion as applicable. K3 CO4 Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language. Program Specif Outcomes (POS) Correlation between Course Outcomes (COs) and Program Outcomes (POs): Correlation between Course Outcomes (COs) and Program Outcomes (POs) Implement the algorithms for	<u> </u>															X 7 1	0						
Pre-requisite Course Objectives: The course should enable the students I. To get a clear understanding of C Concepts. Course Outcomes: On completion of the course, the student will be able to Course Outcomes: On completion of the course, the student will be able to Course Outcomes: On completion of the course, the student will be able to Course Outcomes: On completion of the course, the student will be able to Course Outcomes: Develop algorithms for solving simple mathematical and engineering problems and examine the suitability of appropriate repetition and/or selection structures forgiven problems. K3 CO2 Solve matrix problems, merging, searching, sorting and string Manipulation problems using iteration, modularization or recursion as applicable. K3 CO3 Organize files to perform text operations like editing, pattern searching using structures Frogram Outcomes (POS): Program Outcomes (POS) Program Specifi Outcomes (PSO) Outcomes (PS) Program Specif Outcomes (PSO)						ang :	SCIE	NCE		Syll	abus	Revi	sion			V.1	.0						
Course Objectives: The course should enable the students 1. To get a clear understanding of C Concepts. Course Outcomes: On completion of the course, the student will be able to Course Outcom es Highest Bloon Taxonomy es CO1 Develop algorithms for solving simple mathematical and engineering problems and examine the suitability of appropriate repetition and/or selection structures forgiven problems. K3 Manipulation problems, merging, searching, sorting and string Manipulation problems using iteration, modularization or recursion as applicable. K3 CO3 Cortelation between Course Outcomes (COs) and Program Outcomes (POs): Program Specif Outcomes (PSO Outcomes (POS) Program Specif Outcomes (PSO Program Specif Outcomes (PSO Program Specif Outcomes (PSO Program Specif Outcomes (PSO Manipulation and file problems and debug and test using any procedural programming language. Program Specif Outcomes (PSO C		•		COUR	(SE																		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				R •																			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					e the s	tudent	S																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								nding	of C C	oncep	ots.												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																							
Course Outcom es Description Highest Bloor Taxonomy CO1 Develop algorithms for solving simple mathematical and engineering problems and examine the suitability of appropriate repetition and/or selection structures forgiven problems. K3 CO2 Solve matrix problems, merging, searching, Manipulation problems using iteration, modularization or recursion as applicable. K3 CO3 Organize files to perform text operations like editing, pattern searching using structures K3 CO4 Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language. K3 CO5 PO PS P PO CO3 S S S S S S<	Course	Outo	comes	:																			
Outcom es Taxonomy CO1 engineering problems and examine the suitability of appropriate repetition and/or selection structures forgiven problems. K3 CO2 Solve matrix problems, merging, searching, sorting and string Manipulation problems using iteration, modularization or recursion as applicable. K3 CO3 Organize files to perform text operations like editing, pattern searching using structures K3 CO4 Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language. K3 CO5 PO PSO P PO PO PO PSO P PO PO P PO PSO P PO PSO P PSO P PO PSO P PO PSO P PSO P P PSO P P PSO P P P PSO P P P P P P P P P P P P <td>On com</td> <td>pletic</td> <td>on of t</td> <td>he cou</td> <td>ırse, tl</td> <td>ne stuc</td> <td>lent w</td> <td>vill be</td> <td>able to</td> <td>С</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	On com	pletic	on of t	he cou	ırse, tl	ne stuc	lent w	vill be	able to	С													
es Visit of the second string th							De	script	ion						Highest Bloom's								
CO1 Develop algorithms for solving simple mathematical and engineering problems and examine the suitability of appropriate repetition and/or selection structures forgiven problems. K3 CO2 Solve matrix problems, merging, searching, sorting and string Manipulation problems using iteration, modularization or recursion as applicable. K3 CO3 Organize files to perform text operations like editing, pattern searching using structures K3 CO4 Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language. K3 Frogram Outcomes (COs) and Program Outcomes (POs): Correlation between Course Outcomes (COs) and Program Outcomes (POs): Correlation S PO Program Outcomes (POs) Program Specific Outcomes (POs): Correlation between Course Outcomes (COs) and Program Outcomes (POs): Correlation S PO PS P PSO CO3 S S S S M L L M M - -		n												Taxonomy									
engineering problems and examine the suitability of appropriate repetition and/or selection structures forgiven problems. K3 CO2 Solve matrix problems, merging, searching, sorting and string Manipulation problems using iteration, modularization or recursion as applicable. K3 CO3 Organize files to perform text operations like editing, pattern searching using structures K3 CO4 Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language. K3 COrrelation between Course Outcomes (COs) and Program Outcomes (POs): Program Specific Outcomes (POs) CO4 PO PO PO P PO PO PS P PSO CO5 PO PO PO PO P PO PO PS P PSO CO5 PO PO PO P PO PO PO PS P PSO CO5 PO PO PO PO P PO PO PO PS P PSO CO5 I 2 S S S S M L L			1	1	1			- 1*		1.			1			T 7/	•						
repetition and/or selection structures forgiven problems.CO2Solve matrix problems, merging, searching, sorting and string Manipulation problems using iteration, modularization or recursion as applicable.K3CO3Organize files to perform text operations like editing, pattern searching using structuresK3CO4Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language.Program Specif Outcomes (POs):Correlation between Course Outcomes (COs) and Program Outcomes (POs):Program Outcomes (POs)Program Outcomes (POs)Correlation between Course Outcomes (COs) and Program Outcomes (POs):Program Outcomes (POs)Program Specif Outcomes (POs)CO1SSSSProgram Outcomes (POs):Program Outcomes (POs):Program Specif Outcomes (POs)Outcomes (POs)Program Specif Outcomes (POImplement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language.Program Outcomes (POs)Program Specif Outcomes (POImplement the algorithm of the problems and test using any procedural programming langu	COI														K3								
CO2 Solve matrix problems, merging, searching, sorting and string Manipulation problems using iteration, modularization or recursion as applicable. K3 CO3 Organize files to perform text operations like editing, pattern searching using structures K3 CO4 Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language. K3 Correlation between Course Outcomes (COs) and Program Outcomes (POs): Program Specific Outcomes (PSO) CO3 PO PO PO PO PO PO PS P PSO Outcomes (PSO) CO4 PO PO PO PO PO PO PO PS P PSO Outcomes (PSO) CO5 PO PO PO PO PO PO PO PS P PSO Outcomes (PSO) CO5 I 2 3 4 5 O6 7 8 9 10 O 12 O S CO3 S S S M L L M M - - - CO3 S S <th< td=""><td></td><td></td><td colspan="14"></td><td></td></th<>																							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CO2																3						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	002				-			0		0		0		Ŭ		11,							
CO3Organize files to perform text operations like editing, pattern searching using structuresK3CO4Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language.K3Correlation between Course Outcomes (COs) and Program Outcomes (POs):Program Outcomes (COs) and Program Outcomes (POs):Program Specifi Outcomes (POs)Correlation between Course Outcomes (COs) and Program Outcomes (POs):Program Outcomes (POs):Program Specifi Outcomes (POs)Correlation between Course Outcomes (COs) and Program Outcomes (POs):Program Outcomes (POs):Program Outcomes (POs):Program Specifi Outcomes (POs)COSPO PO PO PO PO PO PO PO PO PO PS P POS12345067891001201SCO1SSSSMLLMM-MCO2SSSSMLLMM-MCo1SSSSMLLMM-MCo1SSSSMLLMM-M <th cols<="" td=""><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-		-					,												
CO4Implement the algorithms for matrix problems, merging, searching, sorting, and string manipulation and file problems and debug and test using any procedural programming language.K3Correlation between Course Outcomes (COs) and Program Outcomes (POs)Program Outcomes (POs)Program Specific Outcomes (POs)Correlation between Course Outcomes (COs) and Program Outcomes (POs)Program Outcomes (POs)Program Specific Outcomes (POs)Correlation between Course Outcomes (POs)Program Outcomes (POs)Program Specific Outcomes (POs)Correlation between Course Outcomes (POs)Program Outcomes (POs)Program Specific Outcomes (POs)COSPO PO P	CO3						m te	xt op	eratio	ns lil	ke ed	iting	, pat	tern		K.	3						
sorting, and string manipulation and file problems and debug and test using any procedural programming language. Correlation between Course Outcomes (COs) and Program Outcomes (POs): Program Outcomes (POs) COs PO PO PO PO PS P PSO 1 2 3 4 5 O6 7 8 9 10 O 12 O1 S CO1 S S S S M L L M M - M - - - CO1 S S S S M L L M M - M - - - Co1 S S S S M L L M M - M - - -		se	earchi	ng usi	ng stru	ictures	5																
test using any procedural programming language. Correlation between Course Outcomes (COs) and Program Outcomes (POs): Program Outcomes (POs) Program Outcomes (POs) COs PO PO PO P PO	CO4		-		-				-		-	-		-		K.	3						
Ourse Outcomes (COs) and Program Outcomes (POs): Program Outcomes (POs) COs PO			0		•	-			-			nd d	ebug	and									
COs PO PI		te	est usi	ng any	proce	edural	progr	ammi	ng lan	guage	•												
COs PO		4.	1.4	0		0.4					0	4	(
Program Outcomes (POS) COs PO P	Correla	ition	Detwe	en Co	burse	Outco	omes ((COS)	and I	rogr	am O	utco	mes (0.000		voifio						
COs PO PO <t< th=""><th></th><th></th><th></th><th></th><th>Pr</th><th>ogran</th><th>n Out</th><th>comes</th><th>s (POs</th><th>5)</th><th></th><th></th><th></th><th></th><th>U</th><th>-</th><th></th></t<>					Pr	ogran	n Out	comes	s (POs	5)					U	-							
COs 1 2 3 4 5 O6 7 8 9 10 O 12 O1 S L I		PO	PO	PO	PO	PO	Р	PO	PO	PO	PO	P	PO				PSO3						
CO1 S S S S M L L M M - M - 2 CO1 S S S S M L L M M - M - - - - CO2 S S S S M L L M M - M - - - - CO3 S S M M L L M M - M - - - - C03 S S M M S M L L M M - M - - - - - C03 S S M M S M L L M M - M - <th>COs</th> <th></th>	COs																						
CO1 S S S S M L L M M - M -															0								
CO2 S S S S M L L M M - M - - - - CO3 S S M M L L M M - M - </td <td></td> <td>1</td> <td></td> <td></td> <td>2</td> <td></td> <td></td>												1			2								
CO3 S S M M S M L L M M -	CO1	S	S	S	S	S	М	L	L	М	М	-	Μ	-	-		-						
	CO2	S	S	S	S	S	М	L	L	М	М	-	М	-	-		-						
	CO3	S	S	Μ	М	S	М	L	L	М	М	-	М	-	-		-						
	CO4											-		-	_		-						
		-		L ~								1			L								

LIST OF EXPERIMENT	'S
1. Basic programs in data	ypes.
2. Evaluate Expressions us	sing library Function.
a. πr^2	
b. (A+B+(2C/3A)+A2+	-2B)
c. $\sqrt{S(S-A)(S-B)(S-C)}$	
d. LOG $(x^3+y^3+z^3)$	
3. Problems in Decision m	aking statements.
i. Find the Biggest amo	ng 3 numbers.
ii. Find Even or odd	
iii. Arithmetic operation	s using Switch - Case Statements.
4. Problems in looping sta	tements.
i. Find the Sum of digit	s using (i) For loop (ii) While loop
ii. Generate the Fibonac	ci series
iii. Check whether the m	umber is prime or not.
5. Find the Linear Search.	
6. General sorting.	
7. Matrix Manipulation-A	ddition, Subtraction and Multiplication.
8. String operations-string	copy, string reverse, string concatenate.
9. Swapping of numbers u	sing call by value, call by reference.
10. Find factorial using recu	rsive functions.
11. Numerical methods-Qua	adratic Equation.
12. Display the student info	rmation & marks using Structure & Unions.
13. Demonstrate array of st	ructures.
14. Pointer Arithmetic and	Array access using Pointers.
15. Basic File Operations	
	45 Hour

Course	Cod	e (CESM	E18P7	0			L	Т	P	С	IA	EA		ГМ		
Course	Nan				P/MA CTICE		CTU	0	0	3	2	40	60	1	.00		
Course]	ENGIN	JEERI	NG SC	CIENC	E		Sylla	abus F	Revisio	n		V.1.()		
Catego	ry	(COUR	SE													
Pre-req																	
Course	•																
The cou																	
							importa			0	0	-					
				experi	ence in	n fitting	g and c	arpent	ry wor	ks hel	pful to	under	stand t	he bas	ics c		
	0	eering		1 /	1 1		C 1	1.	, .			· ~	1.1				
							of weld				-	-					
	-					-	and ca							•.•			
	-		-	sure to	stude	nts abo	out the	comp	onents	s used	1n W1	ring sy	vstem	with s	impl		
i	appli	cations	5.														
Course	Out	comes	:														
On com	pleti	on of t	he cou	rse, the	e stude	nt will	be abl	e to									
Course						Desc	riptio	n]	Highes	st		
Outco							•						Bloom's				
mes													Та	axonor	ny		
CO1	Fa	bricate	e carp	bentry	comp	onents	and	pipe	conne	ections	s incl	uding		K2			
	plı	umbing	g work	s.													
CO2	St	udy an	d pract	tice on	weldin	ng equi	ipment	s to joi	in the s	tructu	res.			K3			
CO3							peration					acing,		K2			
		•				U	peration		· ·		0,	0,					
CO4		-	-	-			foundr		fittings					K3			
CO5			-				lge for	•			Ce			K3			
0.05	$\Lambda_{\rm I}$	pneu		inginee	Jing K			nouse	wnmg	, practi	icc.			IX.J			
Comela	ntion	betwe	en Co	urse C	Outcon	nes (C	Os) an	d Prog	gram (Dutcor	nes (P	Os):					
Correla													P	rogra	m		
				I	Progra	m Au	tcome)					Specifi			
		Program Outcomes (POs)													es		
														(PSOs	<u> </u>		
COs		D C	D C	D C	D C	TC	TO		1071	PO	PO	PO	PS	PS	PS		
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO					0.4	0		
COs	1	PO 2	3	4	5	PO 6	PO 7	PO 8	9 9	10	11	12	01	02	03		
COs														- O2	0 .		
COs	1	2	3	4	5	6	7	8	9	10	11	12	01				
COs CO1 CO2 CO3	1 M	2 M	3 S	4 S	5 L	6 M	7 M	8 M	9 M	10 M	11 M	12 L	<u>-</u>	-	-		
COs	1 M L	2 M L	3 S S	4 S S	5 L L	6 M M	7 M M	8 M M	9 M M	10 M M	11 M M	12 L -	01 - -	-	-		

SL NO	MANUFACTURING/ FABRICATION LAB	EXPERIMENT NAME
1		TURNING (PLAIN & STEP) AND FACING PRACTICE
2	MACHINE SHOP	DRILLING PRACTICE
3		V- FITTING
4	FITTING SHOP	SQUARE FITTING
5	CARPENTRY SHOP	HALF LAP T- JOINT
6	-	HALF LAP CROSS JOINT
7		LAP JOINT - ARC WELDING PROCESS
8	WELDING SHOP	BUTT JOINT – GAS WELDING PROCESS
9	SMITHY SHOP	FABRICATION OF ROUND ROD
10	CASTING	PREPARATION OF GREEN SAND MOLD USING A GLAND PIECEPATTERN
11	ELECTRICAL AND ELECTRONICS	TWO LAMPS IN SERIES CONTROLLED BY ONE WAY SWITCH
12	LAB	TWO LAMPS IN PARALLEL CONTROLLED BY ONE WAY SWITCH
ext Book	Hajra Choudhry.S.K., Ha	jra Choudhury.A.K. and Nirjhar Roy.S.K., "Elements o ol. I 2008 and Vol. II2010, Mediapromoters and publisher th Edition 2010.
2.		.Schmid, "Manufacturing Engineering and Technology", 4th
3.	GowriP., Hariharan and A. 2013.	SureshBabu,"ManufacturingTechnology-I" Pearson Education
eferences	3	
1.	Roy A.Lindberg, "Processe India,1998.	es and Materials of Manufacture", 4thedition, Prentice Hal
		hnology", Vol.I and Vol.II, TataMcGrawHill, 2017.

SEMESTER - II

Course Cod												[A	EA	Т	M			
Course Nar	ne	(L T C	MATHEMATICS -II310440(LINEAR ALGEBRA, TRANSFORM CALCULUS AND NUMERICAL METHODS)310440										40	60 100				
Course Cat		B	ASIC	SCIE	ENCE	COU	RSE		Sylla	bus F	Revis	ion		V.1.0				
Pre-requisi																		
2. To u 3. To d	should cours bra,Tr	enate ansf ansf nd t the	ms a form (the fu	t far Calcul ndam	niliariz lus and ental o	d Nun	nerical pts in t	Meth	ods. ove sa	id top	ics.			-				
Course Out On completi			ourse	e, the s	studen	t will	be ab	le to										
Course Outcomes	on of the course, the student will be able to Description												Highest Bloom's Taxonomy					
CO1	value	s an	d Eig	gen ve	ectors	of th	syste e give ing ca	n squ	are ma	atrix a	lso a	comp	_		K6	·		
CO2	Work	nur entia	neric al equ	ally o uation	n the	ordina	ary dif erent	ferent	ial eq	uation	s and	d par		K6				
CO3	Apply	' La	place			and i	its inv	erse t	o solv	e init	ial v	alue	and		K6			
CO4				transf f elect		ar engir	nd i neering	ts g.	inver	rse ir	n l	practi	cal		K6			
CO5	Solvi	ng fi	inite o	differe	ence e	quatic	on in z·	-transf	forms.						K6			
							<u> </u>	d Dro	arom	Outo	ome	s (PC) s):					
Correlation	betwo	en	Cour	se Ou	itcom	es (C	Os) an		gram	Ouic	ome				C	1.01		
Correlation				Р	rogra	m Ou	itcom	es (PC)s)				Pro Ou	tcon	m Spe nes (PS	SOs)		
Correlation COs	P O		Cour PO 3						<u> </u>	PO 10	P O 1	PO 12	Pro	tcon I I S	nes (PS P P B D			
	P 0 1	P D	PO	P PO	rogra PO	m Ou P	itcom PO	es (PC PO	Ds) PO	PO	P O	PO 12	Pro Ou PS	tcon I I S	nes (PS P P S D	SOs)		
COs	P O 1 S	P D 2	PO 3	P PO 4	rogra PO 5	m Ou P O6	PO 7	es (PC PO 8	Ds) PO 9	PO 10	P 0 1 1	PO	Pro Ou PS O 1	tcom I S C 2	nes (PS P P S D	<u>SOs)</u> SO3		

CO4	S	S	S	S	S	М	М	_	М	Μ	Μ	L	_	-	-
CO5	S	S	S	S	S	М	М	-	Μ	М	Μ	L	-	-	-

UNIT-I MATRICES

Rank of a matrix, System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigen values and eigenvectors; Diagonaization of matrices; Cayley-Hamilton theorem, Orthogonal transformation and quadratic to canonical forms.

UNIT-II	NUMERICAL METHODS

Ordinary differential equations: Taylor's series, Euler and modified Euler's methods. Runge- Kutta method of fourth order for solving first order equations. Milne's predicator corrector methods. Partial differential equations: Finite difference solution two dimensional Laplace equation and Poisson equation, Implicit and explicit methods for one dimensional heat equation (Bender-Schmidt and Crank-Nicholson methods), Finite difference explicit method for wave equation

UNIT-III **TRANSFORM CALCULUS-I**

Laplace Transforms : Definition, Properties of Laplace transforms: Linearity Property, First shifting property, Change of scale property – Transforms of derivatives - Transforms of integrals -Multiplication by tⁿ - Division by t - Evaluation of integrals by Laplace transform - Inverse transforms: Method of partial fractions – Other methods of finding inverse - Convolution theorem (Without proof) Application to differential equations.

TRANSFORM CALCULUS- II UNIT-IV

Fourier integral theorem (without proof) - Fourier Sine and Cosine integrals - Complex form of Fourier integral - Fourier transform - Fourier sine and Cosine transforms - Properties of Fourier Transforms: Linear property, Change of scale property, Shifting property -Parseval's identity for Fourier transforms (without proof) – Application of transforms to boundary value problems: Heat conduction, Vibrations of a string, Transmission lines.

UNIT-V **TRANSFORM CALCULUS- III**

12 Hours Standard z-transforms of 1.aⁿ pⁿ – Linearity property – Damping rule – Shifting rules -Multiplication by n - Initial and final value theorems (without proof) - inverse z -transforms -Convolution theorem (without proof) - Convergence of z-transforms - Two sided z- transform -Evaluation of inverse z-transforms: Power series method, Partial fraction method, inversion integral method.

Text Book	(s)
1.	Grewal B.S, Higher Engineering Mathematics, 41st Edition, Khanna Publishers, New
	Delhi, 2011.
Reference	Book(s)
1.	Alan Jeffrey, Advanced Engineering Mathematics, Academic Press.
2.	Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.
3.	Gerald C.F and Wheatley P.O, Applied Numerical Analysis, Addison-Wesley
	Publishing Company.

12 Hours

12 Hours

12 Hours

12 Hours

Total Hours | 60 Hours

Course Na Course Category Pre-requis Course Of The course	ame		ENGI	NEER	INC			3	0	0	3	40	60	1		
Category Pre-requis Course Ob The course		5														
Pre-requis	5)	
Course Ob The course																
The course																
			al-1a 41	م مغم	10040											
1 '						ic stru	cture,	bondi	ha and	analvi	ical m	ethod	c			
							in orga		0	•	loar II	ictilou	3			
							- 0			5						
Course Ou																
On comple	tion	of the	e cours	se, the	studen									T: _]		
Course Outcome						Desc	eriptio	n						Highes		
s	ne Bloom's Taxonomy															
CO1															J	
		•		termol		•										
CO2	Ra	tional	ize bi	ulk pr	operti	d pro	cesses	using	g ther	modyn	amic	K4				
	Rationalize bulk properties and processes using thermodynamic considerations.															
CO3	Dis	Distinguish the ranges of the electromagnetic spectrum used for														
		-		-	-		rgy le	-	-							
		U					05			1		1				
CO4	techniques. Rationalize periodic properties. K4															
CO5			-	-			t are u	sed in	the sy	nthesi	s of va	rious	K4			
			molecu													
		-														
Correlatio	n be	etwee	n Cou	rse Oı	itcom	es (CC)s) and	d Prog	gram (Outcor	nes (P	Os):	_			
													Program			
				Р	rogra	m Ou	tcome	s (POs	5)				Specific			
COs													Outcomes (PSOs)			
P	0	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	
-	1	2	3	4	5	6	7	8	9	10	11	12	01	02	0	
CO1	S	S	М	М	L	М	М	-	М	М	М	М	-	-	-	
CO2	S	S	М	М	L	М	М	-	М	М	М	М	-	-	-	
CO3	S	S	М	М	М	М	М	-	М	М	М	М	-	-		
CO4	S	S	М	М	М	Μ	М	-	М	Μ	Μ	Μ	-	_		
CO5	S	S	Μ	М	L	Μ	М	-	М	М	Μ	М	-	-	_	
UNIT-I				STRU	СТИ	F								9 Ho	11100	
Compariso							fator	and	Bohr	s mod	el - R	ohr-S	omme			
(Concepts																
Schrodinge																

atoms- Mosley's law – Modern periodic table - periodic properties: atomic size- ionization energieselectron affinity- electro negativity.

UNIT-II CHEMICAL BONDING

9 Hours

Types of bonds – ionic - covalent – coordinate bond - Molecular Orbital Theory –types of molecular orbitals- energy level diagrams- e⁻ns filling in MO – bond order – MO diagrams of H₂, He₂, N₂, O₂, CO and HF molecules- Metallic bond – band theory of solids (primitive treatment only) and the role of doping on band structures - Hybridization – definition - geometry of the molecules- CH_4 , C_2H_4 , C_2H_2 - Molecular forces-Ionic, dipolar, van der waals interactions.

UNIT-IIITHERMAL AND ELECTROCHEMICAL EQUILIBRIA9 HoursThermodynamic functions: State functions, Path functions, Internal energy, enthalpy, entropy and
free energy-Gibbs Helmholtz equation and its applications .Feasibility of reaction - Ellingham
diagrams.

Types of electrodes- Standard electrodes-Standard hydrogen electrode, standard calomel electrode, Single electrode potential, electrochemical series - galvanic cell - emf - Nernst equation and its applications - Glass electrode, Potentiometric acid base titrations and Solubility equilibrium-Corrosion-types- Chemical corrosion-electrochemical corrosion-factors influencing and control measures.

UNIT-IVSPECTROSCOPIC TECHNIQUES AND APPLICATIONS9 HoursElectromagneticradiations – wavelength – frequency – energy of a radiation -
electromagnetic spectrum – changes brought about by the radiations - components of a
spectrometer – rotational spectra of diatomic molecules – rigid and non-rigid rotor models (energy
expressions only)- selection rule– schematic instrumentation – types of vibrations in molecules
(CO_2 , H_2O) – vibrational spectra (primitive treatment) – selection rule- instrumentation and
applications – electronic transitions – electronic spectra — Beer-Lambert's law- instrumentation
and applications– NMR – principle – chemical shift - instrumentation – NMR spectra of CH₄ –
CH₃OH – xylene isomers – MRI (Introduction only).9 Hours

UNIT-VSTEREOCHEMISTRY & ORGANIC REACTIONS9 HoursStereochemistry - Representation of 3D structures - Fisher projection, Newman and Sawhorse
projection formulae - Ethane, 3-bromo-2-butanol Conformation of Ethane, Butane Ethylene
glycol, , Symmetry and Chirality - Stereo isomers, Enantiomers, Diastereomers. Configuration - R-S
system. Optical activity - Lactic acid, Tartaric acid- Geometrical isomerism - cis-trans& E-Z
notations.Organic reactions - Substitution - S_N^1 & S_N^2 (Simple Example - mechanism not expected)-

electrophilic substitution – $S_N \approx S_N$ (Simple Example – mechanism not expected)– electrophilic substitutions – Friedel Crafts alkylations – Additions – 1,2-addition – types- addition of HX -Elimination – $E^1 \& E^2$ (Examples only, mechanism not expected) – Oxidations – CIShydroxylation with OsO₄, Reductions – Clemmensen&wolff-Kishner reductions, Cyclization – Diels Alder, Ring-Opening – Nylon-6 from caprolactum.

Synthesis of most commonly used drugs – Aspirin, Paracetamol.

Total Hours 45 Hours

Text	Book(s)
1.	Textbook of Inorganic Chemistry, P.L.Soni, Sultan Chand & Sons, Delhi, 2013. (For units I
	and II).
2.	Principles of Physical Chemistry, B.R. Puri, L.R. Sharma and Madan S. Pathania, Shoban Lal
	Nagin Chand & Co., Jalandhar, 2000. (For units III and IV).
3.	Advanced Organic Chemistry, B. S. Bahl and Arun Bahl, S.Chand, Delhi, 2012. (For unit V).
Refei	rence Book(s)
1.	Engineering Chemistry, P.C. Jain and Monika Jain, DhanpatRai Publishing Co Pvt. Ltd.,
	New Delhi, 2008.
2.	Applied Chemistry, K. Sivakumar, Anuradha Publications, Chennai, 2009.
3.	Textbook of Engineering Chemistry, S.S.Dara &S.S. Umare, S.Chand, Delhi, 2004.
4.	Fundamentals of Molecular Spectroscopy, C.N.Banwell and Elaine.M. McCash, 4 th Edition,
	McGraw Hill Education, 2017.
5.	Physical Chemistry, P. W. Atkins and Julio De Paula, 10th Edition, Oxford University
	Press, 2014.

Course			CESEI					L	Т	P	C 3	IA	EA		ГМ		
Course	Name	-	BASI(ENGI			CAL		3	0	0	40	60	1	00			
Course	Cate		ENGIN COUR		ING SO	CIENC	CE		Sylla	abus F	Revisio	n	V.1.0				
Pre-req	uisite																
Course	•																
The cou																	
		ourse e					asic kr	nowled	ge and	1 unde	rstand	ing in	solvin	g alge	braic		
		endenta	-			-											
		ke the			vledgea	able in	the ar	ea of r	natrix	theory	so tha	at he/s	he will	be fai	milia		
		tlab app	-				_										
		niliariz		tudent	with f	unctio	ns of s	everal	variab	les. Th	nis is n	leeded	in ma	ny bra	nche		
(of eng	ineerin	ıg.														
Course	Outc	omes:															
On com	pletio	n of the	e cours	e, the	studen	t will l	be able	e to									
Cours						Desc	criptio	n						Highes			
Outcon															Bloom's		
s CO1		Evaluin the basic electrical quantities and lows													Taxonomy K2		
		Explain the basic electrical quantities and laws.															
CO2															K2 K2		
CO3		Study the working principles of power converters.Show the tariff or a given load and energy consumption.															
CO4				-			-		-		11 . •	1	K2				
C05	CO5 Introduce the components of low voltage electrical installations and its applications.												K3				
Correla	ntion l	oetwee	n Cou	rse Oı	itcom	es (CC	s) and	l Prog	ram C	Outcon	nes (P	Os):					
COs		ion between Course Outcomes (COs) and Program Outcomes (POs): Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS		
CO1	1 S	2 S	3 1	4 L	5 M	6 M	7 M	8	9 S	10 M	11	12 S	01	O2 -	03		
CO2	S	S	L M	M	M M	S	M	- L	S	M	- L	M	_	_	-		
CO3	S	S	M	M	S	M	M		M	M		M	-	-	-		
CO4	S	S	S	S	S	M	M	М	M	M	L	M	-	-	-		
CO5	S	S	M	S	M	M	L	L	S	M	L	M	-	-	-		
	r		CIRCU	ITTO	•	·	• 	•	·	• 	• 	-	·	0.11			
			ыксі	115										9 H o	urs		
UNIT-I Electric:					and C	1) 10-14	-000.01	d aum	ont ac	uroog	Kirah	off ar	rront (

UNIT-II	AC CIRCUITS	9 Hours
Representation	of sinusoidal waveforms, peak and rms values, phasor representation, a	real power,
reactive power	apparent power, power factor. Analysis of single-phase ac circuits consisti	ng of R, L,
C, RL, RC, F	RLC combinations (series and parallel), resonance. Three-phase balance	ed circuits,
voltage and cur	rent relations in star and delta connections.	

UNIT-III TRANSFORMERS

Magnetic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformerconnections.

ELECTRICAL MACHINES UNIT-IV

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque- speed characteristic and speed control of separately excited dc motor. Construction and working of synchronous generators.

POWER CONVERTERS AND ELECTRICAL INSTALLATIONS UNIT-V 9 Hours

DC-DC buck and boost converters, duty ratio control. Single-phase and three-phase voltage source inverters; sinusoidal modulation. Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

> **Total Hours 45 Hours**

Text	Book(s)
1.	D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
2.	D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
Refe	rence Book(s)
1.	L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
2.	E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
3.	V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

9 Hours

9 Hours

Course	Code		CMCC	CH287	50			L	Т	P	C	IA	EA	. 1	ГМ						
Course	Name		ENVI	RONN	MENI	SCI	ENCE	2	0	0	2*	40	60	1	00						
			AND	ENG	INEE	RING															
Course	Catego	ory	MANE	DATOF	RY CO	URSE			Sylla	ibus F	Revisio	n		V.1.0	0						
			(MC)*	:																	
Pre-req	•																				
Course																					
The cou																					
		y the na																			
		ling and	-		ing sci	entific	e, tech	nologi	ical, e	conon	nic an	d poli	tical s	olutio	ns t						
		mental	-																		
3. '	To stud	y the int	ter rela	tionshi	ip betv	veen li	ving o	rganıs	m and	envir	onmen	t.									
<u></u>	0.4																				
Course				41	ale of	:11-1	al l														
On com	-	of the c	course,	the stu	ident v									T' 1							
Cou						Desc	criptio	n						Highes							
Outco	mes											Bloom's									
CO	1	Noturo	Taxonomy re of environment and reasons for environmental problems. K4																		
$\frac{co}{co}$			Ecosystem – structure, functions, simplified co-system models. K6																		
<u> </u>		-	iral resources, reasons for over exploitation of resources. K2																		
<u> </u>			errelationship between living organism and environment. K2																		
<u> </u>		Public									mient	•	K4 K2								
	5	I uone	awaren	1035 01	CIIVII	Jiiiicii	tai 15 a	t miai	li stage					K2							
Correla	tion h	etween	Course	Outo	omes		I hne	Progra	m Ou	teom	e (PO	e).									
Correa			Course	Jour	unics	(003)		10510			L3 (I U	5).	Р	rogra	m						
														specifi							
				Pro	ogram	Outc	omes	(POs)						utcom							
COs														(PSOs							
	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS						
		2	3	4	5	6	7	8	9	10	11	12	01	02	03						
CO1	L	L	L	L	-	М	М	S	М	М	М	L	-	-	-						
CO2	М	М	М	М	L	М	М	S	М	М	М	L	-	-	-						
CO3	-	-	-	-	М	М	М	S	М	М	М	L	-	-	-						
CO4	L	L	L	L	М	М	М	S	М	М	М	L	-	-	-						
CO5	L	L	L	L	М	М	М	S	М	М	М	L	-	-	-						
															•						
UNIT-I	[INT	RODU	JCTIC	ON TO) ENV	IRON	IMEN	TAN	D				9 Ho	ours						
			VIRON																		
1.1. Int	roductio							ature	of env	ironm	ent –	need	of av	varene	ess-						
reasons	for en	vironme	entar pi	oblen	10 - 40	IUII ()I)	OCEIIII			entric	view	5. I.Z.	L'HVH								

concept-Indian environmental movements-environmental calendar.

UNIT-II

ECO SYSTEM AND BIO DIVERSITY

9 Hours

2.1. Ecosystem – structure – functions – simplified ecosystem models (food chain and food webs and their types, energy flow) - forest – grassland – pond –ecosystems – ecological succession – ecological pyramids–Bio-geo chemical cycles of water–oxygen-carbon-phosphorous and sulphur. 2.2.Biodiversity – definition – types – species – genetic and ecosystem diversities-values of biodiversity – threats to biodiversity – conservation of biodiversity – endemism – biodiversity hotspots – Indian biodiversity– endemic species of India–IUCN lists – red – green and blue data books.

UNIT-III

NATURAL RESOURCES

3.1 Natural resources – definition – types – forest resources – uses –deforestation- reasons - effects – water resources – dams – effects of dams - food resources – modern agriculture– ill effects – energy resources -types–hydel–nuclear–solar–wind and biomass energy-world scenario–Indian scenario. 3.2 Population and environment–reasons for over exploitation of resources–population– demography – population curves – population explosion – effects – consumerism – effects – urbanization – reasons and effects – role of an individual.

UNIT-IV E

ENVIRONMENT POLLUTION

9 Hours

9 H o ur s

4.1 Pollution-definition-types-air pollution -causes and effects-effects of CO2-CO - NOx - SOx -particulates-control of air pollution-water pollution-causes-effects-remedies-soil pollution- solid waste management - e-waste - ill effects of e-waste - proper recycling - Noise pollution - reasons-effects - control - nuclear pollution - cases - effects and control -thermal pollution causes - effects and remedies. 4.2 Legal provisions for protecting environment - article 48 A - 51 A (g) - Environment act1986 - Air act 1981 - Water act 1974 - wild life protection act - Forest act 1980 - problems in implementation-reasons.

UNIT-V

SOCIAL ISSUES AND ENVIRONMENTAL ETHICS

9 Hours

Present environmental scenario – green house effect – climate change–The Kyoto Protocol–ozone layer depletion- The Montreal Protocol-acid rain–causes–effects-disparity among the nations– The Copenhagen UNFCCC summit – carbon currency- virtual water- genetically modified organisms, Disaster management. 5.2 Environmental ethics–introduction–people getting affected-resettlement and rehabilitation – issues involved –Sardhar Sarovar project – Tawa Matsya sang - Melting icebergs of Arctic.

Total Hours 45 Hours

Text Book(s)

1. Anubha Kaushik and C.P. Kaushik, "Prospects of Environmental Science", New Age

	International publishers, 2019.
Refe	rence Book(s)
1.	Environmental Studies, N.Nandini, N. Sunitha and SucharitaTandon, Sapna Book House, 2019.
2.	Text book of Environmental Science, Ragavan Nambiar, Scitech Publications, 2010.
3.	Text book of Environmental Chemistry and Pollution Control, S.S.Dara, S.Chandand Co., 7th
	Edition.
4.	Environmental Chemistry, Colin Baird, W.H.Freemanand company, NewYork, 4th Edition,
	2008.
5.	Environmental Chemistry, Gary W.VanLoon and StephenJ. Duffy, Oxford University Press, 9th
	Edition 2017.
6.	New Trends in Green Chemistry, V.K. Ahluwalia and M. Kidwai, Anamaya Publishers, 1 st
	Edition2012.

Course	Code		CESM	E18P5	0			L	Т	Р	С	IA	EA		ГМ			
Course	urse NameENGINEERING GRAPHICS AND DESIGN10234060urse CategoryBASIC SCIENCE COURSESyllabus RevisionV.1e-requisiteurse Objectives:VVVurse Objectives:e-course should enable the studentsVVV										1	00						
			AND	DESIC	GN													
Course	Categ	gory]	BASIC	C SCIE	NCE (COURS	SE		Sylla	nbus F	Revisio	n		V.1.()			
Pre-req	uisite																	
	v																	
		velop i			graphic	skills	for c	ommu	nicatio	on of o	concep	ts, ide	eas and	d desig	gn o			
	U	eringpi							•									
2.	Fo exp	ose the	em to e	xisting	g natior	hal star	ndards	related	l to tec	hnical	drawn	ngs.						
0	0.4																	
Course							1. 1 .	4 -										
On com	1	n of the	cours	e, the s	student									Takas	.4			
Outcon						Desc	riptio	n						Highes Bloom ²				
S	lie																	
CO1		raw or	thoora	phic pr	niectio	ons of	lines 1	alanes	and so	lids			Taxonon K3					
CO1		raw pr			-		-	-			amid		K3 K3					
CO3		-	•					-		1.			K3 K3					
CO4												and	K4					
										uci. i	vrannu	anu		174				
			le deve	elopme	ent of	surfac	es inc	luaing	cynn		yrannu	anu		124				
CO5	р	rism. raw p		-	of		es inc	-	solids		rthogra			K4 K6				
	pı D	rism.	orojecti	on	of	lines	, pla	-	solids	, 01	-	phic,						
	pı D pı	rism. raw p	orojecti on, Iso	on metric	of projec	lines	, plai and	nes, sectio	solids	, oi f solid	rthogra s inclu	phic, Iding						
	pı D pı	rism. raw p rojectio	orojecti on, Iso	on metric	of projec	lines	, plai and	nes, sectio	solids	, oi f solid	rthogra s inclu	phic, Iding						
CO5	pı D pı cy	rism. raw p rojectic ylinder,	projecti on, Iso , cone,	on metric prism,	of projec , pyran	lines ction, a nid and	s, plan and l build	nes, sectio ing dra	solids n of wing t	, or Solid Ising A	rthogra s inclu AutoC2	phic, iding AD.						
CO5	pı D pı cy	rism. raw p rojectic ylinder,	projecti on, Iso , cone,	on metric prism,	of projec , pyran	lines ction, a nid and	s, plan and l build	nes, sectio ing dra	solids n of wing t	, or Solid Ising A	rthogra s inclu AutoC2	phic, iding AD.		K6				
	pı D pı cy	rism. raw p rojectic ylinder,	projecti on, Iso , cone,	on metric prism,	of projec , pyran	lines ction, a nid and	s, plan and l build	nes, sectio ing dra	solids n of wing t	, or Solid Ising A	rthogra s inclu AutoC2	phic, iding AD.		K6				
CO5	pı D pı cy	rism. raw p rojectic ylinder,	projecti on, Iso , cone,	on metric prism,	of projec pyran tcome	lines ction, a nid and	s, plan and l build s) and	nes, sectio ing dra Progr	solids n of wing t am Ot	, or Solid Ising A	rthogra s inclu AutoC2	phic, iding AD.	S	K6 Trogra	c			
CO5	pı D pı cy	rism. raw p rojectic ylinder,	projecti on, Iso , cone,	on metric prism,	of projec pyran tcome	lines ction, a nid and s (COs	s, plan and l build s) and	nes, sectio ing dra Progr	solids n of wing t am Ot	, or Solid Ising A	rthogra s inclu AutoC2	phic, iding AD.	8 0	K6 Trogra	ic ies			
CO5	tion b	rism. raw p cojectic ylinder.	projecti on, Iso , cone, n Cou	on metric prism, rse Ou	of projec pyram tcome	lines ction, and nid and s (COs m Out	s, plan and l build: s) and tcomes	nes, sectio ing dra Progr	solids n of wing t am Ot	solid solid sing 2 itcom	rthogra s inclu AutoCA es (PO	phic, iding AD.		K6 Progra: Specifi utcom (PSOs	c nes)			
CO5	tion b	rism. raw p rojectic ylinder, etween	projecti on, Iso , cone, n Coun	on metric prism, rse Ou F	of projec pyran tcome Progra	lines ction, a nid and s (COs m Out	s, plan and l build s) and tcomes PO	nes, sectio ing dra Progr s (POs	solids n of wing t am Ot) PO	, or solid ising <i>2</i> itcom	rthogra s inclu AutoC ₂ es (PO	phic, ading AD. (s): PO	PS	K6 Frogra Specifi utcom (PSOs PS	ic ies) PS			
CO5	PO 1	rism. raw p rojectic ylinder, etween PO 2	projecti on, Iso , cone, n Coun PO 3	on metric prism, rse Ou F PO 4	of projec pyram tcome Progra PO 5	lines ction, a nid and s (COs m Out PO 6	s, plan and l build s) and tcomes PO 7	nes, sectio ing dra Progr s (POs PO 8	solids n of wing t am O am O 9	, or f solid ising <i>A</i> itcom	rthogra s inclu AutoC ² es (PO es (PO 11	phic, iding AD. (s): PO 12		K6 Progra: Specifi utcom (PSOs	ic ies) PS			
CO5 Correla COs	PO 1 S	rism. raw p rojectio ylinder, etween PO 2 S	PO 3 S	on metric prism, rse Ou F PO 4 S	of projec pyram tcome Progra PO 5 S	lines ction, a nid and s (COs m Out PO 6 M	s, plan and l build: s) and tcomes PO 7 M	nes, sectio ing dra Progr s (POs s (POs 8 -	solids n of wing t am Ot am Ot 9 9 M	, or f solid using <i>2</i> utcom PO 10 M	rthogra s inclu AutoCz es (PO es (PO 11 M	phic, iding AD. (s): PO 12 L	PS 01 -	K6 Frogra Specifi utcom (PSOs PS O2	ic ies) PS			
CO5 Correla COs CO1 CO2	PO 1 S S	rism. raw p rojectio ylinder, etween PO 2 S S	PO 3 S S	on metric prism, rse Ou F PO 4 S S	of projec pyram tcome Progra PO 5 S S S	lines ction, a nid and s (COs m Out PO 6 M M	s, plan and l build s) and tcomes PO 7 M M	nes, sectio ing dra Progr s (POs s (POs PO 8 - -	solids n of wing t am Ot am Ot 9 9 M M M	, or solid using 2 itcom PO 10 M M	rthogra s inclu AutoCz es (PO 11 M M	phic, iding AD. (s): PO 12 L L	900 9700 9700 9700 9700 9700 9700 9700	K6 Frogra Specifi utcom (PSOs PS O2 - -	ic nes) PS O3 -			
CO5 Correla COs CO1 CO2 CO3	PO 1 S S S	rism. raw p rojectic ylinder, etween PO 2 S S S S	PO 3 S S S	on metric prism, rse Ou F PO 4 S S S S	of projec pyram tcomes Progra PO 5 S S S S	lines ction, and nid and s (COs m Out PO 6 M M M M	s, plar and l build s) and tcomes PO 7 M M M	nes, sectio ing dra Progr s (POs s (POs 8 -	solids n of wing t am Or am Or 9 M M M M	, or solid using <i>2</i> itcom 10 M M L	rthogra s inclu AutoCz es (PO 11 M M M	PO 12 L L	PS 01 - -	K6 Frogra: Specifi utcom (PSOs PS O2 - - -	ic les) PS O3 - -			
CO5 Correla COs CO1 CO2	PO 1 S S	rism. raw p rojectio ylinder, etween PO 2 S S	PO 3 S S	on metric prism, rse Ou F PO 4 S S	of projec pyram tcome Progra PO 5 S S S	lines ction, a nid and s (COs m Out PO 6 M M	s, plan and l build s) and tcomes PO 7 M M	nes, sectio ing dra Progr s (POs s (POs PO 8 - -	solids n of wing t am Ot am Ot 9 9 M M M	, or solid using 2 itcom PO 10 M M	rthogra s inclu AutoCz es (PO 11 M M	phic, iding AD. (s): PO 12 L L	900 9700 9700 9700 9700 9700 9700 9700	K6 Frogra Specifi utcom (PSOs PS O2 - -	ic nes) PS 03 - -			

Principles; Isometric Projection; Surface Development; Perspective; Reading a Drawing;. Sectional Views; Dimensioning & Tolerances; True Length, Angle; intersection, Shortest Distance.

Computer Graphics:

Engineering Graphics Software; -Spatial Transformations; Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi-view Projection; Exploded Assembly; Model Viewing; Animation; Spatial Manipulation; Surface Modeling; Solid Modeling; Introduction to Building Information Modeling (BIM).

(Except the basic essential concepts, most of the teaching part can happen Concurrently in the laboratory)

Module 1: Introduction to Engineering Drawing covering, Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloids, Hypocycloid and In volute; Scales – Plain, Diagonal and Vernier Scales

Module 2: Orthographic Projections covering, Principles of Orthographic Projections- Conventions - Projections of Points and lines inclined to both planes; Projections of planes inclined Planes -Auxiliary Planes

Module 3: Projections of Regular Solids covering, those inclined to both the Planes- Auxiliary Views; Draw simple annotation, dimensioning and scale. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.

Module 4:Sections and Sectional Views of Right Angular Solids covering, Prism, Cylinder, Pyramid, Cone - Auxiliary Views; Development of surfaces of Right Regular Solids, Prism, Pyramid, Cylinder and Cone; Draw the sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only)

Module 5: Isometric Projections covering, Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions.

Module 6: Overview of Computer Graphics covering, listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids]

Module 7: Customization & CAD Drawing consisting of set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerance; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles

Module 8: Annotations, layering & other functions covering applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing

sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multi view, auxiliary, and section views. Spatial visualization exercises. Dimensioning guidelines, tolerance techniques; dimensioning and scale multi views of dwelling

Module 9: Demonstration of a simple team design project that illustrates Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying color coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modeling (BIM).

	Total Hours 45 Hours
Text	Book(s)
1.	Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing
	House.
2.	Shah, M.B. &Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson
	Education.
3.	Agrawal B. & Agrawal C. M. (2012), Engineering Graphics: TMH Publication.
4.	Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, SciTech Publishers.

Course	Code	(CBSCI	H18P6	0			L	Т	P	С	IA	EA		ГМ
Course	Name	; (CHEM	IISTR	Y LA	B		0	0	3	2	40	60	1	100
Course	Categ	gory]	BASIC	C SCIE	NCE (COUR	SE		Sylla	abus F	evisio	n		V.1.0	C
Pre-req	uisite														
Course	Obje	ctives:													
The cou	rse sh	ould en	able th	e stude	ents										
		arn the			-		-			-	lumeti	ric an	alysis,	collig	gative
ľ	proper	ties, sir	nple sy	vnthesi	s and c	other ir	nstrume	ental te	chniqu	ie.					
<u>a</u>	0 1														
Course				. 41	4 d 4		a ahla d								
On com	-	1 of the	course	e, the s	tudent								т	Labor	-4
Course Outcon						Desc	criptio	n						Highes Bloom	
	le														
s CO1	E	stimate	rate	000	stants	of	reactio	na fr	om	concer	tration	n of	18	ixonoi K5	iny
COI		eactants						0115 11	om	concer	iti atioi	1 01		N3	
CO2		leasure	-					h ac ci	irface	tensio	n vise	osity		K4	
02		onduct		•								•		174	
CO3		ynthesi					nemiai	s, emo.			Ji wat			K4	
CO4		nalyze			-	ceule.								K4	
001	1	maryze	u suit i	sumpte	•									114	
Correla	tion h	etweer	Cour	se Ou	tcome	s (COs	s) and	Progr	m Ou	tcome	s (PO	s):			
				50 0 4) and	1081			.5 (1 0)	5)•	Р	rogra	m
														specifi	
				ł	Progra	m Ou	tcomes	s (POs)						utcom	
COs													(PSOs)
	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	S	S	S	S	М	М	_	М	М	М	М	_	_	-
CO2	S	S	S	S	M	M	M	-	M	M	M	-	-	-	-
CO3	M	M	M	S	M	M	M	-	M	M	M	-	-	_	-
CO4	S	S	S	S	S	М	М	_	М	М	М	_	_		
	3	5	3	3	5	IVI	IVI	-	IVI	IVI	IVI	-	-	-	-
				NADED		JTC									
		LIST	' () F F	хрнк											
1	Det	LIST					lviscos	sity of	a liqui	dora	solutio	n			
1		ermina	tion of	surfac	e tensi	on and		•	-				ure		
2	. Thi	ermina n layer	tion of chrom	surfac atogra	e tensi phy / F	on and Paper c	hromat	tograpl	ny for s				ure.		
2 3	. Thi . Ion	ermina n layer exchar	tion of chrom ige col	surfac atogra umn fo	e tensi phy / F or remo	on and Paper c oval of	hromat hardne	tograpl ess of v	ny for a vater	separat			ure.		
2 3 4	. Thi . Ion . Det	ermina n layer exchan ermina	tion of chrom ige col tion of	surfac atogra umn fo chlori	e tensi phy / F or remo de con	on and Paper c oval of tent of	hromat hardne water	tograph ess of v by volu	ny for s vater umetry	separat 7.	tion of		ure.		
2 3 4 5	. Thi . Ion . Det . Det	ermina n layer exchan ermina ermina	tion of chrom ige col tion of tion of	surfac atogra umn fo chlori M.wt	e tensi phy / F or remo de con of a no	on and Paper c oval of tent of on-vola	hromat hardne water utile so	tograph ess of v by volu lute by	ny for s vater umetry Rast's	separat 7. 5 metho	tion of od.	a mixt		k reac	tion
2 3 4	. Thi . Ion . Det . Det . Det	ermina n layer exchan ermina	tion of chrom ige col tion of tion of	surfac atogra umn fo chlori M.wt	e tensi phy / F or remo de con of a no	on and Paper c oval of tent of on-vola	hromat hardne water utile so	tograph ess of v by volu lute by	ny for s vater umetry Rast's	separat 7. 5 metho	tion of od.	a mixt		k reac	tion

1.

Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

	8. Potentiometry -Determination of formal redox potential of Fe ³⁺ /Fe ²⁺ couple
	9. Synthesis of Nylon 66 by interfacial polymerization method.
	10. Determination of Saponification/acid value of oil.
	11. Systematic qualitative analysis of a salt
	12. Lattice structures and packing of spheres
	13. Models of potential energy surfaces – computational experiment.
	14. Chemical oscillations- Potentiometric study of the oscillations of Belousov-
	Zhabotinskyreaction
	15. Determination of the partition coefficient of I_2 between water and CCl_4
	16. Verification of Freundlich isotherm for adsorption of acetic acid / oxalic acid by
	charcoal.
	17. Determination of iso electric point of Gelatin sols by using capillary viscosmeter.
	Total Hours 45 Hours
Text	Book(s)
1.	Advanced Practical Physical Chemistry, J.B.Yadhay, Krishna Prakasan Media, 2016.

Experiments in Applied Chemistry, Sunita Rattan, S.K. Kataria & Sons, 2012. 2.

Course	Code		CESEI	E18P7	0			L	Т	P	С	IA	EA	. 7	ГМ
Course	Name	e e	BASIC	C ELE	CTRI	CAL		0	0	3	2	40	60	1	.00
			ENGI	NEER	ING I	LAB									
Course	Categ		ENGI		ING SO	CIENC	CE		Sylla	abus F	Revisio	n		V.1.()
			COUR	SE											
Pre-req															
Course	•														
The cou															
			irse eq						knowle	edge a	and ur	Idersta	nding	lving	
		-	c,trans		-			•	C						
			e the st			-	able in	the ar	ea of a	matrix	theory	y so th	hat he	she w	ill be
			in Mat		-		.	C			11 7				
			liarize			with f	unctio	ns of	severa	l varia	ibles.	This is	need	ed in	many
	bi	anche	s of eng	gineeri	ng.										
Com	04														
Course On com			a	a tha	otudar	+ xy;11 1	ha obla	to							
Cours			e cours	e, the	studen								1	Jighos	4
Outcon	-					Dest	criptio	Π						Highes Bloom ⁹	
Outcon	165													xonor	
C01		Obtain	load o	haract	eristic	s of S	ingle I	Dhace	Induct	ion M	otor 7	Three	16	K3	пу
			Inducti				-							K3	
		Alterna			0.01, 1	mgic	1 mase	114115		and		nase			
CO2			Speed	l Cont	rol of	DC N	Antor	Three	Phase	Indua	tion N	Antor		K3	
001			Changi			DUI	10101,	Tinee	1 mabe	maa		10101		110	
CO3			nonstra	-		ing of	Multi	meter	CRC) and	LCR 1	Meter		K3	
			easurer			-					_				
CO4			rify exp			-				venin'	s Theo	rem.		K3	
CO5			the B											K4	
	<u> </u>	2 orain					,						I		
Correla	tion ¹	oetwee	n Cou	rse Ou	itcome	es (CO	s) and	Prog	ram O	utcon	nes (PC	Ds):			
							.,				(- ()•	P	rogra	m
						_								Specifi	
CO-				P	Progra	m Ou	tcomes	s (POs)					utcom	
COs														PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	PO	РО	PSO	PSO	PSO
										10	11	12	1	2	3
CO1	S	М	М	М	М	М	-	-	S	М	-	L	-	-	-
CO2	S	S	М	М	S	М	L	-	S	S	-	М	-	-	-
CO3	S	S	Μ	М	S	М	L	-	S	М	L	М	-	-	-
CO4	S	S	S	S	М	М	L	L	М	М	-	S	-	-	-
CO5	М	М	М	S	М	М	L	-	М	М	-	М	-	-	-

List of Experiments
1. Study of Electric Motors (AC & DC Motors)
2. Load Test on Single Phase Induction Motor
3. Load Test on Three Phase Induction Motor
4. Load Test on Single Phase Transformer
5. Load Test on Three Phase Alternator
6. Speed Control of DC Motor
7. Speed Control of Three Phase Induction Motor (Pole Changing Method)
8. Study of Multi meter, CRO and LCR Meter
9. Measurement of Voltage, Current and Power.
10. Verification of Kirchoff's Law
11. Verification of Thevenin's Theorem
12. B·H Curve of a Magnetic Material
13. Rectifier Circuit Analysis (AC – DC)
14. Inverter Circuit Analysis (DC – AC)
15. Chopper Circuit Analysis (DC – DC)
16. Series and Parallel RLC Circuit Analysis
 Total Hours 45 Hours

SEMESTER - III

Course Code	BECF183T10	L	Т	Р	C	IA	EA	ТМ
Course Name	MATHEMATICS III (PROBABILITY AND STATISTICS)	3	1	0	4	40	60	100
Course Category	BASIC SCIENCE COURSE		Sylla	bus Re	visio	1	Ι	7.1.0
Pre-requisite	Collection of data, Counting T	'echni	ques,]	Permut	ation	and co	ombina	ation

Course Objectives:

The course should enable the students

- 1. To give the basic knowledge about the probability and random variables.
- 2. Understand about the discrete and continuous distributions
- 3. To find the measures of basic statistics like central tendency, dispersion, correlation and regression.
- 4. To fit the different types of curves for the given set of tabular values.
- 5. Distinguish between the parametric and non-parametric tests.

Course Outcomes:

On completion of the course, the student will be able to

On completi	on or	the co	burse,	the sti	udent	WIII D	e able	to							
Course						De	script	ion						Hig	hest
Outcomes							_							Blo	om's
														Taxo	nomy
CO1	В	asic p			v										
001		-		k	K1										
		continuous random variables. Derive probability function of transformations of random variables													
CO2		Derive probability function of transformations of random variables													
	ar	and use these techniques to generate data from various distributions.													K3
CO3	C	Calculate and apply measures of location and measures of												k	K 3
		dispersion in grouped and un grouped data cases.													
														n K4	
CO4		Test Hypothesis and calculate confidence interval for apopulation parameter for single sample and two sample cases.													\ 4
	pa	aramet	ter for	single	e sam	ple and	d two	sampl	e case	s.					
CO5	T	ransla	te real	-world	d proł	olems	into p	robabi	lity m	odels	and	to col	lect	K5	
	da	ata, an	alvze	and de	educe	infor	nation	from	a real	time	surve	ev.			
		,	5									5			
Correlation	betw	veen (Course	e Outo	comes	5 (CO	s) and	Prog	ram (Dutco	mes	(POs)	:		
						<u> </u>	,	- 0				()		Program	
				_					,					Speci	
				Pr	ograr	n Out	comes	s (POs	S)					utcoi	
COs														(PSO	
-	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PSO
														02	
	1	2	3	4	5	v		0		10	11	14		$\mathbf{U}_{\mathbf{Z}}$	3
CO1	1 S	2 3 4 5 6 7 8 9 10 11 12 O1 S S S M M M - M M M M M													3 S

			1	1		1			1	1			1	,	
CO3	S	S	S	S	Μ	Μ	Μ	-	Μ	Μ	Μ	L	L	-	S
CO4	S	S	S	S	М	Μ	М	-	М	М	Μ	L	L	-	S
CO5	S	S	S	S	М	М	М	-	М	М	Μ	L	М	М	S
UNIT-I		BAS	IC P	ROBA	ABIL	ТУ								12 F	Iours
Probability	spa						ity, I	ndepe	ndent	ran	dom	var	iables,	1	
independer	nt ran	dom v	variab	oles, I	Bayes'	The	orem,	Disc	rete a	nd C	ontir	nuous	one o	limen	sional
random va	riable	s - Ex	pecta	tions,	Mon	nents,	Varia	ince o	f a su	ım, M	Iome	nt ge	neratir	ng fur	nction,
Tchebyshe	v's Ine	equali	ty.												
UNIT-II							BUTI								Iours
Discrete D								U			al di	stribu	tions,	Cont	inuous
Distributio	ons - N	Jorma	l, Exp	onen	tial an	d Gai	nma c	listrib	utions	5.					
		<u> </u>													
UNIT-III	6.0			ГАТІ				1	•	1			<u> </u>		Iours
Measures				•		0								-	
Range, Me			-						rd de	viatic	on, N	lome	nts, sk	ewne	ss and
Kurtosis, C	Correla	ation a	ind re	gressi	on - I	Rank	correl	ation.							
UNIT-IV				D ST A	TICI	TCS								12 L	Iours
Curve fitti	ng hy t						fitting	of str	aight	lines	seco	nd de	gree n		
more gene															
of proporti				-			-	-			-				
· · · · · ·		0	,												
UNIT-V		SMA	ALL S	SAMI	PLES									12 H	Iours
Test for s	ingle	mean	, diff	ferenc	e of	mear	is and	d corr	elatic	on co	effici	ients,	test f	for ra	tio of
variances -	Chi-s	quare	test f	or goo	odness	s of fi	t and i	ndepe	nden	ce of a	attrib	utes.			
														-	
											Т	'otal I	Iours	60 H	Iours
Text Book					1.	<u>a.</u>	•	1 D	1	D		m	• •	1	—
	f. Ve McGra						tics a	nd Ra	andon	n Pro	cesse	es, Tl	nird e	dition	, Tata
2 \$	S.P. Gı	upta, S	statisti	cal M	ethods	s, 31 st	edition	n, Sult	an cha	and an	nd sor	ns, Ne	w Dell	ni, 200)2.
Reference															
	Erwin 2006.	Kreys	zig, A	dvanc	ed Er	nginee	ering N	Aather	natics	, 9th	Editi	on, Jo	ohn Wi	ley &	Sons,
		s, A Fi	rst Co	urse i	n Prot	abilit	y, 6th	Ed., P	earsor	n Educ	catior	n India	a, 2002	•	
													h Editi		
					•	al, Ā	text	book	of	Engin	eerin	g Ma	thema	tics,	Laxmi
	Publica	ations,	Repr	int,20	10.										

0 1 V.1.(100 0
V.1.(0
	шy
1\2	
Progra	
-	
	PS
	03
-	-
-	S
-	S
М	S
-	S
	<u> </u>
9 Ho	
(Rectif	• •
5. V 212	icior
	Specifi Dutcom (PSOs PS O2 - - M - - M - - M - - M (PSOs PS O2 - - - - - M (PSOs PS O2 - - - - - - - - - - - - - - - - - -

UNIT-II	DIODE CIRCUITS	9 Hours
	Practical diode, Clipper, Clamper. Power Supply: Rectifiers-Half wave,	
	ctifier, filter circuits, Voltage regulation using shunt & series regulator circu	its, Voltage
regulatio	n using IC 723	
UNIT-II		9 Hours
	ion, basic operation, current components and equations, CB, CE and CC co	-
-	output characteristics, Early effect, Region of operations: active, cut-off an	
-	JT as an amplifier and switch - Photo transistor, Uni-junction Transistor	(UJT) and
Thyristo	s: UJT: Principle of operation, characteristics, UJT relaxation oscillator.	
UNIT-IV	SMALL SIGNAL ANALYSIS	9 Hours
	nal Amplifier, Amplifier Bandwidth, Hybrid model, analysis of transistor am	
	ter, Multistage Amplifier: Cascading amplifier, Boot-strapping Technique,	
amplifier	and Cascode amplifier, Coupling methods in multistage amplifier, Low	w and high
frequenc	π response, Hybrid π model, Current Mirror circuits.	
		-
UNIT-V	FET CONSTRUCTION	9 Hours
	instruction, n-channel and p-channel, transfer and drain characteristics,	1 '
	nt model and voltage gain, analysis of FET in CG, CS and CD co	onfiguration.
	nent and Depletion MOSFET drain and transfer Characteristics.	lithography
	ed Circuit Fabrication Process: oxidation, diffusion, ion implantation, photol hemical vapor deposition, sputtering, twin-tub CMOS process.	nniography,
cicining, c	tennear vapor deposition, spattering, twin-tub enros process.	
	Total Hours	45 Hours
Text Boo		
1. Do	nald .A. Neamen, Electronic Circuit Analysis and Design -2 nd Edition, Tat	a Mc Graw
1. D		a me Gram
	1, 2009.	
Hi Reference	e Book(s)	
Hi Reference	·	
Hi Reference 1. Sa	e Book(s)	
Hi Reference 1. Sa 2. Th	e Book(s) ivahanan, Kumar & Vallavaraj, "Electronic Devices and Circuits", TMH, 2016	
HiReference1.Sa2.ThPH	e Book(s) ivahanan, Kumar & Vallavaraj, "Electronic Devices and Circuits", TMH, 2016 eodore F. Bogart, Jeffrey S. Beasley, "Guillermo Rico Electronic Devices &	

Course C	ode B	ECF183T40	L	Т	Р	С	IA	EA	TM		
Course N	ame D	IGITAL SYSTEM DESIGN	3	0	0	3	40	60	100		
Course	P	ROGRAMME CORE		Syll	abus I	Revisi	on		V.1.0		
Category	C	OURSE									
Pre-requi	isite B	asic electronics, Boolean algebra	a an	d Nui	nber s	ystem	s.				
Course O	bjectives:										
The course	e should e	nable the students -									
1. To	o introduc	e basic postulates of Boolean	alg	ebra	and sl	nows	the co	orrelati	on betweer		
Bo	olean exp	ressions.									
2. To	introduce	e the methods for simplifying H	3 00]	ean e	xpress	sions.					
		he formal procedures for the a	nal	ysis a	nd de	sign c	of com	binatio	onal circuits		
an	d Sequent	ial circuits.									
4. To	introduce	the concept of memories and pr	ogr	amma	ble log	gic dev	vices.				
5. To	illustrate	the concept of synchronous and	asyı	nchro	nous s	equent	tial ciro	cuits.			
Course Outcom es		Description]	Highest Bloom's axonomy		
CO1	Explain t	he basic theorems and propertie	s of	Boole	ean alg	gebra .			K3		
CO2	_	- Map for gate level minimization							K5		
CO3		t combinational logic circuits fo e their performance.	r th	e give	n requ	ireme	nt and		К5		
CO4	Illustrate devices.	the Classifications of memorie	es a	nd pr	ogram	mable	logic		K6		
CO5	Design s VERILO	synchronous and asynchronous G.	s se	quent	ial cir	cuits	using		K6		
Correlatio	on betwee	n Course Outcomes (COs) and	l Pr	ograi	n Out	comes	s (POs):			
		Program Outcomes (P		- 8			I	Progra	m Specific		

COs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
COS	PO 1	PO 2	PO 2	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 0 1	PS O2	PSO3
	1	4	3	-	5	0	/	0	9	10	11	14	_	02	
CO1	S	S	S	Μ	-	-	-	-	-	-	-	L	S	-	S
CO2	S	S	S	S	Μ	-	-	-	-	-	-	Μ	Μ	-	S
CO3	S	S	S	S	S	-	-	-	-	-	-	L	S	-	S
CO4	S	S	S	S	Μ	-	-	-	-	-	-	-	L	Μ	S
CO5	S	S	S	S	S	-	-	-	-	-	-	-	Μ	Μ	S
		•	•	•	•				•	•					

UNIT-I	MINIMIZATION TECHNIQUES AND LOGIC GATES	9 Hours
Minimization	Techniques: Boolean postulates and laws - De-Morgan's Theorem	1 - Principle of
Duality - Bo	olean expression - Minimization of Boolean expressions - Mintern	m – Maxterm -
Sum of Prod	ucts (SOP) - Product of Sums (POS) - Karnaugh map Minimizatio	on – Don't care
conditions –Q	Quine- McCluskey method of minimization.	
Logic Gate	s: AND, OR, NOT, NAND, NOR, Exclusive-OR and H	Exclusive–NOR
Implementati	ons of Logic Functions using gates, NAND -NOR implementations -	Multilevel gate
implementati	ons- Multi output gate implementations. TTL and CMOS Lo	ogic and their
characteristic	s – Tristate gates.	
UNIT-II	COMBINATIONAL CIRCUITS	9 Hours

Design procedure – Half adder – Full Adder – Half subtractor – Full subtractor – Parallel binary adder, parallel binary Subtractor – Fast Adder - Carry Look Ahead adder – Serial Adder/Subtractor - BCD adder – Binary Multiplier – Binary Divider - Multiplexer/ Demultiplexer - decoder - encoder – parity checker – parity generators – code converters -Magnitude Comparator.

UNIT-III SEQUENTIAL CIRCUITS

Latches, Flip-flops - SR, JK, D, T, and Master-Slave – Characteristic table and equation – Application table – Edge triggering – Level Triggering – Realization of one flip flop using other flip flops – serial adder/subtractor Asynchronous Ripple or serial counter – Asynchronous Up/Down counter - Synchronous counters – Synchronous Up/Down counters – Programmable counters – Design of Synchronous counters: state diagram- State table –State minimization –State assignment -Excitation table and maps-Circuit implementation - Modulo–n counter, Registers – shift registers - Universal shift registers – Shift register counters – Ring counter – Shift counters -Sequence generators.

UNIT-IV MEMORY DEVICES

9 Hours

9 Hours

Classification of memories – ROM - ROM organization - PROM – EPROM – EEPROM – EAPROM, RAM – RAM organization – Write operation – Read operation – Memory cycle -Timing wave forms – Memory decoding – memory expansion – Static RAM Cell- Bipolar RAM cell – MOSFET RAM cell – Dynamic RAM cell –Programmable Logic Devices – Programmable Logic Array (PLA) - Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using ROM, PLA, PAL

UNIT-V	SYNCHRONOUS	AND	ASYNCHRONOUS	SEQUENTIAL	9 Hours
	CIRCUITS				

Synchronous Sequential Circuits: General Model – Classification – Design – Use of Algorithmic State Machine – Analysis of Synchronous Sequential Circuits Asynchronous Sequential Circuits: Design of fundamental mode and pulse mode circuits –

Incompletely specified State Machines – Problems in Asynchronous Circuits – Design of

Haza	rd Free Switching circuits. Design of Combinational and Sequential circuits using
VER	ILOG
	Total Hours 45 Hours
Text	Book(s)
1.	M. Morris Mano, "Digital Design", 4e, Prentice Hall of India Pvt. Ltd., 2008/
	PearsonEducation (Singapore) Pvt. Ltd., New Delhi, 2003.
Refe	rence Book(s)
1.	John F.Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008.
2.	John Yarb rough, "Digital Logic Applications and Design", Thomson Learning, 2006 .
3.	Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
4.	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition,
	ТМН, 2006.
5.	Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011.
6.	Donald D.Givone, "Digital Principles and Design", TMH, 2003.
7.	A.Ananda Kumar, Fundamentals of digital circuits, second edition, PHI learning private
	limited, 2009.

Course Code	BECF183T50	L	Т	Р	С	IA	EA	TM
Course Name	SIGNALS AND SYSTEMS	3	0	0	3	40	60	100
Course	PROGRAMME CORE		Sylla	bus Rev	visior	1		V.1.0
Category	COURSE							
Pre-requisite	CBSMAF8T10 - Mathematics -	– II						

Course Objectives:

The course should enable the students -

- 1. To understand the properties and representation of discrete and continuous signals.
- 2. To analyze continuous time signals and system in the Fourier and Laplace domain.
- 3. To analyze discrete time signals and system in the Fourier and Z transform domain.
- 4. To development of the mathematical skills to solve problems involving convolution, filtering, modulation and sampling.

Course Outcomes:

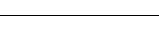
On completion of the course, the student will be able to

Course	Description	Highest Bloom's
Outcom		Taxonomy
es		
CO1	Understand and classify systems based on the impulse response	K2
	behavior of both continuous-time and discrete-time systems.	
CO2	Analyze and Evaluate the mathematical modeling of various signals	K4
	and systems.	
CO3	Analyze the Continuous time signals using Fourier series and	K3
	Fourier Transforms.	
CO4	Examine the Continuous time LTI systems using Fourier series and	K5
	Fourier Transforms.	
CO5	Analyze sampling process and sampling of discrete time signals.	K3

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

				Pr	ogran	n Out	come	s (POs	5)				Program Specific Outcomes (PSOs)		
COs	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	P	PO	PS	P	PSO3
	1	2	3	4	5	06	7	8	9	10	0 1	12	01	S O	
											1			2	
CO1	S	S	-	-	S	-	-	-	-	-	-	L	Μ	-	S
CO2	S	S	-	S	-	-	-	-	-	-	-	L	Μ	-	S
CO3	S	S	-	Μ	-	-	-	-	-	-	-	L	L	-	S
CO4	S	S	S	-	-	-	-	-	-	-	-	L	L	-	S
CO5	S	S	-	Μ	-	-	-	-	-	-	-	L	Μ	Μ	S
UNIT-	I	CLA	SSIF	ICAT	ION	OF SI	IGNA	LS Al	ND SY	YSTE	MS			9 H	ours

Cont	inuous 7	Time Signals(CT signals), Discrete time signals (DT signals) step, ra	mp. pulse, impulse.
		Classification of CT and DT signals - periodic, aperiodic, random si	.
-		ms, Basic properties of systems - Linear Time invariant systems and p	••••
			1
UNI	T-II	ANALYSIS OF CONTINUOUS TIME SIGNALS	9 Hours
Four	ier Serie	s Analysis- Representation of periodic signals in trigonometric and	d exponential form,
Spec	trum of	CT signals-Fourier Transform and Laplace Transform in signal analysi	s.
UNI	T-III	LINEAR TIME INVARIANT – CONTINUOUS TIME	9 Hours
		SYSTEMS	
Diffe	erential	Equation - Block diagram Representation, Impulse response, Co	onvolution Integral-
Freq	uency re	sponse, Fourier and Laplace Transforms in analysis, State variable ed	quations and Matrix
repre	esentatio	n of systems.	
UNI	T-IV	ANALYSIS OF DISCRETE TIME SYSTEMS	9 Hours
Sam	pling of	CT signals and aliasing, DTFT and properties, Z-transform and proper	ties of Z transform.
UNI		LINEAR TIME INVARIANT – DISCRETE TIME SYSTEMS	9 Hours
Diff			
		uations, Block Diagram representation, Impulse response, Convolutio	n sum, LTI systems
			n sum, LTI systems
		uations, Block Diagram representation, Impulse response, Convolutio g DTFT and Z-transforms, State variable equations and matrix represent	n sum, LTI systems ntation of systems.
analy	ysis using	uations, Block Diagram representation, Impulse response, Convolution g DTFT and Z-transforms, State variable equations and matrix represent Total Hours	n sum, LTI systems ntation of systems.
analy		uations, Block Diagram representation, Impulse response, Convolution g DTFT and Z-transforms, State variable equations and matrix represent Total Hours	n sum, LTI systems ntation of systems.
analy	vsis usin Book(s	uations, Block Diagram representation, Impulse response, Convolution g DTFT and Z-transforms, State variable equations and matrix represent Total Hours	n sum, LTI systems ntation of systems. 45 Hours
analy Text 1.	sis using Book(s P.Rame private	uations, Block Diagram representation, Impulse response, Convolution g DTFT and Z-transforms, State variable equations and matrix represent Total Hours esh Babu & R.Anandanatarajan, signals and systems, 4th edition, limited, 2009.	n sum, LTI systems ntation of systems. 45 Hours Scitech Publication
analy Text	sis using Book(s P.Rame private	uations, Block Diagram representation, Impulse response, Convolution g DTFT and Z-transforms, State variable equations and matrix represent Total Hours esh Babu & R.Anandanatarajan, signals and systems, 4th edition,	n sum, LTI systems ntation of systems. 45 Hours Scitech Publication
Text 1. 2. Refe	Book(s P.Rame private Allam rence B	uations, Block Diagram representation, Impulse response, Convolution g DTFT and Z-transforms, State variable equations and matrix represent Total Hours esh Babu & R.Anandanatarajan, signals and systems, 4th edition, limited, 2009. V. Oppenheim, S.Wilsky and S.H.Nawab, Signals and systems, Pearson pok(s)	n sum, LTI systems ntation of systems. 45 Hours Scitech Publication on Education, 2007.
analy Text 1. 2.	Book(s P.Rame private Allam rence B Robert	uations, Block Diagram representation, Impulse response, Convolution g DTFT and Z-transforms, State variable equations and matrix represent Total Hours esh Babu & R.Anandanatarajan, signals and systems, 4th edition, limited, 2009. V. Oppenheim, S.Wilsky and S.H.Nawab, Signals and systems, Pearso	n sum, LTI systems ntation of systems. 45 Hours Scitech Publication on Education, 2007. ey & Sons 2004.


	Code]	BECF1	83160)			L	Т	P	C	IA	EA	.]	ГМ			
Course	Name]	NETW	ORK	THE(ORY		3	0	0	3	40	60	1	00			
Course	Categ	ory]	PROG	RAMN	AE CO	RE			Syll	abus F	Revisio	n		V.1.0)			
			COUR	SE														
Pre-req	uisite]	Mather	natics	- II, Ba	asic El	ectroni	cs										
Course	Objec	tives:																
The cou	rse sho	ould en	able th	e stude	ents													
1. 7	To crea	ate circ	uits inv	volving	g differ	ent ac	tive an	d passi	ve ele	ments.								
2. 7	To ana	lyze th	e behav	vior of	the cir	cuit's	respon	se in ti	me do	main.								
3. 7	To ana	lyze th	e behav	vior of	the cir	cuit's	respon	se in fi	requen	cy dor	nain.							
4. 7	To inte	rpret tl	he sign	ificanc	e of ne	etwork	functi	on.										
		_																
Course	Outco	mes:																
On com	pletion	of the	course	e, the s	tudent	will be	e able t	0										
Cours	-			,			criptio							Highes	t			
Outcon	ne			Bloom'														
S													Taxonomy					
CO1	A	Analyze the behavior of different circuits and their response using various circuit analysis tools.																
			U	³ K4														
CO2	2 Apply the knowledge of basic circuit law to simplify the networks usin													K3				
~~~	network theorems.													_				
CO3														K4				
CO4		nition	¹ K2															
CO5			atically the co						1.					K2				
0.05	111	lerpret		neept		WOIK 5	ynnes	15.						112				
Correla	tion h	otwoor			teomo		b and	Drogre	m Or	iteome		c)•						
CUITEIA		etweet	I Cour	se Ou	teome		s) allu	TTUgra			<b>10</b>	5).	D	rogra	m			
														Specifi				
				I	Progra	m Ou	tcomes	s (POs	)					utcom				
		Program Outcomes (POs)																
COs														(PSOs)				
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS			
COs	<b>PO</b>	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O 1	PS O2	PS O3			
	1	2	3	4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	12	01	02	03			
C01	1 S	2 S	3 S	4 M	5		7				11	12 L	01 M	<b>O2</b> L	O3 M			
CO1 CO2	1 S S	2 S S	3 S M	4 M M	5 - -	6 - -	7 - -	8 - -	9 - -	10 - -	11 - -	12 L L	01 M S	02 L L	O3 M M			
CO1 CO2 CO3	1 S S S	2 S S S	3 S M M	4 M M M	5 - - -	6 - - -	7 - -	8 - -	9 - -	10 - - -	11 - - -	12 L L L	01 M S S	02 L L L	O3 M M M			
CO1 CO2 CO3 CO4	1 S S S S	2 S S S S	3 S M M M	4 M M M M	5 - - -	6 - - - -	7 - - -	8 - - -	9 - - - -	10 - - - -	11 - - -	12 L L L L	01 M S S S	02 L L L L	O3 M M M			
CO1 CO2 CO3	1 S S S	2 S S S	3 S M M	4 M M M	5 - - -	6 - - -	7 - -	8 - -	9 - -	10 - - -	11 - - -	12 L L L	01 M S S	02 L L L	O3 M M M			
CO1 CO2 CO3 CO4	1 S S S S S	2 S S S S	3 S M M M	4 M M M M	5 - - - -	6 - - - -	7 - - -	8 - - -	9 - - - -	10 - - - -	11 - - -	12 L L L L	01 M S S S	02 L L L L	O3 M M M M			



UNI	Γ-II	NETWORK THEOREM	9 Hours
theor	em, recij	theorem, Thevenin's theorem, Norton's theorem, Maximum p procity theorem, compensation theorem, Millman's Theorem and Tall DC and AC Circuits.	
UNI	Г-III	TWO PORT NETWORKS AND FILTERS DESIGN	9 Hours
-		Y parameter, h parameter, ABCD parameter, g parameter, Inter meters-inter connection of two port networks-classification of filters	-
	and high	pass filters-m-derived low pass and high pass filters-band pass filter-b	
UNI	Г-ІV	TRANSIENT AND S-DOMAIN ANALYSIS	9 Hours
Stead	ly state	and transient response-DC response of an R-L,R-C and R-L-C cir	rcuit-sinusoidal
-		R-L,R-C and R-L-C circuit-concept of complex of frequency-poles ion-significance of poles and zeros-properties of driving point and tran	
UNI	Г-V	NETWORK SYNTHESIS	9 Hours
		nomial-positive real function, frequency response of reactive one po	•
		port by Foster's Method & Cauer method- synthesis of R-L Networ	•
Meth	od & Ca	uer method- synthesis of R-C Network by Foster's Method & Cauer m	ethod.
		Total Ho	urs 45 Hours
Tovt	Book(s)		
1.		car, A., Shyammohan, S. P.; "Circuits and Network"; Tata McGraw-H	Jill New Delhi
1.	2000.		
Refe	rence Bo	ok(s)	
1.		am Hayt, "Engineering Circuit Analysis" 8th Edition, McGraw-Hill Ed	ucation, 2004.
2.		Ikenburg,"Network analysis", Prentice hall of India, 2000.	· · ·
3.		ster J.A., "Theory and Problems of Electric Circuits", Schaum's	outline series
		w HillBook Company, 2nd Edition, 2000.	
4.	Hyatt V	V.H. and Kemmerly, "Engineering Circuits Analysis", McGraw-Hill In	ternational



Course	Code		BECF1	83T20	)			L	Т	P	С	IA	EA		ГМ		
Course			OBJE			ED		2	1	0	3	40	60		00		
			PROG							_							
Course	Categ	gory	PROG	RAMN	AE CO	RE			Sylla	abus F	Revisio	n		V.1.0	)		
			COUR	SE													
Pre-req			Basic I	Knowl	edge o	n C Pı	ogram	ming									
Course																	
The cour																	
		erstand		-				-	-	and us	sage pi	rincipl	es of l	nherit	ance,		
-	-	rphism							-	1			.1				
		tify cla		-	s, men	nbers	of a c	lass an	id the	relatio	onship	s amo	ng the	m nee	ded		
101	r a sp	ecific p	oroblen	n.													
Course	0																
On com			COUTE	a the o	tudent	will b	o ahlo i	to									
Cours	-			, ine s	luuelii		criptio						1	Highes	t		
Outcon					Bloom'												
0 00000													Taxonomy				
CO1	S	pecify	simple	abstra	ct data	a types	and d	lesign i	implen	nent at	ions,	using			v		
	a	bstracti	-		K2												
CO2	]	Recogn	ize f	feature	es of	obj	ect -	orient	ed d	esign	such	as					
	e	ncapsu	lation,	poly	morpl	nism,	inher	itance,	and	comp	ositio	n of	K2				
		ystems															
CO3		Jame ar		К3													
		xample				0.0.0	~										
CO4		Develop			-		-	-					K3				
CO5		Encapsu	lation	of data	in virt	ual fui	nctions	5.						K4			
Correla	tion 1	notwoo-	Cour	<u></u>	toome		a) and	Drogr	m O.	toom							
Correla	1011	Jeiweel		se Ou	come		s) allu	TTORI			3 (I U)	5/•	р	rogra	m		
														Specifi			
				I	Progra	m Ou	tcome	s (POs	)					utcom			
COs														(PSOs			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03		
CO1	S	S	-	-	-	S	-	-	-	-	-	-	-	L	Μ		
CO2	L	М	-	S	-	-	S	-	-	-	М	-	-	-	Μ		
CO3	L	-	-	-	-	-	-	S	-	L	-	М	-	L	М		
CO4	-	-	-	-	-	-	-	-	S	-	-	-	-	L	Μ		
CO5	-	-	-	М	S	-	-	-	-	-	-	-	-	L	Μ		
UNIT-I		NEE	D FO	R OBJ	IECT	ORIE	NTED	PRO	GRAN	AMIN	G			9 Ho	urs		



9 Hours UNIT-III ARRAYS Defining & accessing Array elements, arrays as class member data, array of Objects. Operator Overloading: Overloading Unary Operators, Operator Arguments, Return Values, nameless Temporary objects, postfix notations. Overloading Binary Operators - Arithmetic operators, Concatenating Strings, Multiple overloading Comparison operators, Arithmetic Assignment Operators.

UNIT-IV	INHERITANCE-DERIVED CLASS AND BASE CLASS	9 Hours
Derived class	constructors, overriding member functions, Class Hierarchies, Abstract	base class,
Public and pri	vate inheritance, Levels of inheritance, Multiple inheritance. Memory man	agement –

agement – new and delete operator, a string class using new, Pointers to Objects -Referring to Members, another Approach to new, An array of pointers to Objects.

#### VIRTUAL FUNCTIONS UNIT-V

Virtual function, Late Binding, Abstract Classes, Pure virtual functions, Friend Functions-, Friends for functional Notation. Friend Classes -Static Functions, investigating destructors. Assignment and copy-initialization-overloading the assignment operator, the copy constructor ,this pointer. Templates, function template, class template.

Total Hours

1.	Object Oriented Programming in Microsoft C++ - Robert Lafore, Galgotia Publications 1998.
2.	Let us C++ - Yaswant Kanitkar, 2000.

#### **Reference Book(s)**

**Text Book(s)** 

1. Object Oriented Programming in C++ - C. Balagurusamy, Tata McGraw Hill, 2002.

Characteristics of object oriented language - objects, classes, Inheritance, Reusability, creating new data types, Polymorphism and overloading. C++ programming basis – Data types, Manipulators,

A simple class, C++ Objects as physical Objects, C++ Objects as Data Types, Constructors,

Cin, Cout, Type conversion, arithmetic operators, Loops and decisions.

outside the class, inline functions, and Returning objects from Functions.

**CLASS AND OBJECTS** 

destructors, objects as function arguments, overloaded constructors, member functions defined

9 Hours

9 Hours

**45 Hours** 

UNIT-II



Course Code	BECF183P80	L	Т	P	С	IA	EA	ТМ
Course Name	ELECTRONIC DEVICES	0	0	3	2	40	60	100
	LABORATORY							
Course	PROGRAMME CORE		Syllab	ous Rev	visior	1		V.1.0
Category	COURSE							
Pre-requisite								
Course Objectiv	ves:							
The course shou	ld enable the students							
1 To under	stand various tools used for desig		inanita					

- 1. To understand various tools used for designing circuits.
- 2. To analyze the characteristics of Semiconductor devices.
- 3. To construct semiconductor devices for practical applications.
- 4. To design of amplifiers and analyze their characteristics.
- 5. To analyze the frequency response characteristics of small signal amplifier.
- 6. To enable to students to work in a team and build applications.

#### **Course Outcomes:**

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Construct and evaluate the Performance characteristics of various semiconductor device.	K2
CO2	Integrate the semiconductor devices for Practical Application.	К3
CO3	Design amplifier circuit and analyze the design of frequency response of the small Signal Amplifier.	К3
CO4	Design various circuits using software tools and integrate and compare the findings in hardware implementation.	K4
CO5	Demonstrate capability to work in a team and to build circuits for various applications.	K4

#### **Correlation between Course Outcomes (COs) and Program Outcomes (POs):**

				Pr	ogran	n Out	comes	s (POs	5)				Program Specific Outcomes (PSOs)					
	РО	PO	PO	PO	PO	Р	PO	PO	PO	PO	P	PO	Р	PSO	PSO3			
COs	1	2	3	4	5	06	7	8	9	10	0	12	S	2				
											1		0					
											1							
													1					
CO1	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S			
CO2	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S			
CO3	S	S	S	S	S	М	М	Μ	Μ	М	Μ	S	S	S	S			
<b>CO4</b>	S	S	S	S	S	М	М	М	Μ	М	Μ	S	S	S	S			
CO5	S	S	S	S	S	М	М	Μ	Μ	М	Μ	S	S	S	S			



	LIST OF EXPERIMENTS
	1. Study of Labview/Multisim/PSPICE/ELVIS
	2. CRO Operation and its Measurements.
	3. P-N Junction Diode Characteristics (Forward bias & Reverse bias)
	4. Zener Diode Characteristics
	a. PartA: V-I Characteristics
	b. PartB: Zener Diode act as a Voltage Regulator
	5. BJT Characteristics (CE Configuration)
	a. PartA: Input Characteristics
	b. PartB: Output Characteristics
	6. FET Characteristics (CS Configuration)
	a. PartA: Drain (Output) Characteristics
	b. PartB: Transfer Characteristics
	7. LED and PHOTO DIODE Characteristics
	8. SCR Characteristics
	9. UJT Characteristics
	10. Clipper and Clamper Circuits
	11. Design and Simulate basic Common Source / Common Gate / Common Drain Amplifier
	12. BJT- CE Amplifier
	13. FET- CS Amplifier
	Total Hours 45 Hours
Text	Book(s)
1.	Donald .A. Neamen, Electronic Circuit Analysis and Design –2 nd Edition, Tata Mc Graw Hill, 2009.
2.	R.S.Sedha, "Text book of Applied Electronics", Second edition, S Chand publishing, 2008.
Refe	rence Book(s)
1.	R. A. Gayakwad, "Op-Amps And Linear Integrated Circuits", PHI, 2010.
2	Schilling & Belove "Electronic Circuits Discrete & Integrated" TMH 2011

- Schilling & Belove, "Electronic Circuits, Discrete & Integrated", TMH.2011.
   Boylostad & Nashalaku, "Electronic Devices & Circuits", PIH 2012.
- 3. Boylestad & Neshelsky, "Electronic Devices & Circuits", PHI.2012.



Course	Code		BECF	183P90	)			L	Т	P	C	IA	EA	. r	ГМ			
Course	Name		DIGIT	TAL S	YSTE	M DE	SIGN	0	0	3	2	40	60	1	100			
			LABO	RAT	ORY													
Course	Categ	ory	PROG	RAM	ME CC	ORE			Sylla	abus F	Revisio	n		V.1.(	0			
			COUR	SE														
Pre-req	uisite																	
Course	Objec	tives:																
The cou	rse sho	ould er	nable th	ne stud	ents													
1.	To unc	lerstar	nd, the	logica	ıl beha	viors	of digi	tal cire	cuits.									
2.	To des	ign co	mbina	tional	circui	t.												
3.	To ana	lyze th	ne oper	ation c	of logic	gates	and fli	p-flop	s.									
4.	To Des	sign an	d Cons	struct l	Hazard	Free of	digital	circuit	s.									
5.	To ena	ble to	studen	ts to w	ork in	a team	and b	uild ap	plicati	ons.								
Course	Outco	mes:																
On com	pletior	n of the	e cours	e, the s	student	will b	e able	to										
Cours	e	Description												Highes	st			
Outcor	ne												Bloom's					
S	5												Taxonomy					
CO1	Verify the truth table for logic gates and Flip-flops.												K2					
CO2	D	esign	and tes	t of co	mbina	tional	Circui	ts					K3					
CO3	D	esign	and tes	t of Se	equenti	al Circ	cuits.						K3					
CO4	D	esign	of H	azard	Free	Swite	ching	Devic	es an	d inte	egrate	high	K3					
	cc	onfigur	ation c	ligital	circuit	s.												
CO5	D	emons	trate c	apabil	ity to	work	in a t	eam a	nd to	build	circuit	s for	K4					
	va	rious	applica	tions.														
Correla	tion b	etwee	n Cou	rse Ou	tcome	s (CO	s) and	Progr	am O	utcom	es (PO	s):						
													P	rogra	m			
				1	Duagua		tcome		)				5	Specifi	ic			
COs				I	rogra	ini Ou	tcome	s (rus	)				0	utcom	ies			
COS														(PSOs	)			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS			
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03			
CO1	S	S	S	S	S	Μ	Μ	М	Μ	Μ	М	S	S	S	S			
	S	S	S	S	S	М	Μ	Μ	Μ	М	М	S	S	S	S			
CO2	C	S	S	S	S	М	Μ	Μ	Μ	М	М	S	S	S	S			
	S		~	C	S	Μ	М	М	Μ	Μ	М	S	S	S	S			
CO2	S S	S	S	S	5	111								~~	5			



	LIST OF EXPERIMENTS
	1. Study of Multisim and LT spice.
	2. Study of Gates & Flip-flops.
	3. Half Adder and Full Adder.
	4. Encoders and Decoders.
	5. Multiplexer and De-multiplexer.
	6. Magnitude Comparator (2-Bit) and Code Converter.
	7. Synchronous Counters.
	8. Ripple Counter and Mod–N Counter.
	9. Shift Register–SISO/SIPO/PIPO/PISO
	10. Design of Memory Devices
	11. Design of Hazard Free Switching circuits.
	12. Design of Mealy and Moore Circuits.
	Total Hours     45 Hours
Text	Book(s)
1	M. Morris Mano, "Digital Design", 4th edition, Prentice Hall of India Pvt. Ltd., 2008.
2	Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011.
Refe	rence Book(s)
1	John Yarb rough, "Digital Logic Applications and Design", Thomson Learning, 2006.
2	Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.



Course Course	Code		BECF1	83P70	)			L	Т	P	С	IA	EA	, r	ГМ			
Course N	lame		OBJE	CT OI	RIENI	TED		0	0	3	2	40	60	1	.00			
			PROG	RAM	MING	r												
			LABO	RATO	DRY U	ISING	C++											
Course (	Catego	ory	ENGIN	VEERI	NG SC	CIENC	Е		Syll	abus F	Revisio	n		V.1.(	)			
			COUR	SE (ES	SC)													
Pre-requ																		
Course (																		
The cour	se sho	uld er	able th	e stude	ents													
			r with (	1 0		0												
			to imp			-	-	ject ori	ented	progra	mming	<b>.</b>						
3. T	o leari	n how	to imp	lement	tfeatur	res of C	_++.											
Course (	Jutoo	mos																
On comp			0.0011#07	a tha a	tudont	will h	a ahla t	0										
Course		or the	Course	, the s	luutiil		criptio						T	Highes				
Outcom						Dest	Inpuo	11						Bloom				
S	L																	
CO1	Design, implement C++ programs and Understand the features of C													Taxonomy K2				
COI		supporting object oriented programming.																
CO2			and the		-			$C_{++}$	as an	ohie	ct ori	ented		K3				
002			iming l			mento	01	CII	us un	obje		cincu						
CO3	-	-	and ho		-	, the	maior	objec	t orie	nted	concen	ts to	K3					
005			ent clas										<b>N</b> 5					
CO4		-	g objec	-								-	K3					
004		-	phism		cu pro	-Si anno			acti u	5 mile	intunee	unu						
CO5	-	•	and ac		d feat	ures	of C+	+ spe	cifical	lv ter	nplate	and	d <b>K4</b>					
005			overlo		a iou	ares		- spe	enteur	19 101	iipiace,	unu		11-1				
	op	<i>ciutoi</i>	0,0110	uuiiig.														
Correlat	ion be	etwee	n Cour	se Ou	tcome	s (COs	and	Progr	am Or	itcome	es (PO)	s):						
			i coui	50 0 4			) unu	8					Р	rogra	m			
														Specifi				
				I	Progra	m Ou	tcomes	s (POs	)					utcom				
COs														(PSOs				
F	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS			
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03			
CO1	S	<u>-</u> S	S	S	S	M	M	M	M	M	M	S	S	S	S			
CO2	- S	- S	S	S	S	M	M	M	M	M	M	S	S	S	- S			
CO3	- S	<u> </u>	S	S	S	M	M	M	M	M	M	S	S	S	S			
CO4	ے S	- S	S	S	- S	M	M	M	M	M	M	S	S	S	S			
CO5	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S			
	~	~	~	~	~					1	1	~	~	~	~			

#### Syllabus (2023-24)



B.E. (Electronics and Communication Engineering)

#### LIST OF EXPERIMENTS

- 1. Illustrate class & objects.
- 2. To demonstrate the use of Switch –Case statement and to perform arithmetic operations.
- 3. To demonstrate the use of constructor types and destructor.
- 4. To demonstrate the use of following
  - i. this pointer
  - ii. inline functions
- 5. To enter the records of n number of students and then display them using nested structure.
- 6. To demonstrate the use of
  - i. Unary operator.
  - ii. Binary operator.
- 7. Illustrate operator overloading.
- 8. To demonstrate the concept of polymorphism applied to the member functions.
- 9. To demonstrate the use of different types of Inheritance.
- 10. To demonstrate the use of Demonstration of New & Delete Operator.
- 11. To demonstrate the Pure Virtual Function.
- 12. To demonstrate the use of Friend Function.
- 13. To demonstrate the use of class template.

#### Total Hours 45 Hours

Text Book(s)

1. Object Oriented Programming in Microsoft C++ - Robert Lafore, Galgotia Publications, 1998.

2. Let us C++ - Yaswant Kanitkar, 2000.

#### **Reference Book(s)**

1. Object Oriented Programming in C++ - C. Balagurusamy, Tata McGraw Hill, 2002.



#### Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

#### SEMESTER - IV

Course Code	CBSMAJ8T10	L	Т	Р	C	IA	EA	TM
Course Name	MATHEMATICS - IV	3	1	0	4	40	60	100
	(CALCULUS, SPECIAL							
	FUNCTIONS AND DESIGN							
	OF EXPERIMENTS)							
Course Category	BASIC SCIENCE COURSES		Syllab	ous Re	vision	•		V.1.0
	(BSC)							
Pre-requisite	Knowledge of Mathematics – I an	nd Mat	hemat	ics – I	[		•	

#### **Course Objectives:**

The course should enable the students

- 1. To understand the homogeneous functions for two variables and its total derivatives.
- 2. To understand the applications of vector products.
- 3. To analyze the solutions of a differential equation in terms of series.
- 4. To know about the special functions and its properties.
- 5. To investigate the experiments which are in terms of one, two and three factors.

#### **Course Outcomes:**

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
C01	Calculate the maximum and minimum values for functions of two variables and aware about the Lagrange multipliers.	К3
CO2	Identify the relation between the line integral, surface integral and volume integral.	K3
CO3	Find the series solution for Bessel function.	К3
CO4	Find the solutions for various problems by using recurrence relations.	К3
CO5	Analyze the various factors and capable to conclude about the decisions.	K4

#### **Correlation between Course Outcomes (COs) and Program Outcomes (POs):**

COs				I	Progra	m Ou	tcomes	s (POs)	)				S O	rograi Specifi utcom (PSOs)	c es
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 0 1	PS O2	PS 03
				4	3	U	/	0	9	10	11	14			03
CO1	S	Μ	Μ	-	-	-	-	-	-	-	-	L	Μ	S	-
CO2	М	S	L	-	-	-	-	-	-	-	-	L	L	М	S
CO3	S	S	Μ	-	-	-	-	-	-	-	-	L	Μ	-	S
CO4	М	L	S	-	-	-	-	-	-	-	-	L	Μ	S	S
CO5	L	L	L	S	-	-	-	-	-	-	-	L	S	-	S



UNIT-I		0 Hours
	CALCULUS	9 Hours
-	s Functions-Total derivative-Change of variables-Jacobian-Taylor's theorem	
	ables-Maxima and Minima of functions of two variables-Lagranges	method of
undermined	multipliers.	
UNIT-II	MULTI VARIABLE CALCULUS	9 Hours
Directional	derivatives-Gradient-curl and divergence-Problems on Green-Gauss	and Stokes
	rthogonal curvilinear coordinates-Simple applications involving cubes,	
	parallelepipeds.	T
UNIT-III	SPECIAL FUNCTIONS -I	9 Hours
Validity of se	eries solution - Series solution when x=0 is an ordinary point - Frobenius met	hod(Series
solution whe	n x=0 is a regular singularity) - Bessel's equation (Bessel's functions of the	e first and
second kind	) - Recurrence formulae for Jn(x) - Expansions for J0 and J1: Value	of J1/2 -
Generating f	unction for Jn(x) - Equations reducible to Bessel's equation – Orthogonality	y of Bessel
functions.		
UNIT-IV	SPECIAL FUNCTION-II	9 Hours
Legendre's	Equation –Rodrigue's Formula – Legendre Polynomials – Generating	Function for
Legendre's Pn(x)-Recur	Equation –Rodrigue's Formula – Legendre Polynomials – Generating l rence formula for $P_n(x)$ -Orthogonality of Legendre Polynomials–Hermite P	Function for
Legendre's Pn(x)-Recur	Equation –Rodrigue's Formula – Legendre Polynomials – Generating	Function for
Legendre's Pn(x)-Recur	Equation –Rodrigue's Formula – Legendre Polynomials – Generating Erence formula for $P_n(x)$ -Orthogonality of Legendre Polynomials–Hermite Pormulae-Rodrigue's formula-Orthogonality of Hermite polynomials.	Function for
Legendre's Pn(x)-Recurr Recurrence f	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for P _n (x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b>	Function for olynomials
Legendre's P _n (x)-Recurr Recurrence f <b>UNIT-V</b> Design of e	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b> xperiments – Completely randomized design: Analysis of variance for o	Function for olynomials 9 Hours ne factor of
Legendre's Pn(x)-Recurr Recurrence f <b>UNIT-V</b> Design of exclassification	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b> xperiments – Completely randomized design: Analysis of variance for on a – Randomized block design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two fact	Function for olynomials 9 Hours ne factor of
Legendre's Pn(x)-Recurr Recurrence f <b>UNIT-V</b> Design of exclassification	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b> xperiments – Completely randomized design: Analysis of variance for on a – Randomized block design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two fact	Function for olynomials 9 Hours ne factor of
Legendre's Pn(x)-Recurr Recurrence f <b>UNIT-V</b> Design of exclassification	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b> xperiments – Completely randomized design: Analysis of variance for on a – Randomized block design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two factors of classical design: Analysis of variance for two fact	Function for olynomials 9 Hours ne factor of ssification -
Legendre's Pn(x)-Recurr Recurrence f <b>UNIT-V</b> Design of en classification Latin square	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. DESIGN OF EXPERIMENT xperiments – Completely randomized design: Analysis of variance for o a – Randomized block design: Analysis of variance for two factors of class design. Total Hours	Function for olynomials 9 Hours ne factor or ssification -
Legendre's Pn(x)-Recurr Recurrence f UNIT-V Design of exclassification Latin square Text Book(s)	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. DESIGN OF EXPERIMENT xperiments – Completely randomized design: Analysis of variance for o a – Randomized block design: Analysis of variance for two factors of class design. Total Hours	Function fo olynomials 9 Hours ne factor o ssification -
Legendre's Pn(x)-Recurr Recurrence f UNIT-V Design of et classification Latin square Text Book(s)	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. DESIGN OF EXPERIMENT xperiments – Completely randomized design: Analysis of variance for o a – Randomized block design: Analysis of variance for two factors of class design. Total Hours a B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Public	Function for olynomials 9 Hours ne factor of ssification -
Legendre's Pn(x)-Recurrence f Recurrence f UNIT-V Design of en classification Latin square Text Book(s) 1. Grewa Delhi,	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. DESIGN OF EXPERIMENT xperiments – Completely randomized design: Analysis of variance for o a – Randomized block design: Analysis of variance for two factors of class design. Total Hours a B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Public	Function fo olynomials 9 Hours ne factor o ssification - 45 Hours
Legendre's Pn(x)-Recurr Recurrence f UNIT-V Design of exclassification Latin square Text Book(s) 1. Grewa Delhi, 2. Gupta	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b> xperiments – Completely randomized design: Analysis of variance for o a – Randomized block design: Analysis of variance for two factors of class design. <b>Total Hours</b> a B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publi 2011. S.P, "Statistical Methods", 28th Edition, Sultan Chand and Sons., New Delh	Function fo olynomials 9 Hours ne factor o ssification - 45 Hours
Legendre's Pn(x)-Recurr Recurrence f UNIT-V Design of er classification Latin square Text Book(s) 1. Grewa Delhi, 2. Gupta Reference Be	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b> xperiments – Completely randomized design: Analysis of variance for o a – Randomized block design: Analysis of variance for two factors of class design. <b>Total Hours</b> a B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publi 2011. S.P, "Statistical Methods", 28th Edition, Sultan Chand and Sons., New Delh	Function for olynomials 9 Hours ne factor of ssification - 45 Hours shers, New i, 1997.
Legendre's Pn(x)-Recurr Recurrence f UNIT-V Design of exclassification Latin square Text Book(s) 1. Grewa Delhi, 2. Gupta Reference Bo	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. DESIGN OF EXPERIMENT xperiments – Completely randomized design: Analysis of variance for o a – Randomized block design: Analysis of variance for two factors of class design. Total Hours 1 B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publi 2011. S.P, "Statistical Methods", 28th Edition, Sultan Chand and Sons., New Delh pok(s)	Function fo olynomials 9 Hours ne factor o ssification - 45 Hours shers, New i, 1997.
Legendre's Pn(x)-Recurr Recurrence f UNIT-V Design of er classification Latin square Text Book(s) 1. Grewa Delhi, 2. Gupta Reference Bo 1. Alan J 2. Geralo	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for P _n (x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b> xperiments – Completely randomized design: Analysis of variance for on a – Randomized block design: Analysis of variance for two factors of class design. <b>Total Hours</b> a B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Public 2011. S.P, "Statistical Methods", 28th Edition, Sultan Chand and Sons., New Delh <b>pok(s)</b> effrey, "Advanced Engineering Mathematics", First Edition, Academic Press	Function fo olynomials 9 Hours ne factor o ssification - 45 Hours shers, New i, 1997.
Legendre's Pn(x)-Recurr Recurrence f UNIT-V Design of exclassification Latin square Text Book(s) 1. Grewa Delhi, 2. Gupta Reference Ba 1. Alan J 2. Gerald Wesle	Equation –Rodrigue's Formula – Legendre Polynomials – Generating I rence formula for Pn(x)-Orthogonality of Legendre Polynomials–Hermite P formulae-Rodrigue's formula-Orthogonality of Hermite polynomials. <b>DESIGN OF EXPERIMENT</b> xperiments – Completely randomized design: Analysis of variance for on a – Randomized block design: Analysis of variance for two factors of class design. <b>Total Hours</b> 1 B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publi 2011. S.P, "Statistical Methods", 28th Edition, Sultan Chand and Sons., New Delh <b>pok(s)</b> effrey, "Advanced Engineering Mathematics", First Edition, Academic Press I C.F and Wheatley P.O, "Applied Numerical Analysis", Seventh Edition	Function fo olynomials 9 Hours ne factor o ssification - 45 Hours shers, New i, 1997. s, 2001. n, Addison



Course	Code		BECF1	84T20	)			L	Т	Р	C	IA	EA		ГМ
Course	Name		ANAL	OG E	LECT	RONI	CS	3	0	0	3	40	60	1	100
Course	Categ	ory	PROG	RAMN	IE CO	RE CO	OURSE	,	Syll	abus F	evisio	n		V.1.(	)
Pre-req	isite		Electro	onic D	evices										
Course	Objec														
The cour															
		-	undame			-		-			s meth	ods.			
2. 7	'o ana	lyze si	mall sig	gnal eq	luivale	nt circ	uits us	ing BJ	T and	JFET.					
3. 7	'o unc	lerstan	d meth	ods of	constr	ucting	feedba	ack am	plifie	rs, osci	llators	& tun	ed am	plifier	s.
4. 7	'o unc	lerstan	d basic	conce	pts of	operat	ional a	mplifi	er and	its var	ious aj	oplicat	tions.		
5. 7	'o kno	w abo	ut vario	ous an	alog sv	vitches	s, A/D	and D	A con	vertor	s.				
Course	Outco	mes													
On com			course	, the st	udent	will be	able to	)							
Course						Dese	criptio	n						Highes	
Outcon	e													Bloom	
<u>S</u>			1	C"			1 1	41	1 4	• .•	C 1	• 1	Ta	axonoi	my
CO1			ine the		guratio	on and	apply	the c	haract	eristic	s of d	lodes	K2		
			sistors												
CO2			and cor					-						K4	
CO3		-	and con											K4	
CO4		haract rcuits.	erize tł	ne funo	ctionin	ig of C	P-AM	P and	desig	n appli	cation l	based		K3	
CO5	D	esign	and con	struct A	ADC a	nd DA	C circ	uits.						K4	
	· · · ·		C	0.4			1 T		0.4						
Correla	lion D	etweel	n Cour	se Out	comes	(COs)	) and F	rogra	m Out	comes	(PUS)	:	P	rogra	m
														Specifi	
00				<u>_</u>	Progra	m Ou	tcomes	(POs)						utcom	
COs														(PSOs	)
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
001	<u>1</u>	2	3	4	5	6	7	8	9	10	11	12	01	02	0.
CO1	S	S	M	-	-	-	-	-	-	-	-	L	M	-	-
CO2	S	S	S	-	-	-	-	-	-	-	-	L	L	L	S
CO3	S	S	Μ	-	-	-	-	-	-	-	-	L	Μ	-	S
CO4	S	S	S	-	-	-	-	-	-	-	-	L	Μ	S	S
CO5	S	S	-	-	-	-	-	-	-	-	-	L	-	-	S
UNIT-I		AM	PLIFII		ODEL	<i>s</i>								9 Ho	urs
Voltage	amnl						condu	rtance	ampli	ifier a	nd Tra	ns_rec	istanc		

Biasing schemes for BJT and FET amplifiers, Bias stability, Various configurations (CE/CS, CB/CG, CC/CD) and their features, Small signal analysis, Estimation of voltage gain, input resistance, output resistance etc., Low frequency and High frequency transistor models, Design Procedure for particular



specifications, Low frequency analysis of multistage amplifiers.

#### UNIT-II POWER & FEEDBACK AMPLIFIERS

9 Hours

9 Hours

9 Hours

Frequency response of single stage and multistage amplifiers, Cascode amplifier. Various classes of operation (Class A, B, AB, C), their power efficiency and linearity issues - Feedback Topologies: Voltage series, Current series, Voltage shunt, Current shunt, Effect of feedback on gain and bandwidth, Calculation with practical circuits, Concept of stability, gain margin and phase margin.

#### UNIT-IIIOSCILLATORS & DIFFERENTIAL AMPLIFIERS9 Hours

Review of Basic Concept, Barkhausen criterion, RC oscillators (Phase shift, Wien Bridge), LC oscillators (Hartley, Colpitts, Clapp), Non- sinusoidal oscillators. Current mirror: Basic topology and its variants, V-I characteristics, output resistance, minimum sustainable voltage and maximum usable load. Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR. OP-AMP design: Design of differential amplifier for a given specification, Designof gain and output stages, compensation.

#### UNIT-IV OP-AMP APPLICATIONS

Review of Inverting and Non-inverting amplifiers, Integrator and differentiator, Summing amplifier, Precision rectifier, Schmitt trigger and its applications- Active filters: Low pass, high pass, band pass and band stop, design guidelines.

#### UNIT-V DAC & ADC

Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, Resistor string. Analog todigital converters (ADC): Single slope, Dual slope, Successive approximation, Flash type -Switched capacitor circuits: Basic concept, practical configurations, Application in amplifier, integrator, ADC etc.

**Total Hours** | 45 Hours Text Book(s) Paul R. Gray and Robert G.Meyer, "Analysis and Design of Analog Integrated Circuits", 1. JohnWiley, 3rd Edition, 1992. J.V. Wait, L.P. Huelsman and GA Korn, "Introduction to Operational Amplifier theory and 2 applications", McGraw Hill, 1992 **Reference Book(s)** A.S. Sedra and K.C. Smith, "Microelectronic Circuits", Oxford University Press, 5th Edition, 1 2004. P. Horowitz and W. Hill, "The Art of Electronics", Cambridge University Press, 2nd Edition, 2. 1989. J. Millman and A. Grabel, "Microelectronics", McGraw Hill, Second Edition, 1988. 3



# Syllabus (2023-24) B.E. (Electronics and Communication Engineering)

Course	Code		BECF1	84T30	)			L	Т	P	C	IA	EA	. ]	ГМ
Course	Name		ANAL	OG A	ND DI	GITA	L	3	0	0	3	40	60	1	.00
			COMN	AUNI	CATIC	DN									
Course	Categ	ory	PROG	RAMN	IE CO	RE CC	OURSE	, /	Sylla	abus F	evisio	n		V.1.0	)
Pre-req	uisite		Electro	onic D	evices,	Digita	al Syst	em De	sign, S	Signal	s & Sy	stems	•		
Course	Objec	tives:													
The court	rse sho	ould en	able the	e stude	ents:										
1. 7	Гo ana	lyze ar	nd com	pare d	ifferen	t analo	og mod	lulatio	n sche	mes.					
2. 7	Гo ana	lyze th	e beha	vior of	f comn	nunica	tion sy	stems	in the	presen	ice of r	noise.			
3. 7	[o inv	estigat	e pulse	modu	lation	systen	ns and	analyz	e their	syster	n perfo	ormano	ce.		
4. 7	lo ana	lyze di	fferent	modu	lation	schem	es and	comp	ute bit	error p	perform	nance.			
5. 7	To stuc	ly dem	odulati	on of d	ligital s	signals	•								
Course															
On com	-	of the	course	e, the st	udent										
Cour						De	scripti	on						Highes	
Outcor	mes													Bloom'	
													Tε	axonor	ny
CO	1	-	oare di		t analo	g mod	lulatio	n sche	mes fo	or thei	r effic	iency		K2	
	_		andwic												
CO2	2	Analy noise	ze the	behav	vior of	comm	unicat	ion sys	stems	in the	presen	ice of		K4	
CO.	3		tigate rmance	-	modu	lation	syster	ns and	d anal	yze tl	neir sy	/stem		K4	
CO	4	Comp	oute bit	error	perform	nance	of var	ious m	odulat	ion sc	hemes			K3	
CO	5	Gain	knowle	edge o	n dem	odulati	ion of	digital	signal	s.				K2	
Correla	tion b	etween	Cour	se Out	comes	(COs)	) and F	Program	m Out	comes	(POs)	:			
													P	rograi	m
				1	Progra	ու Օս	teomo						S	Specifi	c
COs				1	liugia	in Ou	comes	(1 <b>U</b> 5)					0	utcom	es
COS													(	(PSOs)	)
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	S	S	Μ	-	-	-	-	-	-	-	L	S	-	-
	G	S	S	Μ	-	-	-	-	-	-	-	L	Μ	-	S
CO2	S	~						[				-		· · · · · · · · · · · · · · · · · · ·	T.
CO2 CO3	S S	S	S	-	-	-	-	-	-	-	-	L	Μ	-	S
			S S	-	-	-	-	-	-	-	-	L L	M M	- S	S S



UNII	<b>-I</b>	AMPLITUDE AND ANGLE MODULATION	9 Hours
syster Repre	ms-DSB- esentation	nals and systems-Frequency domain representation of signals - Amplitude re-SC, SSB and VSB modulation - Superhetrodyne Receiver - Angle not FM and PM signals-Relationship between FM and PM-Narrow Transmission bandwidth of FM wave- Generation and detection of FM wave-	nodulation- band and
UNIT	-II	INFORMATION THEORY AND NOISE	9 Hours
Codir syster	ng theore	screte memory less channels – Channel capacity – Hartley Shannon Law m – Huffman & Shannon- Fano codes - Noise in amplitude and frequency emphasis and De-emphasis-White noise – Narrowband noise -Threshold eff	modulation
UNIT	-III	PULSE MODULATION	9 Hours
Quan Modu	tization	Decess -Pulse Amplitude Modulation (PAM)-Pulse Position Modulation Process-Pulse Code Modulation (PCM) - Delta Modulation - Differential ine codes-Noise consideration in PCM-Time Division Multiple	
	plexers.		
Multi UNIT		BASEBAND MODULATION TECHNIQUES	9 Hours
UNIT Baseb Binar Quad Eleme	<b>C-IV</b> band tran by Ampli rature An ents of c	BASEBAND MODULATION TECHNIQUES nsmission of digital data-Inter Symbol interference(ISI) problem - Nyqu itude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Ke mplitude Modulation(QAM)-Continuous phase modulation and Minimum s letection theory-optimum detection of signals in noise-coherent commun bability of error calculation.	ist channel- eying(FSK)- shift keying-
UNIT Baseb Binar Quad Eleme	<b>C-IV</b> band tran by Ampli rature An ents of co form-Pro	nsmission of digital data-Inter Symbol interference(ISI) problem - Nyqu itude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Ke mplitude Modulation(QAM)-Continuous phase modulation and Minimum s letection theory-optimum detection of signals in noise-coherent commun	ist channel- eying(FSK)- shift keying-
UNII Baset Binar Quad Elema wave: UNII Digita Maxi	<b>C-IV</b> band tran ry Ampli rature An ents of c form-Pro <b>C-V</b> al Modu mum like	nsmission of digital data-Inter Symbol interference(ISI) problem - Nyqu itude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Ke mplitude Modulation(QAM)-Continuous phase modulation and Minimum s detection theory-optimum detection of signals in noise-coherent commun bability of error calculation.	ist channel- eying(FSK)- shift keying- ication with 9 Hours d channels-
UNII Baset Binar Quad Elema wave: UNII Digita Maxi	<b>C-IV</b> band tran ry Ampli rature An ents of c form-Pro <b>C-V</b> al Modu mum like	Association of digital data-Inter Symbol interference(ISI) problem - Nyquitude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Keying(PSK) - Frequency Shift Keyinglitude Modulation(QAM)-Continuous phase modulation and Minimum seletection theory-optimum detection of signals in noise-coherent communobability of error calculation.           DEMODULATION OF DIGITAL SIGNALS           lation tradeoffs-optimum demodulation of digital signal over band limited	ist channel- eying(FSK)- shift keying- ication with 9 Hours d channels-
UNII Baset Binar Quad Elema wave: UNII Digita and ca	<b>C-IV</b> band tran y Ampli rature An ents of c form-Pro <b>C-V</b> al Modu mum like arrier rec	Insmission of digital data-Inter Symbol interference(ISI) problem - Nyquitude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Keyinglitude Modulation(QAM)-Continuous phase modulation and Minimum seletection theory-optimum detection of signals in noise-coherent communobability of error calculation.           DEMODULATION OF DIGITAL SIGNALS           lation tradeoffs-optimum demodulation of digital signal over band limited           elihood sequence detection (Viterbi receiver)-Equalization techniques-Sync           rovery of digital modulation.	ist channel- eying(FSK)- shift keying- ication with 9 Hours d channels- hronization 45 Hours
UNII Baset Binar Quad Elema wave: UNII Digita and ca	<b>C-IV</b> band tran y Ampli rature An ents of c form-Pro <b>C-V</b> al Modu mum like arrier rec / <b>Referen</b> Dr.Sanj	Ansmission of digital data-Inter Symbol interference(ISI) problem - Nyquitude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Keyinglitude Modulation(QAM)-Continuous phase modulation and Minimum seletection theory-optimum detection of signals in noise-coherent communobability of error calculation.           DEMODULATION OF DIGITAL SIGNALS           lation tradeoffs-optimum demodulation of digital signal over band limitedelihood sequence detection (Viterbi receiver)-Equalization techniques-Synce covery of digital modulation.           Total Hours           ace Book(s)           ay Sharma, "Analog and Digital Communication", SK Kataria & Son's provide the second sequence for the second sequence in the second sequence for the second sequence for the second sequence for the second second sequence for the second	ist channel- eying(FSK)- shift keying- ication with <b>9 Hours</b> d channels- hronization <b>45 Hours</b>
UNIT Baset Binar Quad Elemo wave: UNIT Digita Maxii and ca Text / 1.	<b>C-IV</b> band tran by Ampli rature An ents of c form-Pro <b>C-V</b> al Modu mum like arrier rec <b>/ Referen</b> Dr.Sanj Seventh	Ansmission of digital data-Inter Symbol interference(ISI) problem - Nyqu itude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Keying itude Modulation(QAM)-Continuous phase modulation and Minimum seletection theory-optimum detection of signals in noise-coherent commune bability of error calculation. <b>DEMODULATION OF DIGITAL SIGNALS</b> lation tradeoffs-optimum demodulation of digital signal over band limited elihood sequence detection (Viterbi receiver)-Equalization techniques-Synce covery of digital modulation. <b>Total Hours</b> <b>ree Book(s)</b> ay Sharma, "Analog and Digital Communication", SK Kataria & Son's participation for the formula of th	ist channel- eying(FSK)- shift keying- ication with <b>9 Hours</b> d channels- hronization <b>45 Hours</b> publication,
UNIT Baset Binar Quad Elemo wave UNIT Digita Maxi and c	<b>C-IV</b> band tran y Ampli rature An ents of c form-Pro <b>C-V</b> al Modu mum like arrier rec <b>V</b> <b>Referen</b> Dr.Sanj Seventh Haykin	Association and Digital data-Inter Symbol interference(ISI) problem - Nyquitude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Keying(IDE) - Fr	ist channel- eying(FSK)- shift keying- ication with <b>9 Hours</b> d channels- hronization <b>45 Hours</b> publication,
UNIT Baset Binar Quad Elemo wave: UNIT Digita Maxii and ca Text / 1.	<b>C-IV</b> band tran by Ampli rature An ents of c form-Pro <b>C-V</b> al Modu mum like arrier rec <b>V</b> <b>Referen</b> Dr.Sanj Seventh Haykin Wiley, F	Ansmission of digital data-Inter Symbol interference(ISI) problem - Nyqu itude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Keying itude Modulation(QAM)-Continuous phase modulation and Minimum seletection theory-optimum detection of signals in noise-coherent commune bability of error calculation. <b>DEMODULATION OF DIGITAL SIGNALS</b> lation tradeoffs-optimum demodulation of digital signal over band limited elihood sequence detection (Viterbi receiver)-Equalization techniques-Synce covery of digital modulation. <b>Total Hours</b> <b>ree Book(s)</b> ay Sharma, "Analog and Digital Communication", SK Kataria & Son's participation for the formula of th	ist channel- eying(FSK)- shift keying- ication with <b>9 Hours</b> d channels- hronization <b>45 Hours</b> publication, tion", John

4 Prokis J.G.," Digital Communications", Tata McGraw Hill, Fourth Edition, 2000.



UNIT-II

8086 MICROPROCESSOR

#### **Syllabus (2023-24)** B.E. (Electronics and Communication Engineering)

Course	Code	]	BECF1	84T40					L	Т	Р	С	IA	EA	TM
Course 2	Name	e 1	MICR	OPRO	CESS	OR Al	ND		3	0	0	3	40	60	100
		]	MICR	OCON	TRO	LLER	5								
Course	Categ	gory ]	PROGI	RAMM	IE CO	RE CO	URSE		S	yllabu	s Revi	sion		V.1	0.1
Pre-req	uisite	]	Electro	onic De	evices,	Digita	al Syste	em De	sign						
Course	•														
The cour															
		dy arch				-									
		dy arch				-					set.				
		rn desig	-				-		-						
		dy arch													
5. Т	o kno	ow abou	it RSI	C proc	essors	and de	esign A	RM p	rocess	or bas	ed sys	tems.			
Course															
On comp		n of the	course	, the stu	udent v										
Course	-					D	escript	ion						High	
Outcom	es													Bloo	
C01	F	Execute	nrogra	me iicii	na 2004	mhly	languag	te of 8	085 M	icropr		r		Taxor K	
C01		Execute			-					-				K	
C02		Design in			-			-			JCE880.	1.		K	
		0		0		0			•	vices.					
CO4		Develop	-		-				s.					K	
CO5	L	Design A	ARM n	nicroco	ntrolle	r base	d system	ms.						K	3
	· 1		0	0.4			1.0		0.4						
Correla	tion b	etween	Cours	se Outo	comes	(COS)	and Pl	rogran	n Out	comes	(POS)	:	1	Ducano	
														Prograi Specifi	
				I	Progra	m Out	tcomes	(POs)						Jutcom	
COs														(PSOs	
	PO	PO2	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PSO	PS
	1		3	4	5	6	7	8	9	10	11	12	0	2	03
													1		
<u>CO1</u>	S	S	S	-	-	-	-	-	-	-	-	L	M	M	-
<u>CO2</u>	S	S	S	-	-	-	-	-	-	-	-	L	M	M	-
CO3	S	S	S	M	- M	-	-	-	-	-	-	L	M	L	S
<u>CO4</u>	S S	S S	S S	M	M	-	-	-	-	-	-	L L	Μ	S M	S M
CO5	3	2	3	-	Μ	-	-	-	-	-	-	L	-	М	Μ
UNIT-I		8085	MICP	OPRO	CESS	OR								9 Hou	rs
Micropr	ocess						ı. men	10rv 1	[/O de	vices	8085	micro	proce		
architect	.u	, anot	as regi	SUUIS		ming	, 1 <b>111</b> 1	пріслі	ing ann		manup	i vanng			Lus
architect Decodin			-		rtion o	et _ (	lassifi	cation	-		Form	nat Δ.	ddrees	sing M	odec

9 Hours



Core Architecture of the 8086 - Memory Segmentation, Minimum mode Operation and Maximum Mode Operation, Instruction Set of the 8086 processor- Classification - Instruction Format Addressing modes, Simple Assembly Language Programs - Arithmetic operations, Data transfer, String Manipulation, Searching and Sorting.

#### UNIT-III I/O INTERFACING

9 Hours

Memory Interfacing and I/O interfacing - Parallel communication interface – Serial Communication interface – D/A and A/D Interface - Timer – Keyboard /display controller – Interrupt controller – DMA controller – Programming and applications Case studies: Traffic Light control, LED display, LCD display, Keyboard display interface and Alarm Controller.

### UNIT-IV MICROCONTROLLER

9 Hours

9 Hours

Architecture of 8051 – Special Function Registers (SFRs) - I/O Pins Ports and Circuits – Instruction set- Addressing modes - Assembly language programming - Programming 8051 Timers, Serial Port Programming - Interrupts Programming – LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation.

#### UNIT-V ADVANCED MICROPROCESSOR & MICROCONTROLLER

Advanced Microprocessor Architectures- 286, 486, Pentium - RISC Processors- RISC Vs CISC, RISC properties and evolution- ARM Processor – CPU: programming input and output supervisor mode, exceptions and traps – Co-processors- Memory system mechanisms – CPUperformance- CPU power consumption.

	Total Hours 45 Hours
Text Bo	ok(s)
1	R. S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the
	8085/8080A", Penram International Publishing, Third Edition, 1996.
2	D A Patterson and J H Hennessy, "Computer Organization and Design The hardware and
	software interface" Morgan Kaufman Publishers, Fourth Edition, 2011.
Referen	ce Book(s)
1	Douglas Hall, "The Microprocessors and its Interfacing", Tata McGraw Hill, Third Edition,
	2012.
2	Kenneth J. Ayala, "The 8051 Microcontroller: Architecture Programming & Applications",
	Penram International Publishing, Second Edition, 1996.



Course Code	BECF186T10	L	Т	Р	С	IA	EA	TM
Course Name	CONTROL SYSTEM	3	0	0	3	40	60	100
Course Category	PROGRAMME CORE COURSE		Syllat	ous Re	vision		1	V.1.0
Pre-requisite	BECF183T60 – Network Theory							

#### **Course Objectives:**

The course should enable the students

- 1. To introduce the elements of control system and various representations.
- 2. To provide knowledge on the time response and stability of systems.
- 3. To introduce the various frequencies response plots and analyzes the stability of systems.
- 4. To introduce state variable representation of physical systems and study the effect of state feedback.
- 5. To design various types of compensators.

#### **Course Outcomes:**

On completion of the course, the student will be able to

Course	Description	Highest
Outcome		Bloom's
S		Taxonomy
CO1	Compute the transfer function of different physical systems.	K3
CO2	Analyze the time domain specifications and calculate the steady state error.	K4
CO3	Illustrate the frequency response characteristics of systems.	K3
CO4	Analyze the state space model of continuous and discrete systems.	K4
CO5	Design compensators that can be used to design control systems with required specifications.	К5

#### **Correlation between Course Outcomes (COs) and Program Outcomes (POs):**

COs				]	Progra	m Ou	tcomes	s (POs)	)				8 0	rograi Specifi utcom (PSOs)	c es
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	S	S	Μ	-	L	L	L	L	L	L	L	S	L	Μ
CO2	S	S	S	Μ	-	Μ	L	L	L	Μ	L	Μ	S	L	Μ
CO3	S	S	S	Μ	-	Μ	L	L	L	L	L	Μ	М	L	Μ
CO4	S	S	S	Μ	-	Μ	Μ	L	L	L	L	Μ	S	L	Μ
CO5	S	S	S	Μ	-	Μ	L	L	L	Μ	L	Μ	S	L	Μ
		•						•							
UNIT-I		CON	TRO	L SYS	TEM	MOD	ELIN	G & SY	YSTE	М				9 Ho	urs
		REP	RESE	NTAT	TION										
Basic E	lemen	ts of C	Control	Syste	em – C	)pen l	oop ar	nd Clo	sed lo	op sys	tems -	- Diffe	rential	equat	ion -



Transfer function, Modeling of Electric systems, Translational and Rotational mechanical systems – Transfer function – AC & DC Servomotor and Synchros -Block diagram reduction Techniques - Signal flow graph.

#### UNIT-II TIME RESPONSE AND STABILITY ANALYSIS

9 Hours

9 Hours

9 Hours

. - ---

. . . .

Time response analysis - First Order Systems - Impulse and Step Response analysis of Second order systems - Steady state errors- Concepts of Stability-Routh-Hurwitz Criterion-Root Locus Technique-Application of Root Locus Diagram- Relative Stability.

#### UNIT-III FREQUENCY RESPONSE AND STABILITY ANALYSIS 9 Hours

Frequency response – Frequency domain specifications - Correlation between frequency domain and time domain specifications – Stability analysis - Bode plot – Polar plot - Nyquist Stability criterion.

#### UNIT-IV STATE VARIABLE ANALYSIS

State space representation of Continuous Time systems – State equations – Transfer function from State Variable Representation – Solutions of the state equations - Concepts of Controllability and Observability.

UNIT-V

#### **COMPENSATOR DESIGN**

Compensators - Effect of adding poles and zeros - Lag, lead and lag-lead compensators design using Bode plot – Design of State feedback controller - P, PI, PD and PID Controller.

	Total Hours 45 Hours
Text	Book(s)
1.	Nagarath I.J. and Gopal M., "Control Systems Engineering", New Age International
	Publishers, 2017.
2.	Norman S Nise, "Control Systems Engineering", 7th Edition, Wiley, 2015.
3.	Benjamin C. Kuo, "Automatic Control systems", Wiley, 2014.
Refe	rence Book(s)
1.	M. Gopal, "Control Systems, Principles and Design", 4th Edition, Tata McGraw Hill, New
	Delhi,2012.
2.	S.K.Bhattacharya, "Control System Engineering", 3rd Edition, Pearson, 2013.
3.	Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Prentice Hall, 2012.
4.	K. Ogata, "Modern Control Engineering", 5th edition, PHI, 2012.
5.	NPTEL Online Courses on "Control Engineering" and "Digital Control Systems".



Course Code	BECF184T60	L	Т	P	С	IA	EA	TM
Course Name	ELECTROMAGNETIC FIELDS AND	3	0	0	3	40	60	100
	WAVEGUIDES							
Course	PROGRAMME CORE COURSE		Sylla	abus l	Revisi	ion	Ι	7.1.0
Category								
Pre-requisite	Physics and Mathematics							

#### **Course Objectives:**

The course should enable the students

- 1. To study the basics of Electromagnetic.
- 2. To understand the propagation and polarization of Electromagnetic waves.
- 3. To analyze wave propagation in Transmission Lines and its applications.
- 4. To analyze wave propagation in metallic waveguides.
- 5. To know the radiation characteristics of an antenna.

#### **Course Outcomes:**

On completion of the course, the student will be able to

Course Outcom	Description	Highest Bloom's
es		Taxonomy
C01	Gain knowledge on basics of Electro- magnetic.	K1
CO2	Understand the propagation of Electromagnetic Waves.	K2
CO3	Determine the characteristics and wave propagation on transmission lines.	K3
CO4	Analyze wave propagation on metallic waveguides .	K4
CO5	Determine the radiation and radiation characteristics of an antenna.	K2

Correl	ation	betwe	een Co	ourse	Outco	omes	(COs)	and l	Progra	am O	utco	mes (l	POs):		
				Program Specific Outcomes (PSOs)											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P O	PO 12	PSO 1	PS O2	PSO3
<u>CO1</u>	C	C	C								11	т	C		
CO1	S	S	S	-	-	-	-	-	-	-	-		S	-	-
CO2	S	S	S	-	-	-	-	-	-	-	-		-	-	S
CO3	S	S	S	-	-	-	-	-	-	-	-	L	M	-	S
CO4	S	S	S	-	-	-	-	-	-	-	-	L	M	S	S
CO5	S	S	S	-	-	-	-	-	-	-	-	L	Μ	S	-

#### UNIT-I

**BASICS OF ELECTROMAGNETICS** 

9 Hours

Vector algebra-Coordinate Systems-Vector differential operator-Gradient-Divergence-Curl-Divergence Theorem-Stokes theorem-Coulombs law-Electric field intensity-Electric flux density-Gauss law and its applications-Biot Savart Law-Ampere's law-Faradays law- Maxwell's Equations in Integral and differential form-Electric and magnetic boundary conditions at the media interface.

#### UNIT-II ELECTROMAGNETIC WAVES

9 Hours

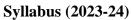


Uniform Plane Waves-Uniform plane wave propagation-Wave propagation in conducting medium-Wave Polarization-Reflection by perfect conductor (normal and oblique incidence)- Reflection by perfect insulator(normal and oblique incidence)-plane waves in arbitrary direction-Brewster angles-Total internal reflection-poynting vector and power flow-Power loss in plane conductor.

UNIT-III	TRANSMISSION LINES	9 Hours
Equations o	f Voltage and Current on TX line- Propagation constant-char	acteristic impedance-
reflection ph	enomenon-standing waves-Input impedance of dissipation less the	ransmission line-open
and short c	ircuited line-power and impedance measurement on TX line	$-\lambda/8, \lambda/4 \& \lambda/2$ line $-\lambda/4$
impedance tr	ansformer- Smith chart and its applications-single and double stub	matching.
UNIT-IV	GUIDED WAVES AND WAVE GUIDES	9 Hours

Waves between parallel planes-TE waves-TM waves-Characteristic of TE and TM waves-TEM waves-Velocities of propagation-Attenuation in parallel plane Guides-Rectangular wave guide-TE and TM waves in rectangular waveguide-Impossibility of TEM wave in rectangular wave guide.

UNIT-VRADIATION9 HoursSolution for potential functions-Radiation from oscillating dipole -Power radiated by oscillating<br/>dipole- antenna parameters-Gain- directivity-Effective aperture-Radiation Resistance-Bandwidth-<br/>Beam width-Input impedance-Matching Baluns-Monopole and dipole antenna.9 Hours


	Total Hours 45 Hours
Text	Book(s) and Reference Books
1	Sadiku MH,"Principles of Electromagnetics", Oxford University Press Inc, New Delhi, 2009.
	SecondEdition, Prentice Hall of India, 1968.
2	E.C. Jordan & K.G. Balmain, "Electromagnetic Waves & Radiating Systems",
3	John D Ryder," Network lines and fields", Prentice Hall of India, New Delhi, 2005.
4	David K. Cheng, "Field and Wave Electromagnetics", Second Edition, Prentice Hall of India,
	1989.
5	Sandeep Wali," Electromagnetic theory", first edition, Macmillan Publishers Private limited, 2011.



Course	e Code	e	BECF	F184P7	70			L	Т	P		С	IA	EA	TM							
Course	e Nam			LOG I DRAT		TRO	NICS	0	0	3	;	2	40	60	100							
Course	<b>)</b>		PROC	GRAM	IME C	ORE			Syll	abus	Revi	sion			V.1.0							
Catego	ory		COU	RSE																		
Pre-ree	quisite	e																				
Course	•																					
The cou											_											
						linear	-				l ava	ilable	ICs									
						of ope			-													
3.	To ap	ply of	peratic	onal ar	nplifie	ers in li	inear a	and no	online	ar app	olicat	ions.										
4.	To an	alyze	the fre	equen	cy resp	ponse o	charac	eterist	ics of	Ampl	ifier	5.										
5.	To en	able to	o stud	ents to	o work	c in a te	eam ai	nd bui	ild app	plicati	ons.											
Course				. •		1 .	•11 1	11 .														
On con	<u> </u>	on of t	ne cou	urse, t	ne stud				)						ah ard Dl-							
Cours Outcor	-					Des	cripti	ION							ghest Bloom's Taxonomy							
	m													Taxonomy								
es CO1	D	esign	oscilla	ators a	and an	plifier	s usin	g ope	ration	al am	plifie	ers.		K2								
CO2						-					-		ncv		K2							
		Design filters using Op-amp and perform experiment on frequency <b>K2</b> response.																				
CO3		Analyze the working of PLL and use PLL as frequency multiplier.													K3							
CO4		-			-	of osc			-					K3								
C04			strate	for		K3 K4																
COS				capation	•	U WUII	x m a	team	anu i	lo bui		icuits	101		N4							
	Vč	arious	appin	ation	5.																	
Correl	ation	betwe	een Co	ourse	Outco	mes (	COs)	and I	Progra	am O	utco	mes (	POs):									
															ram Specific							
				Pr	ogran	n Outo	comes	(POs	<i>s)</i>					Outco	omes (PSOs)							
COs	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	P	PO	PS	Р	PSO3							
005	1	2	3	4	5	06	7	8	9	10	0	12	01	S								
											1			0								
001	C	C	G	C	C			1.5	1.5		1 V	C		2	<u> </u>							
<u>CO1</u>	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S							
CO2	S S	S S	S S	S S	S S	M	M	M	M	M	M	S S	S S	S S	S							
CO3	S S	S S	S S	S S	S S	M	M	M	M	M	M	S S			S							
CO4	S S	S S	S S	S S	S S	M	M	M	M	M	M	S S	S S	S S	S S							
CO5	3	3	3	3	3	Μ	Μ	М	Μ	Μ	Μ	3	3	3	5							
		LIS	<b>F OF</b>	EXPF	ERIM	ENTS																
						f Opar		2741.														
						n-inver	-		ier usi	ng IC	741											
				-		p-amp	-	-			, , 1, 1, 1											
		5.	T			·P amp	1	Diff		1	110		. 107	41								

4. Instrumentation amplifier and Differential Amplifier using IC741.

5. Integrator and Differentiator using IC741.





#### B.E. (Electronics and Communication Engineering)

- 6. Schmitt Trigger using IC741.
- 7. ADC/DAC using IC741.
- 8. Astable & Monostable Multi-vibrator using IC555.
- 9. RC Phase shift oscillator and Wien bridge oscillator using BJT.
- 10. Hartley & Colpitts oscillator using BJT.
- 11. Frequency Response of Class B Push Pull Amplifier using BJT.
- 12. Frequency Response of Voltage Series Feedback Amplifier using BJT.
- 13. Phase Locked Loop (PLL).

#### **Total Hours** | 45 Hours

Text Book(s)

J.V. Wait, L.P. Huelsman & GA Korn, "Introduction to Operational Amplifier theory and 1 applications", McGraw Hill, 1992.

J. Millman and A. Grabel, "Microelectronics", 2nd edition, McGraw Hill, 1988. 2

3 P. Horowitz and W. Hill, "The Art of Electronics", 2nd edition, Cambridge University Press, 1989. **Reference Book(s)** 

A.S. Sedra and K.C. Smith, "Microelectronic Circuits", Oxford University Press, V Edition, 2004. 1

2 Paul R. Gray and Robert G.Meyer, "Analysis and Design of Analog Integrated Circuits", John Wiley, 3rd Edition, 1992.



Course	Code		BECF1	84P80					L	Τ	Р	C	IA	EA	TM	
Course	Name		ANAL	OG A	ND D	IGITA	L		0	0	3	2	`40	) 60	100	
			COMN			DN										
<u> </u>	<u>a</u> .		LABO				LIDOF			<u> </u>						
Course		ory .	PROGI	RAMN	1E CO	RE CC	OURSE			Syllab	us R	evisior	1		7.1.0	
Pre-req																
Course The course			oblo th	a studo	nta											
			basic ci			امع دما	mmuni	cation	systen	n						
			basic ci			-			•							
			d const		-				•		nd sai	nnling				
			e Perfo											steme		
		-	students					-		-	JIIII	unical	on Sys	5101115.		
5. 1			suuents		nk ill ä	icalli à	anu bul	nu app	incatio	115.						
Course	Autoo	mos														
On com			course	, the st	udent	will be	able to	)								
Course		or the	course	, the st	udoni		Descrip							H	ghest	
Outcon	-						<b>r</b>								oom's	
S														Taxono		
															у	
CO1			e pract			-			U						K3	
CO2			e pract												K3	
CO3			Analo												K4	
CO4	sy	stems.													K3	
CO5			trate ca	apabili	ty to	work i	n a te	am an	d to	build c	ircuit	s for	variou	s	K4	
	ap	plicati	ons.													
Comolo	tion h		Cour		0000000		and T	magna		toomoo		a)•				
Correla		etweet	Cours							comes	(rU	s):	Prog	ram S	necific	
				P	rogra	n Out	comes	(POs)					0	omes (		
COs	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	P	PO	PS	PS	<b>PSO</b> 3	
~	1	2	3	4	5	6	7	8	9	10	0	12	01	02		
											11					
<b>CO1</b>	S	S	S	S	S	Μ	Μ	Μ	Μ	М	Μ	S	S	S	S	
CO2	S	S	S	S	S	Μ	М	Μ	Μ	Μ	Μ	S	S	S	S	
CO3	S	S	S	S	S	Μ	Μ	Μ	Μ	М	Μ	S	S	S	S	
<b>CO4</b>	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S	
C04 C05	S	S	S	S	S	Μ	М	Μ	Μ	Μ	Μ	S	S	S	S	



	LIST OF EXPERIMENTS
	1. Study of Multisim, VisSim and MATLAB.
	2. AM modulator and Demodulator.
	3. DSB-SC modulator and Demodulator.
	4. SSB modulator and Demodulator.
	5. FM modulator and Demodulator.
	6. PAM modulator and Demodulator.
	7. PPM & PWM Modulator.
	8. Pre-emphasis and De-emphasis in FM.
	9. Signal Sampling and Reconstruction (Sampling Theorem).
	10. Pulse Code Modulation and Demodulation.
	11. Delta modulation and Adaptive Delta modulation.
	12. Amplitude Shift Keying (ASK) and Frequency Shift Keying (FSK) modulator and
	Demodulator.
	13. Phase Shift keying (PSK) and Binary Phase Shift Keying (BPSK) Modulator and
	Demodulator.
	Total Hours 45 Hours
Text Bo	pok(s)
1	Haykin.S and Michel Moher," Introduction to Analog and Digital communication", Second
	edition, John Wiley and sons Inc, 2012.
2	Prokis J.G.," Digital communications", 4th edition, Tata McGraw Hill, 2000.
Referen	nce Book(s)
1	Taub H and Schilling D.L., "Principles of Communication systems", Tata McGraw Hill, 2001.
2	Dr.Sanjay Sharma, "Analog and Digital communication", seventh edition, K KATARIA & amp;
	SON'S publication, 2017.



<b>Course Coo</b>	le	BECF184P90	$\mathbf{L}$	Т	P	С	IA	EA	TM	
Course Nai	ne	MICROPROCESSOR AND	0	0	3	2	40	60	100	
		MICROCONTROLLER								
		LABORATORY								
<b>Course Cat</b>	egory	PROGRAMME CORE COURSE		Sylla	bus Rev	ision		V.1.0		
Pre-requisi	te									
<b>Course Obj</b>	jectives:									
The course a	should en	able the students								
1. To s	tudy arch	tecture of 8086 microprocessor ar	d perform	m vario	ous arithi	netic &	& logi	cal		
oper	ations.									
2. To le	earn the d	esign aspects of I/O and Memory	nterfacir	ng circu	its.					
3. To a	nalyze the	e communication between Periphe	ala and l	hus inte	mfo aim a					
		communication octween relipite	als and	Jus mit	fracing.					
4. To E				Jus mu	ertacing.					
	Execute P	ograms using 8051 Microcontrolle tudents to work in a team and buil	r.		erracing.					
	Execute P	ograms using 8051 Microcontrolle	r.		eriacing.					
	Execute P	ograms using 8051 Microcontrolle	r.							
5. To e	Execute Prenable to s	ograms using 8051 Microcontrolle	r.							
5. To e	Execute Probable to s	ograms using 8051 Microcontrolle	r.							
5. To e	Execute Probable to s	ograms using 8051 Microcontrolle tudents to work in a team and buil	r. I applica					High	nest	
5. To e Course Out On complet	Execute Probable to s	ograms using 8051 Microcontrolle tudents to work in a team and buil course, the student will be able to	r. I applica					High Bloo		
5. To e Course Out On complet Course	Execute Probable to s	ograms using 8051 Microcontrolle tudents to work in a team and buil course, the student will be able to	r. I applica					-	m's	
5. To e Course Out On complet Course	Execute Prenable to s	ograms using 8051 Microcontrolle tudents to work in a team and buil course, the student will be able to	r. l applica	tions.				Bloo	om's nomy	
5. To e Course Out On complet Course Outcomes	Execute Prenable to s tcomes: ion of the Design	ograms using 8051 Microcontrolle tudents to work in a team and buil course, the student will be able to <b>Description</b> and implement programs on 808	r. l applica	tions.				Bloo Taxor	om's nomy 3	
5. To e Course Out On complet Course Outcomes CO1	Execute Prenable to set terms: ion of the Design Design	ograms using 8051 Microcontrolle tudents to work in a team and buil <u>course, the student will be able to</u> <b>Description</b>	r. l applica	tions.				Bloo Taxor K	om's nomy <u>3</u> 3	
5. To e Course Out On complet Course Outcomes CO1 CO2	Execute Prenable to second	ograms using 8051 Microcontrolle tudents to work in a team and buil <u>course, the student will be able to</u> <b>Description</b> and implement programs on 808 I/O circuits and analyze the performance	r. l applica	tions.			Dr	Bloo Taxor K K	m's nomy 3 3 3	

#### **Correlation between Course Outcomes (COs) and Program Outcomes (POs):**

COs		Program Outcomes (POs)												Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	P 0 11	PO 12	PS O 1	PS O2	PS O3			
CO1	S	S	S	S	S	М	Μ	Μ	Μ	М	М	S	S	S	S			
CO2	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S			
CO3	S	S	S	S	S	Μ	Μ	Μ	Μ	М	Μ	S	S	S	S			
CO4	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S			
CO5	S	S	S	S	S	Μ	М	Μ	М	М	Μ	S	S	S	S			

#### Syllabus (2023-24)



#### B.E. (Electronics and Communication Engineering)

#### LIST OF EXPERIMENTS

#### **8086** Microprocessor Experiments

- 1. Basic Arithmetic and Logical operations using 8086.
- 2. Code conversion, decimal arithmetic and Matrix operations.
- 3. Floating-point operations, string manipulations, sorting and searching.
- 4. Counters and Time delay.
- 5. Password Checking, Print RAM size and System Date.

#### **8086** Microprocessor-Peripherals and Interfacing Experiments

- 6. Traffic Light Control and Stepper Motor Control.
- 7. Digital Clock.
- 8. Keyboard and Display.
- 9. Serial and Parallel Interface.
- 10. A/D and D/A Interface and Wave form Generation.

#### 8051 Microcontroller Experiments

- 11. Basic Arithmetic and Logical Operations.
- 12. Square program, Cube program and Finding 2's complement of a number.
- 13. Unpacked BCD to ASCII.

#### Total Hours 45 Hours

#### Text Book(s) R. S. Gaonkar. "Microprocessor Architecture: Programming and Applications with the 1. 8085/8080A", Penram International Publishing, Third Edition, 1996. 2. D A Patterson and J H Hennessy, "Computer Organization and Design The hardware and software interface" Morgan Kaufman Publishers, Fourth Edition, 2011. **Reference Book(s)** Douglas Hall, "The Microprocessors and its Interfacing", Tata McGraw Hill, Third Edition, 2012. 1. Kenneth J. Ayala, "The 8051 Microcontroller: Architecture Programming & Applications", Penram 2. International Publishing, Second Edition, 1996.



## Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

### SEMESTER - V

Course Code	BECF185T10	L	Т	Р	С	IA	Ε	TM
							Α	
Course Name	MICROWAVE	3	0	0	3	40	60	100
	ENGINEERING							
Course Category	PROGRAMME CORE COURSE		Syllab	us Revi	sion		V	.1.0
Pre-requisite	Electromagnetic Fields and Wav (BECF183T60)	eguide	s (BE	CF184T	50), I	Netwo	ork 7	Theory

#### **Course Objectives:**

The course should enable the students

- 1. To inculcate the basics and representation of RF and microwave networks.
- 2. To instill knowledge on the properties of various microwave components.
- 3. To deal with the principles of microwave system design.
- 4. To deal with the microwave measurement techniques.
- 5. To introduce the application areas of microwave Systems.

#### **Course Outcomes:**

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Illustrate concepts of propagation and analysis in RF and Microwave networks.	K2
CO2	Analyze performance of microwave system components and their properties.	K2
CO3	Analyze and synthesis the microwave systems.	К3
CO4	Apply the measurements of microwave systems.	K3
CO5	Design microwave systems for different practical application.	К3

#### **Correlation between Course Outcomes (COs) and Program Outcomes (POs):**

COs		Program Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	P O	PO 12	PS O	PS O2	PS O3
											11		1		
CO1	S	S	L	L	-	L	-	-	-	-	L	L	S	Μ	L
CO2	S	М	-	L	-	L	-	-	-	-	L	L	S	Μ	L
CO3	S	S	Μ	L	-	-	-	-	-	-	L	L	S	Μ	L
CO4	L	L	Μ	Μ	-	L	-	-	-	-	L	L	S	Μ	L
CO5	L	L	S	L	-	-	-	-	-	-	L	L	S	Μ	L



UNI	T-I	INTRODUCTION TO MICROWAVES	9 Hours
Med TEM micr wave volta	lical, EMI/ I A, TE and T owave trans eguide, Circ ages and cu	owaves, Microwave frequency bands; Applications of microwaves: CEMC. Mathematical model of microwave transmission-Concept of M modes, Losses associated with microwave transmission, Concept mission. Analysis of RF and microwave transmission lines- Coaxia ular waveguide, Strip line, Micro strip line, Microwave network ar rrents for non-TEM lines, Network parameters for microwave certies of S parameters.	mode, Features of t of impedance in l line, Rectangular nalysis- Equivalent
UNI	T-II	PASSIVE AND ACTIVE MICROWAVE DEVICES	9 Hours
Micr Dire Diod Micr	rowave pass ctional coup les, Transisto rowave semi	vive components: Terminations- Variable short circuit, Attenuated ler, Magic Tee, Power divider, Resonator. Microwave active compo prs, Oscillators, Mixers. conductor devices: Gunn diodes, IMPATT diodes, Schottky barrier d s: Klystron, TWT, Magnetron.	or, Phase shifters, ments and circuits:
TINIT	T-III	MICROWAVE DESIGN PRINCIPLES	9 Hours
amp desig	lifier design gn, Microw	sformation, Impedance matching, Microwave filter design, RF , Microwave power amplifier design, Low noise amplifier design, vave oscillator design. Microwave antennas- Antenna paramet stems, Antennas for airborne and satellite borne systems, Planar ant	Microwave mixer ers, Antenna for
1			
UNI	T-IV	MICROWAVE MEASUREMENTS	9 Hours
Pow meas micr	ver, frequent surement or rowave signa	MICROWAVE MEASUREMENTS cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure nna parameters.	ork analyzer and of spectrum of a
Pow meas micr	ver, frequend surement of rowave signation rowave anter	cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure	ork analyzer and of spectrum of a
Pow meas micr micr <b>UNI</b> Rada in m	er, frequend surement of rowave signs rowave anter <b>T-V</b> ar, Terrestria nicrowaves e rowaves, E	cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure nna parameters.	ork analyzer and of spectrum of a e. Measurement of 9 Hours PS. Modern trends ivil applications of (EMI & EMC),
Pow meas micr micr <b>UNI</b> Rada in m	er, frequend surement of rowave signs rowave anter <b>T-V</b> ar, Terrestria nicrowaves e rowaves, E	cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure nna parameters. MICROWAVE SYSTEMS al and Satellite communication, Radio aids to navigation, RFID, G engineering- Effect of microwaves on human body, Medical and Ca lectromagnetic interference and Electromagnetic compatibility	ork analyzer and of spectrum of a e. Measurement of 9 Hours PS. Modern trends ivil applications of (EMI & EMC),
Pow meas micr micr UNI Rada in m micr Mon	rer, frequent surement of rowave signs rowave anter <b>T-V</b> ar, Terrestria nicrowaves e rowaves, E nolithic micr <b>t Book(s)</b> R.E. Coll	cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure nna parameters. MICROWAVE SYSTEMS al and Satellite communication, Radio aids to navigation, RFID, G engineering- Effect of microwaves on human body, Medical and C lectromagnetic interference and Electromagnetic compatibility rowave ICs, RFMEMS for microwave components, Microwave ima	ork analyzer and of spectrum of a e. Measurement of <b>9 Hours</b> PS. Modern trends ivil applications of (EMI & EMC), aging. <b>45 Hours</b>
Pow meas micr micr UNI Rada in m micr Mon	rer, frequend surement of rowave signs rowave anter <b>T-V</b> ar, Terrestria icrowaves, Enolithic micr t <b>Book(s)</b> R.E. Coll 2001 (Uni Annapurn	cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure nna parameters. MICROWAVE SYSTEMS al and Satellite communication, Radio aids to navigation, RFID, G engineering- Effect of microwaves on human body, Medical and C lectromagnetic interference and Electromagnetic compatibility rowave ICs, RFMEMS for microwave components, Microwave ima Ins, "Foundations for microwave engineering", Second edition, V its I, II and III). a Das and Sisir K Das, "Microwave engineering", Tata McGraw-	<ul> <li>Pork analyzer and of spectrum of a e. Measurement of</li> <li>9 Hours</li> <li>PS. Modern trends ivil applications of (EMI &amp; EMC), aging.</li> <li>45 Hours</li> <li>Wiley-IEEE press,</li> </ul>
Pow meas micr micr UNI Rada in m micr Mon <b>Text</b> 1.	rer, frequend surement of rowave signs rowave anter <b>T-V</b> ar, Terrestria dicrowaves e rowaves, E nolithic micr <b>Book(s)</b> R.E. Coll 2001 (Uni Annapurn 2017. (Un	cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure nna parameters. MICROWAVE SYSTEMS al and Satellite communication, Radio aids to navigation, RFID, G engineering- Effect of microwaves on human body, Medical and C lectromagnetic interference and Electromagnetic compatibility rowave ICs, RFMEMS for microwave components, Microwave ima Ins, "Foundations for microwave engineering", Second edition, V its I, II and III). a Das and Sisir K Das, "Microwave engineering", Tata McGraw- its III, IV and V).	<ul> <li>Pork analyzer and of spectrum of a e. Measurement of</li> <li>9 Hours</li> <li>PS. Modern trends ivil applications of (EMI &amp; EMC), aging.</li> <li>45 Hours</li> <li>Wiley-IEEE press,</li> </ul>
Pow meas micr micr UNI Rada in m micr Mon <b>Text</b> 1. 2. <b>Refe</b>	rer, frequence surement of rowave signs rowave anter <b>T-V</b> ar, Terrestria icrowaves, En olithic micr <b>Book(s)</b> R.E. Coll 2001 (Uni Annapurn 2017. (Uni erence Book	cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure nna parameters. MICROWAVE SYSTEMS al and Satellite communication, Radio aids to navigation, RFID, G engineering- Effect of microwaves on human body, Medical and C lectromagnetic interference and Electromagnetic compatibility rowave ICs, RFMEMS for microwave components, Microwave ima Total Hours ins, "Foundations for microwave engineering", Second edition, V its I, II and III). a Das and Sisir K Das, "Microwave engineering", Tata McGraw- its III, IV and V). (s)	<ul> <li>Pork analyzer and of spectrum of a e. Measurement of</li> <li>9 Hours</li> <li>9 Hours</li> <li>PS. Modern trends ivil applications of (EMI &amp; EMC), aging.</li> <li>45 Hours</li> <li>Wiley-IEEE press,</li> <li>Hill Pub.Co. Ltd.,</li> </ul>
Pow meas micr micr UNI Rada in m micr Mon <b>Text</b> 1.	rer, frequence surement of rowave signation rowave anter <b>T-V</b> ar, Terrestria icrowaves, Enolithic microwaves,	cy and impedance measurement at microwave frequency, Netw f scattering parameters, Spectrum analyzer and measurement of al, Noise at microwave frequency and measurement of noise figure nna parameters. MICROWAVE SYSTEMS al and Satellite communication, Radio aids to navigation, RFID, G engineering- Effect of microwaves on human body, Medical and C lectromagnetic interference and Electromagnetic compatibility rowave ICs, RFMEMS for microwave components, Microwave ima Ins, "Foundations for microwave engineering", Second edition, V its I, II and III). a Das and Sisir K Das, "Microwave engineering", Tata McGraw- its III, IV and V).	<ul> <li>Pork analyzer and of spectrum of a e. Measurement of</li> <li>9 Hours</li> <li>9 Hours</li> <li>PS. Modern trends ivil applications of (EMI &amp; EMC), aging.</li> <li>45 Hours</li> <li>Wiley-IEEE press,</li> <li>Hill Pub.Co. Ltd.,</li> </ul>



3	Samuel. Y. Liao, "Microwave circuit analysis and amplifier design", Third edition, Pearson, 2003.
4	Ulrich L. Rohde and David P. Newkirk, "RF / Microwave circuit design for wireless
	applications", John Wiley, 2000.
5	Gentili C., "Microwave amplifiers and oscillators", North oxford academic, 1986.
6	John D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and wave propagation",
	Fourth edition, Tata McGraw-Hill, 2006.



Course Code	BECF185T20	L	Т	Р	С	IA	EA	TM
Course Name	COMPUTER	3	0	0	3	40	60	100
	ARCHITECTURE							
<b>Course Category</b>	PROGRAMME CORE COURSE		Sylla	abus Rev	ision		V.	1.0
Pre-requisite	Digital System Design (BECF1 (BECF184T40)	83T40	), Mi	croproces	sors &	Mic	rocont	rollers

#### **Course Objectives:**

The course should enable the students -

- 1. To explain the concepts of structure of computers and instructions.
- 2. To familiarize with implementation of fixed point and floating-point arithmetic operations.
- 3. To study the design of data path unit and control unit for processor.
- 4. To understand the concept of various memories and I/O systems and interfacing.
- 5. To introduce the parallel processing technique and multi-core processors.

#### **Course Outcomes:**

On completion of the course, the student will be able to

Course Outcome	Description	Highest Bloom's
S		Taxonomy
CO1	Understand the basics structure of computers and instructions.	K2
CO2	Illustrate the fixed point and floating-point arithmetic for ALU operation.	K2
CO3	Discuss about implementation schemes of data-path and control units and pipeline performance.	К2
CO4	Explain the concept, interfacing and organization of various memories and I/O systems.	К3
CO5	Discuss parallel processing technique and unconventional architectures.	K2

#### **Correlation between Course Outcomes (COs) and Program Outcomes (POs):**

COs				Program Specific Outcomes (PSOs)											
COS	PO 1	<b>PO</b> 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO 10	P 0 11	PO 12	PS O 1	PS O2	PSO3
CO1	S	L	S	Μ	L	S	Μ	L	-	-	-	L	Μ	S	L
CO2	S	L	S	L	Μ	S	М	L	-	-	-	L	Μ	S	L
CO3	S	L	S	L	Μ	S	М	L	-	-	-	L	Μ	S	L
CO4	М	L	Μ	S	Μ	Μ	S	L	-	-	-	L	Μ	S	L
CO5	М	L	S	Μ	L	Μ	S	L	-	-	-	L	Μ	S	L
		1	1	1	1								1	1	
UNIT-I		STRUCTURE OF COMPUTERS AND INSTRUCTIONS											9 Hours		

Classification of computers and their characteristics –Functional units- Eight ideas — Performance, Instructions: Operations - Operands – Instruction representation – Logical operations – Decision



making operations - Procedures: Stacks, Ques and Subroutines - Program translation.

#### UNIT-II ARITHMETIC FOR COMPUTERS

Addition and Subtraction – Multiplication – Division – Floating Point arithmetic Operations – IEEE 754 floating point formats - Sub-word Parallelism.

#### UNIT-III PROCESSOR DATAPATH AND CONTROL UNITS

Fundamental concepts–Instruction execution –-Multiple bus organization – Data path–Hardwired control-Micro-programmed control, Pipelining – Pipelined data path and control, Data Hazards - Control Hazards – Exception handling.

#### UNIT-IV MEMORY AND I/O SYSTEMS

Memory Hierarchy – Review of memory technologies – Cache memory – Measuring and improving cache performance – Virtual memory - TLB's. Accessing I/O Devices – Interrupts – Direct Memory Access, Bus structure – Bus operation – Arbitration – Interface circuits - Standard I/O Interfaces – PCI, SCSI and USB.

#### UNIT-V PARALLELISM

Parallel processing challenges, Flynn's classification – SISD, MIMD, SIMD, SPMD, and Vector Architectures, Hardware multithreading – Multi-core processors and other Shared Memory Multiprocessors - Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers and other Message-Passing Multiprocessors. Introduction to Multiprocessor Network Topologies.

	Total Hours 45 Hours
Text ]	Book(s)
	David A. Patterson and John L. Hennessy, "Computer Organization and Design: The
1.	Hardware/Software interface", Fifth Edition, Morgan Kauffman / Elsevier, 2014.
	Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, "Computer Organization
2.	and Embedded Systems", Sixth Edition, McGraw Hill, 2012.
Refer	rence Book(s)
	Miles J. Murdocca and Vincent P. Heuring, —Computer Architecture and Organization: An
1.	Integrated approach, Second edition, Wiley India Pvt Ltd, 2015.
	William Stallings, "Computer Organization and Architecture – Designing for Performance",
2.	Eighth Edition, Pearson Education, 2010.
	John P. Hayes, Computer Architecture and Organization, Third Edition, Tata McGraw
3.	Hill,2012.

8 Hours

9 Hours

9 Hours

**10 Hours** 



Course Code	BECF185T30	L	Т	Р	С	IA	EA	TM			
Course Name	DIGITAL SIGNAL	3	0	0	3	40	60	100			
	PROCESSING										
Course Category	PROGRAMME CORE COURSESyllabus RevisionV.1										
Pre-requisite	Signal & Systems (BECF183T50), Digital System Design (BECF183T40),										
	NETWORK THEORY (BECF183T60	)									

### **Course Objectives:**

The course should enable the students -

- 1. To learn discrete Fourier transforms, properties of DFT and its application to linear filtering.
- 2. To understand the characteristics of digital filters, design digital FIR filters and apply these filters to filter undesirable signals in various frequency bands.
- 3. To design digital IIR filters and apply these filters to filter undesirable signals in various frequency bands.
- 4. To understand the effects of finite precision representation on digital filters.
- 5. To understand the fundamental concepts of multi-rate signal processing and its applications.

#### **Course Outcomes:**

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonom y
CO1	Apply DFT and FFT algorithms for the analysis of digital signals and systems.	K3
CO2	Design FIR filters for various applications.	K3
CO3	Design IIR filters for various applications.	K3
CO4	Characterize the effects of finite precision representation on digital filters.	K3
CO5	Design of multi-rate filters.	K3

Correla	tion betw	veen Co	ourse (	Outcor	nes (C	Os) ai	nd Pro	gram	Outco	mes (I	POs):				
COs				Pro	gram	Outco	omes (I	POs)					Program Specific Outcomes (PSOs)		
	PO1	PO	PO	PO	PO	PO	PO	PO	PO	РО	Р	PO	PS	PS	PSO
		2	3	4	5	6	7	8	9	10	0	12	0	02	3
											11		1		
CO1	S	Μ	L	L	S	-	-	-	L	-	-	L	S	S	L
CO2	S	М	Μ	S	Μ	Μ	-	-	L	-	-	М	S	S	L
CO3	S	S	Μ	Μ	Μ	-	-	-	L	-	-	Μ	S	S	L
CO4	S	S	Μ	Μ	Μ	Μ	-	-	-	-	-	Μ	S	S	L
CO5	S	S	Μ	Μ	М	-	-	-	L	-	-	L	S	S	L
UNIT-I		DISC	CRET	E FOI	U <b>RIE</b> I	R TRA	ANSF	ORM						9 Ho	ours
Review	of discre	ete-time	e signa	als and	l syste	ms – I	Discre	te Fou	rier T	ransfo	rm (l	OFT)	and it	s prop	perties,



Circular convolution, Linear filtering using DFT, Filtering long data sequences - overlap-save methods - Overlap-add, Fast Fourier Transform (FFT) algorithms - Fast computation of DFT - Radix-2 decimation in time FFT - Decimation in frequency FFT – Linear filtering using FFT. **DESIGN OF FINITE IMPULSE RESPONSE FILTERS UNIT-II** 9 Hours Structures for FIR systems - Transversal and Linear phase structures, Design of FIR filters -Symmetric and Anti-symmetric FIR filters, Design of linear phase FIR filters using Windows (Rectangular, Hamming and Hanning windows) and Frequency sampling methods. **UNIT-III DESIGN OF INFINITE IMPULSE RESPONSE FILTERS** 9 Hours Structures for IIR systems - direct, cascade, parallel forms, Comparison of FIR and IIR, Analog filters- Butterworth filters - Chebyshev type - I filters (upto 3rd order), Analog transformation of prototypeLPF to BPF/BSF/HPF, Transformation of analog filters into equivalent digital filters using Impulse invariant method and Bilinear Z-transform method. **UNIT-IV FINITE WORD LENGTH EFFECTS** 9 Hours Representation of fixed and floating point numbers, ADC quantization -truncation and rounding quantization noise, Coefficient quantization Error - Product quantization error - Overflow error -Round-off noise power, Limit cycle oscillation due to product round-off error- Limit cycle oscillation due to overflow in digital filters – Principle of scaling. **UNIT-V** MULTI-RATE SIGNAL PROCESSING 9 Hours Introduction to multi-rate signal processing – Decimation – Interpolation- Sampling rate conversion by a rational factor - Poly phase decomposition of FIR filter – Multistage implementation of sampling rate conversion – Design of narrow band filters–Applications of multi-rate signal processing. **Total Hours** | 45 Hours Text Book(s) John G.Proakis and Dimitris G. Manolakis, "Digital signal processing - Principles, algorithms 1. and applications", Pearson education / Prentice hall, Fourth edition, 2007. **Reference Book(s)** Sanjay K.Mithra, "Digital signal processing - A Computer based approach", Tata McGraw-Hill, 1. 2007. M.H.Hayes, "Digital signal processing", Schum's outlines, Tata McGraw Hill, 2007. 2. A.V.Oppenheim, R. W. Schafer and J. R. Buck, "Discrete-time signal processing", Pearson, 2004. 3. I.C.Ifeachor and B.W.Jervis, "Digital signal processing – A practical approach", Pearson 2002. 4. 5. L.R. Rabiner and B. Gold, "Theory and application of digital signal processing", Prentice Hall, 1992.



Course	BECF185T40	L	Т	Р	C	IA	EA	
Code			-	-	Ŭ			ТМ
Course	COMPUTER AIDED SYSTEM	3	0	0	3	40	60	100
Name	DESIGN							
Course	PROGRAMME CORE COURSE		Syllal	ous Re	vision	•	V.1	.0
Category			-					
Pre-	Network Theory (BECF183T60), Electro	nic De	evices	(BECF	F183T3	30), Ar	nalog Elec	tronics
requisite	(BECF184T20) and Digital System Desig	n (BEC	CF183'	Г40)				
1. To le	ectives: hould enable the students- earn electronic design automation techniqu it level using PSPICE.	ues for	r desig	gning a	analog	and d	ligital circ	uits at
<ol> <li>To s</li> <li>VHD</li> <li>To le synth</li> <li>To s</li> <li>Veril</li> <li>To le HDL</li> </ol>	tudy EDA techniques for designing digital DL. earn EDA techniques for designing digital nesis concepts. tudy EDA techniques for designing digital og HDL. earn EDA techniques for designing digital and synthesis concepts.	circuit	s at da its at o	ta flov	w mod nt moc	eling u leling	using VHI	DL and s using Verilog
Outcome							Bloon	1's
S							Taxono	omy
CO1	Understand concepts of simulation compusing analog and digital modeling in PSPIC	E.			-		К3	
CO2	Develop programs for combinational and identifying the different abstraction and de in VHDL.	lay mo	dels f	or digi	tal circ	uits	К3	
CO3	Develop programs for combinational and see flow modeling in VHDL and understand VH	HDL s	ynthesi	is.			К3	
CO4	Develop programs for combinational and applying the different abstraction and delay Verilog HDL.						K3	
CO5	Develop programs for combinational and switch level in Verilog HDL and understand	-		-		s at	K3	



COs		Program Outcomes (POs)													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2	PS 03
CO1	S	S	S	Μ	S	-	-	-	L	-	-	Μ	S	S	M
CO2	S	S	S	Μ	S	-	-	-	L	-	-	Μ	S	S	M
CO3	S	S	S	Μ	S	-	-	-	L	-	-	Μ	S	S	Μ
CO4	S	S	S	Μ	S	-	-	-	L	-	-	Μ	S	S	M
CO5	S	S	S	М	S	-	-	-	L	-	-	Μ	S	S	M

UNIT-I OVERVIEW OF EDA AND PSPICE

9 Hours

Evolution of EDA tools, Typical design flow of VLSI IC circuits (ASIC Flow), Design capture and design verification tools. Analog Circuit Techniques: Overview of PSPICE; Types of simulation - DC, AC, Transient, Monte Carlo and Parametric. Simulation devices - Energy sources, Passive components, Semi-conductors, ICs, Special devices – Laplace devices, voltage markers, Initial conditions. Models for RLC, Diode, BJT, and MOSFET. Programming examples of Analog and Digital Circuit Models in the frequency domain and time domain.

#### UNIT-II INTRODUCTION TO VHDL

9 Hours

Introduction to VHDL – Entities and architectures, **Behavioral modelling** – Concurrent and sequential processing – if, case, loops, next, exit, wait, and assert statements.

Structural modelling – Port map, components, generics and Technology mapping.

Delay models –Inertial, transport and delta delays.

**Data types**- Variables, signals, constants, arrays, VHDL operators. Simple programming examples of combinational and sequential circuits.

### UNIT-III ADVANCED TOPICS IN VHDL AND SYNTHESIS

9 Hours

**Data flow Description:** Highlights of Data flow Description, Structure of Data flow Description, Data type-vectors, Common VHDL programming Errors.

Functions, Procedures, Packages, Libraries and Configurations.

**Introduction to VHDL Synthesis**: Register Transfer Level Description, Constraints, Technology Libraries, Conversion to Gate Level Netlists using Synthesis. Simple Synthesis Examples - Simple Gate—Concurrent Assignment, IF Control Flow Statements, Case Control Flow Statements.

#### UNIT-IV INTRODUCTION TO VERILOG HDL

9 Hours

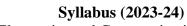
Introduction to Verilog - Modules and module instances, design blocks and stimulus blocks; Data types and operators, System tasks and Compiler directives. Modeling – Gate level (Structural) modeling, Dataflow modeling- continuous assignments, Behavioral modeling- initial, always, blocking and non-blocking statements. Tasks and functions. Delay modeling- distributed, lumped, and pin-to-pin, rise / fall / turn-off, min / typical / max delays. Simple programming examples of combinational and sequential



circuits.

UNIT-V ADVANCED TOPICS IN VERILOG HDL AND SYNTHESIS

9 Hours


Switch level modeling – PMOS, NMOS and CMOS. Simple programming examples of switch level modeling- CMOS Inverter, CMOS Nand, CMOS Nor gates, CMOS Multiplexers and CMOS latches. Useful Modeling Techniques: Procedural continuous assignments, Overriding parameters, Conditional compilation and execution, Useful system tasks.

**Introduction to Verilog HDL Synthesis:** Logic Synthesis, Impact of logic synthesis, Verilog HDL Synthesis, Synthesis design flow, Verification of Gate-Level Netlist.

	Total Hours 45 Hours
Text	Book(s)
1.	Muhammad Rashid, "Introduction to PSPICE using Orcad for circuits and electronics", Third
	edition, Pearson education, 2003.
2.	Douglas L. Perry, "VHDL – Programming by Example", Fourth edition, TMH, 2002.
3.	Samir Palnitkar, "Verilog HDL -A guide to Digital Design and Synthesis", Second edition,
	Pearson Education, 2004.
Refer	rence Book(s)
1.	Neil Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", Second edition,
	Addison Wesley, 1998.
2.	Charles H Roth, Jr., "Digital Systems Design using VHDL", Second edition, Thomson
	Learning, 2008.
3.	Joseph Cavanagh, "Verilog HDL-Digital design and modelling", CRC press, 2007.



Course Name         ELECTRO MAGNETIC FIELD AND MICROWAVE LABORATORY         0         0         3         2         40         60         100           Course Category         PROGRAMME CORE COURSE         Syllabus Revision         V.1.0           Pre-requisite         Course Objectives:         Syllabus Revision         V.1.0           Course Objectives:         The course should enable the students         0         0         3         2         40         60         100           Pre-requisite         Course Objectives:         Syllabus Revision         V.1.0           The course should enable the students         1.         To understand the working Principle of Various type of Microwave Oscillators.         3.         To know the behavior of microwave components and parameters.           4.         To practice microwave measurement procedures.         5.         To enable to students to work in a team and build applications.           Course Outcomes:         Description         Highest Bloom's Taxonomy           CO1         Learn about the characteristics and measurements of E and H Fields.         K2           CO2         Understand the working principle of microwave components.         K3           CO4         Analyze the S - parameter measurements of various Microwave K4         K4           CO5         Demonstrate capability to work in
Pre-requisite       Course Objectives:         The course should enable the students       1. To understand the principle of Electric field and Magnetic field on various conductors.         2. To understand the working Principle of various type of Microwave Oscillators.         3. To know the behavior of microwave components and parameters.         4. To practice microwave measurement procedures.         5. To enable to students to work in a team and build applications. <b>Course Outcomes:</b> On completion of the course, the student will be able to <b>Course Outcomes:</b> On the characteristics and measurements of E and H Fields.         K2         CO2       Understand the working principle of microwave components.         K3         CO4       Analyze the S - parameter measurements of various Microwave         CO5       Demonstrate capability to work in a team and to build circuits for various applications.         CO5       Demonstrate capability to work in a team and to build circuits for various applications.         CO5       Demonstrate capability to work in a team and to build circuits for various supplications.         CO5       Demonstrate capability to work in a team and to build circuits for various supplications.
Course Objectives:         The course should enable the students         1. To understand the principle of Electric field and Magnetic field on various conductors.         2. To understand the working Principle of various type of Microwave Oscillators.         3. To know the behavior of microwave components and parameters.         4. To practice microwave measurement procedures.         5. To enable to students to work in a team and build applications.         Course Outcomes:         On completion of the course, the student will be able to         Course Outcomes:         Ot Learn about the characteristics and measurements of E and H Fields.         K2         CO3       Know about the behavior of microwave components.         K3         Coorse Course Out the characteristics and measurements of E and H Fields.         K2         CO1         Learn about the behavior of microwave components.         K3         CO2         Understand the working principle of microwave components.         K2         CO3       Know about the behavior of microwave components.         CO4       Analyze the S - parameter measurements of various Microwave K4         Components.       C05
The course should enable the students          1. To understand the principle of Electric field and Magnetic field on various conductors.         2. To understand the working Principle of various type of Microwave Oscillators.         3. To know the behavior of microwave components and parameters.         4. To practice microwave measurement procedures.         5. To enable to students to work in a team and build applications.         Course Outcomes:         On completion of the course, the student will be able to         Course Outcomes:         Outcome       Highest Bloom's Taxonomy         CO1       Learn about the characteristics and measurements of E and H Fields.       K2         CO2       Understand the working principle of microwave components.       K3         CO4       Analyze the S - parameter measurements of various Microwave K4       K4         Components.       CO5       Demonstrate capability to work in a team and to build circuits for various applications.       K4
1. To understand the principle of Electric field and Magnetic field on various conductors.         2. To understand the working Principle of various type of Microwave Oscillators.         3. To know the behavior of microwave components and parameters.         4. To practice microwave measurement procedures.         5. To enable to students to work in a team and build applications. <b>Course Outcomes:</b> On completion of the course, the student will be able to <b>Course Outcomes:</b> Oot the course, the student will be able to <b>Course Outcomes:</b> O1       Learn about the characteristics and measurements of E and H Fields.       K2         CO2       Understand the working principle of microwave components.       K3         CO4       Analyze the S - parameter measurements of various Microwave       K4         Components.       C05       Demonstrate capability to work in a team and to build circuits for various applications.       K4
<ul> <li>2. To understand the working Principle of various type of Microwave Oscillators.</li> <li>3. To know the behavior of microwave components and parameters.</li> <li>4. To practice microwave measurement procedures.</li> <li>5. To enable to students to work in a team and build applications.</li> </ul> Course Outcomes:           On completion of the course, the student will be able to           Course         Description           Outcome         Bloom's           S         Taxonomy           CO1         Learn about the characteristics and measurements of E and H Fields.         K2           CO2         Understand the working principle of microwave components.         K3           CO4         Analyze the S - parameter measurements of various Microwave         K4           Components.         C05         Demonstrate capability to work in a team and to build circuits for various applications.         K4
<ul> <li>3. To know the behavior of microwave components and parameters.</li> <li>4. To practice microwave measurement procedures.</li> <li>5. To enable to students to work in a team and build applications.</li> </ul> Course Outcomes:           On completion of the course, the student will be able to           Course         Description           Outcome         Highest Bloom's s           CO1         Learn about the characteristics and measurements of E and H Fields.           K2         CO2           Understand the working principle of microwave components.         K2           CO3         Know about the behavior of microwave components.         K3           CO4         Analyze the S - parameter measurements of various Microwave         K4           Components.         C05         Demonstrate capability to work in a team and to build circuits for various applications.         K4
<ul> <li>4. To practice microwave measurement procedures.</li> <li>5. To enable to students to work in a team and build applications.</li> <li>Course Outcomes:         <ul> <li>On completion of the course, the student will be able to</li> <li>Course</li> <li>Description</li> <li>Highest Bloom's Taxonomy</li> <li>CO1</li> <li>Learn about the characteristics and measurements of E and H Fields.</li> <li>K2</li> <li>CO2</li> <li>Understand the working principle of microwave components.</li> <li>K2</li> <li>CO3</li> <li>Know about the behavior of microwave components.</li> <li>K3</li> <li>CO4</li> <li>Analyze the S - parameter measurements of various Microwave</li> <li>K4</li> <li>Components.</li> <li>CO5</li> <li>Demonstrate capability to work in a team and to build circuits for various applications.</li> </ul> </li> </ul>
5. To enable to students to work in a team and build applications.         Course Outcomes:         On completion of the course, the student will be able to         Course       Description         Mighest       Bloom's         S       Taxonomy         CO1       Learn about the characteristics and measurements of E and H Fields.       K2         CO2       Understand the working principle of microwave components.       K3         CO3       Know about the behavior of microwave components.       K3         CO4       Analyze the S - parameter measurements of various Microwave K4       K4         Components.       C05       Demonstrate capability to work in a team and to build circuits for various k4       K4         CO5       Demonstrate capability to work in a team and to build circuits for various k4       K4
Course Outcomes:         On completion of the course, the student will be able to         Course       Description       Highest Bloom's         Outcome       Taxonomy         S       Taxonomy         CO1       Learn about the characteristics and measurements of E and H Fields.       K2         CO2       Understand the working principle of microwave components.       K2         CO3       Know about the behavior of microwave components.       K3         CO4       Analyze the S - parameter measurements of various Microwave K4       K4         CO5       Demonstrate capability to work in a team and to build circuits for various applications.       K4
On completion of the course, the student will be able to       Highest         Course       Description       Highest         Outcome       Bloom's       S         S       Taxonomy       CO1         CO1       Learn about the characteristics and measurements of E and H Fields.       K2         CO2       Understand the working principle of microwave components.       K3         CO3       Know about the behavior of microwave components.       K3         CO4       Analyze the S - parameter measurements of various Microwave       K4         CO5       Demonstrate capability to work in a team and to build circuits for various applications.       K4         CO5       Demonstrate capability to work in a team and to build circuits for various applications.       K4
On completion of the course, the student will be able to       Highest         Course       Description       Highest         Outcome       Bloom's       S         S       Taxonomy       CO1         CO1       Learn about the characteristics and measurements of E and H Fields.       K2         CO2       Understand the working principle of microwave components.       K3         CO3       Know about the behavior of microwave components.       K3         CO4       Analyze the S - parameter measurements of various Microwave       K4         CO5       Demonstrate capability to work in a team and to build circuits for various applications.       K4         CO5       Demonstrate capability to work in a team and to build circuits for various applications.       K4
Course Outcome sDescriptionHighest Bloom's TaxonomyCO1Learn about the characteristics and measurements of E and H Fields.K2CO2Understand the working principle of microwave components.K2CO3Know about the behavior of microwave components.K3CO4Analyze the S - parameter measurements of various MicrowaveK4CO5Demonstrate capability to work in a team and to build circuits for variousK4Correlation between Course Outcomes (COs) and Program Outcomes (POs):
sTaxonomyCO1Learn about the characteristics and measurements of E and H Fields.K2CO2Understand the working principle of microwave components.K2CO3Know about the behavior of microwave components.K3CO4Analyze the S - parameter measurements of various MicrowaveK4Components.C0CO5Demonstrate capability to work in a team and to build circuits for variousK4Correlations.
CO1Learn about the characteristics and measurements of E and H Fields.K2CO2Understand the working principle of microwave components.K2CO3Know about the behavior of microwave components.K3CO4Analyze the S - parameter measurements of various MicrowaveK4Components.C05Demonstrate capability to work in a team and to build circuits for variousK4CO5Ocrrelation between Course Outcomes (COs) and Program Outcomes (POs):COS
CO2Understand the working principle of microwave components.K2CO3Know about the behavior of microwave components.K3CO4Analyze the S - parameter measurements of various MicrowaveK4Components.C05Demonstrate capability to work in a team and to build circuits for variousK4Correlation between Course Outcomes (COs) and Program Outcomes (POs):
CO3       Know about the behavior of microwave components.       K3         CO4       Analyze the S - parameter measurements of various Microwave       K4         Components.       Components.       K4         CO5       Demonstrate capability to work in a team and to build circuits for various applications.       K4         Correlation between Course Outcomes (COs) and Program Outcomes (POs):
CO4       Analyze the S - parameter measurements of various Microwave       K4         Components.       Components.       K4         CO5       Demonstrate capability to work in a team and to build circuits for various applications.       K4         Correlation between Course Outcomes (COs) and Program Outcomes (POs):
Components.       Components.         CO5       Demonstrate capability to work in a team and to build circuits for various applications.         K4         Correlation between Course Outcomes (COs) and Program Outcomes (POs):
CO5       Demonstrate capability to work in a team and to build circuits for various       K4         applications.       Correlation between Course Outcomes (COs) and Program Outcomes (POs):
applications. Correlation between Course Outcomes (COs) and Program Outcomes (POs):
Correlation between Course Outcomes (COs) and Program Outcomes (POs):
Program
Program Outcomes (POs) Specific Outcomes
COs (PSOs)
PO P
1 2 3 4 5 6 7 8 9 10 11 12 01 02 03
CO1         S         S         S         S         M         M         M         M         M         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S
CO2     S     S     S     M     M     M     M     M     S     S     S       GO2     S     S     S     S     M     M     M     M     M     S     S     S     S
CO3     S     S     S     M     M     M     M     S     S     S       CO4     S     S     S     S     M     M     M     M     M     S     S     S     S
CO4         S         S         S         S         M         M         M         M         M         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S
CO5     S     S     S     S     M     M     M     M     M     S     S     S     S
LIST OF EXPERIMENTS
1. Determination of Electric Field Pattern between Two Circular Electrodes.
2. Determination of Electric Field between Parallel Conductors.
3. Measurement of Electric Field and Potential inside Parallel Plate Capacitor.
4. Measurement of Capacitance and Inductance of Transmission Lines.





#### B.E. (Electronics and Communication Engineering)

- 6. Determination of Magnetic Field of Coils.
- 7. Verification of Faraday's law of Magnetic Induction.
- $8. \ Determination of Velocity of electromagnetic waves for the given Co-axial Cable.$
- 9. Reflex klystron or Gunn diode characteristics and basic microwave parameter measurement such as VSWR, frequency, wavelength.
- 10. Directional Coupler Characteristics.
- 11. Radiation Pattern of Horn Antenna.
- 12. S-parameter Measurement of the following microwave components (Isolator, Circulator, E Plane Tee, H Plane Tee, Magic Tee).
- 13. Attenuation and Power Measurement.

Total Hours 45 Hours

Tex	tt Book(s)
1.	John D Ryder," Network lines and fields", Prentice Hall of India, New Delhi, 2005.
2.	R.E. Collins, "Foundations for microwave engineering", Second edition, Wiley-IEEE press, 2001.
3.	Annapurna Das and Sisir K Das, "Microwave engineering", Tata McGraw-Hill Pub.Co. Ltd., 2017.
Ref	Cerence Book(s)
1.	E.C. Jordan & K.G. Balmain, "Electromagnetic Waves & Radiating Systems", Second Edition,
	Prentice Hall of India, 1968.
2.	Samuel. Y. Liao, "Microwave circuit analysis and amplifier design", Third edition, Pearson, 2003.
3.	John D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antennas and wave propagation", Fourth
	edition, Tata McGraw-Hill, 2006.



Course	Nome	]	BECF1	85T30	)			L	Т	P	C	IA	EA	]	ГМ
	: maine	]	PROC	ESSIN		1		0	0	3	2	40	60	1	00
	- Categ		LABO PROGI		IE COI	RE CC	URSE		Svlla	abus R	levisio	 n	_	V.1.0	)
_	8	0-5					0102		~J-14						
	quisite														
	Objec		11.1												
		ould ena				ar Con	volutio	n							
	-	olemen					volutio	<i>л</i> г.							
	-	dy the a					ssor								
		nonstra				-									
		ble to s			U			ld ann	lication	NG.					
5.			iuuents		i k III d	icalli d		ia appi		13.					
Course	Outco	mes:													
		of the	course	, the st	udent v	will be	able to	)							
Cours	-			,			ription						I	Highes	t
Outco	me			E	Bloom'	S									
S		Perform simulation of DSP systems using MATALB and analyze th													ny
CO1				ation of	of DSP	system	ms usi	ng MA	ATAL	B and	analyz	the the		K3	
	1	erforma													
CO2		nalyze			-			-	ems.					K3	
CO3		emons												K3	
CO4		npleme		-				_						K4	
COS	5 D	emonst	rate ca	pabilit	y to wo	ork in a	a team	and to	build of	circuits	s for va	arious		K4	
	aj	oplication	ons.												
	ation b	etween	Cours	se Out	comes	(COs)	and P	rogra	m Out	comes	(POs)	:	_		
Correl														rograi	
Correl				]	Progra	m Out	tcomes	(POs)	)					Specifi utcom	
Correl		Program Outcomes (POs)													
Correla COs				PO PO PO PO PO PO PO PO PO					(PSOs)						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2	-
															PS
COs	1 S S	2 S S	3 S S	4 S S	5 S S	6	7	8	9	10	11	12 S S	01 S S	02 S S	PS O S S
COs CO1	1 S	2 S	3 S	4 S	5 S	<b>6</b> M	7 M	<b>8</b> M	<b>9</b> M	<b>10</b> M	11 M	12 S	01 S	02 S	P O S

#### LIST OF EXPERIMENTS

S

S

S

CO5

S

S

### MATLAB/EQUIVALENT SOFTWARE PACKAGE

1. Generation of sequences (functional & random) & correlation.

Μ

Μ

Μ

Μ

Μ

Μ

- 2. Linear and Circular Convolutions.
- 3. Spectrum Analysis using DFT.

S

S

S

S



- 4. FIR filters design.
- 5. IIR filters design.
- 6. Multi-rate Filters.
- 7. Equalization Techniques.

#### DSP PROCESSOR BASED IMPLEMENTATION

- 8. Study of architecture of Digital Signal Processor.
- 9. MAC operation using various addressing modes.
- 10. Linear Convolution.
- 11. Circular Convolution.
- 12. FFT Implementation.
- 13. Wave form generation.
- 14. IIR and FIR Implementation.
- 15. Finite Word Length Effect.

	Total Hours 45 Hours
Text <b>B</b>	Book(s)
1.	John G.Proakis and Dimitris G. Manolakis, "Digital signal processing - Principles, algorithms and
	applications", Pearson education / Prentice hall, Fourth edition, 2007.
2.	Sanjay K.Mithra, "Digital signal processing - A Computer based approach", Tata McGraw-Hill,
	2007.
Refere	ence Book(s)
1.	M.H.Hayes, "Digital signal processing", Schum's outlines, Tata McGraw Hill, 2007.
2.	A.V.Oppenheim, R. W. Schafer and J. R. Buck, "Discrete-time signal processing", Pearson,
	2004



Course	Code	•	BECFI	85T40	)			L	Т	P	С	IA	EA	L .	ГМ
Course	Nam	e	COMI DESIC				STEM Y	0	0	3	2	40	60	]	100
Course	Cate	gory	PROG	RAMN	IE CO	RE CO	OURSE		Sylla	abus R	evisio	n		V.1.(	)
Pre-req															
Course															
The cour							C II.	וחסת	CE						
			t RC ci				-	-		DODI					
			t Comb			-				-		•, •	UF	λ <b>Τ</b>	
			and Im	-	-					-			-	)L	
		-	nite Sta							-	e perfo	rmano	ce		
5. 7	o en	able to	student	s to wo	ork in a	team a	and buil	ld app	ication	IS.					
Course															
On com		n of the	e course	, the st	udent								1		
Cours						Dese	cription	1						Highes	
Outcon	ies													Bloom	
C01	(	Constru	ict Ana	log ar	nd Dig	ital ci	rcuits a	nd st	idy th	eir cha	racter	istics	11	axonoi K3	пу
cor			SPICE.	-		itui en	icuits d	ind bu	iay in		indeten	Buleb		m	
CO2		0	ent dig		cuits u	ising H	IDL							K3	
CO3	Ι	Design	of FSM	and co	ontrol ı	unit an	d analy:	ze the	perfori	nance				K3	
<b>CO4</b>			ent real											K4	
CO5			strate ca	pabilit	y to w	ork in	a team	and to	build o	circuits	for va	rious		K4	
	6	applicat	10ns.												
Correla	tion	hetwee	n Cour	se Out	comes		and P	roora	m Out	comes	$(\mathbf{POs})$	•			
					comes			iugia		comes	(1 (1))	•	P	rogra	m
				1										Specifi	
COs				J	Progra	im Ou	tcomes	(PUS)					0	utcom	es
005		-		r	1	T	<u>г г</u>							(PSOs	<u></u>
	PO		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
CO1	1 S	2 S	3 S	4 S	5 S	6 M	7 M	8 M	9 M	10 M	11 M	12 S	01 S	02 S	03 S
CO1 CO2	<u> </u>	S	S	S S	S S	M	M	M	M	M	M	<u> </u>	S S	S S	S S
CO2 CO3	<u>S</u>	S	S	S	S	M	M	M	M	M	M	<u>S</u>	S	S	S
CO4	<u>S</u>	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO5	S	S	S	S	S	Μ	М	М	Μ	Μ	Μ	S	S	S	S
							L								
		List	of Exp	erimer	nts										
1.	Stuc	ly of P	SPICE,	VHD	L and	Verilo	g HDL								
2.	RC	Circuit	s–Tran	sient a	nd AC	analy	sis								
3.	MO	S Devi	ce Cha	acteriz	zation	and C	MOS I	nverte	r Char	acteris	tics–D	C ana	lysis		
4.	Dio	de bas	ed cir	cuits	(like,	Recti	fiers,	Clam	bers,	etc.,)–	Transi	ent,	Worst-	-case,	MC
				analy			,			.,		,			



#### **Syllabus (2023-24)**

B.E. (Electronics and Communication Engineering)

- 5. Amplifiers and Current mirrors using BJT/MOSFET
- 6. Op-Amp based Wein Bridge Oscillator and DAC using sub-circuit and Analog behavioral modeling
- 7. Digital Circuits-Logic Gates / Multiplexer/ Counter

#### HDL:(LogicDesignandSimulationofDigitalCircuitsusingVHDL/VerilogHDL/Both)

- 8. FullAdderandMultiplexerusingdifferentModelling/DescriptionsandConcurrentandSequential executioninVHDL.
- 9. 8-bit Adder/ Multiplier (min4-bit)-Port Map, Generics, Technology Mapping in VHDL
- 10. 8-bitCounter–Bottom-up approach design and Test vector generation in Verilog HDL
- 11. NAND/ NOR/ Transmission gates using Switch level modeling in Verilog HDL
- 12. FPGA real time programming and I/O Interfacing–Waveform generation / Traffic light controller
- 13. Design of Arithmetic Logic Unit.

	Total Hours 45 Hours
Text	Book(s)
1.	Muhammad Rashid, "Introduction to PSPICE using Orcad for circuits and electronics", Third
	edition, Pearson education, 2003.
2.	Douglas L. Perry, "VHDL – Programming by Example", Fourth edition, TMH, 2002
3.	Samir Palnitkar, "Verilog HDL -A guide to Digital Design and Synthesis", Second edition,
	Pearson Education, 2004
Refer	rence Book(s)
1.	Charles H Roth, Jr., "Digital Systems Design using VHDL", Second edition, Thomson Learning,
	2008.
2.	Joseph Cavanagh, "Verilog HDL-Digital design and modelling", CRC press, 2007



CO2

CO3

**CO4** 

CO5

S

S

S

S

М

Μ

Μ

S

-

-

-

S

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

_

-

-

-

-

-

-

-

#### Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

#### SEMESTER VI

Course	Code	BECF	l 84T50	)			L	Т	P	C	IA	EA		ГМ	
Course	Name	MEAS	UREN	<b>AENTS</b>	S ANI	)	3	0	0	3	40	60	1	00	
		INSTE	RUME	NTAT	ION										
Course (	Category	ENGI	VEERI	NG SC	IENC	E		Sylla	abus F	evisio	n		V.1.0	)	
		COUR	SE												
Pre-requ	iisite	Basic	Electri	cal and	l Elect	tronics	Engin	eering							
Course (	Objective	5:													
The cour	se should	enable th	e stude	ents -											
1. T	o study b	asic func	tional e	elemen	ts of I	nstrum	entatio	on.							
2. T	o know v	orking a	nd usa	ge of d	lisplay	/ instru	ments								
	o know d		• -	-						ors for	measu	iremer	nts.		
	o know t	-		-	-			-							
5. T	o study d	ifferent t	ypes of	f transc	lucers	and th	eir app	olicatio	ons.						
	Outcomes														
	letion of	he course	e, the st	udent v	will be	able to	)					1			
Course					Dese	criptio	n					Highest			
Outcom	e												Bloom's		
S												Ta	axonor	ny	
CO1		knowled	-						•				K2		
CO2		se displa	-										K3		
CO3		use bo imental p			nstrur	nents	and	signal	gen	erators	for		K3		
	Can u	se wavef	form ar	nalyzer	s for 1	measur	ring an	d reco	rding ]	purpos	es.		K3		
<b>CO4</b>															
CO4 CO5	Chara	cterize tl	ne usag	ge of tr	ansdu	cers fo	r desig	n of e	lectror	nic circ	uits.		K2		
	Chara	cterize tl	ne usag	ge of tr	ansdu	cers fo	r desig	in of e	lectron	nic circ	uits.		K2		
CO5	ion betw												<u>K2</u>		
CO5												P	rograi	m	
CO5			se Out	comes	(COs)	) and F	Program	m Out							
CO5 Correlat			se Out		(COs)	) and F	Program	m Out				5	rograi	с	
CO5			se Out	comes	(COs)	) and F	Program	m Out				9 0	Progran Specifi	c .es	
CO5 Correlat		en Cour	se Out	comes	(COs)	) and F	Program	m Out				9 0	Progran Specifi Putcom	c es )	
CO5 Correlat	ion betw	een Cour	se Out	comes Progra	(COs) m Ou	) and F	Program s (POs)	m Out	comes	(POs)	•	S O	Program Specifi utcom (PSOs)	c .es	

Μ

Μ

Μ

-

L

L

L

L

-

-

-

-

Μ

Μ

Μ

-

-

-

Μ

-



UNIT-I	BASIC MEASUREMENTS CONCEPTS AND ERRORS	9 Hours
	s Systems –Units and standards of Measurements Systems - Static a	
	s – Accuracy, Precision, Reproducibility, Repeatability, Fidelity, Lag, Type	•
	g Instruments – Galvano Meter, D'Arsonaval Galvanometer, Moving Coil	
	nmeter, Voltmeter & Ohm Meter, Multimeter, Meter Protection, Extension	
	t, Moving Iron Instruments, Electrodynamometer.	
UNIT-II	DATA DISPLAY AND RECORDING SYSTEMS	9 Hours
Oscilloscope:	CRO - CRT, Deflection System, Delay Line, Specifications, Controls, O	CRO Probes,
Measurements	of time period and frequency, Lissajous Figures, Dual trace, Dual beam CF	ROs, Storage
Oscilloscope,	Digital Storage, Sampling Oscilloscope. Display Devises- LED, LCD, Dot M	Aatrix, Nixie,
EPID, IPS; Gr	aphic Recording Instruments: Strip Chart Recorders, X_Y Recorder, Plotte	rs.
UNIT-III	BRIDGES AND DIGITAL INSTRUMENTS	9 Hours
Bridges for RI	C measurements: Wheat Stone Bridge, Kelvin Bridge, Maxwell's Bridge, Ha	y Bridge and
Schering Brid	ge. Digital Voltmeter system: Types - Ramp-Type DVM, Dual-Slope Inter	grating Type
DVM, Succes	ssive-approximation DVM, Digital Multi meter, Vector voltmeter, Q m	eter, Digital
Frequency Me	ter System - Frequency measurements, Period and Ratio measurements and	time interval
measurements		
UNIT-IV	SIGNAL GENERATORS & WAVEFORM ANALYSERS	9 Hours
	SIGNAL GENERATORS & WAVEFORM ANALYSERS tors: Function Generators, Pulse Generators, RF Signal Generators, Swee	
Signal Genera		p Frequency
Signal Genera Generators, A Distortion An	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy	p Frequency rs: Harmonic
Signal Genera Generators, A	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy	p Frequency rs: Harmonic
Signal Genera Generators, A Distortion An Spectrum Ana	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy	p Frequency rs: Harmonic
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. TRANSDUCERS	p Frequency rs: Harmonic zers, Digital 9 Hours
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. TRANSDUCERS of Transducers- Resistance – Potentiometer, Strain gauges, Resistance Th	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers,
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. <b>TRANSDUCERS</b> of Transducers- Resistance – Potentiometer, Strain gauges, Resistance The ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric,	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. <b>TRANSDUCERS</b> of Transducers- Resistance – Potentiometer, Strain gauges, Resistance Th ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Opti	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder.
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. <b>TRANSDUCERS</b> of Transducers- Resistance – Potentiometer, Strain gauges, Resistance The ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric,	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder.
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T	<ul> <li>Itors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer.</li> <li>TRANSDUCERS         <ul> <li>of Transducers- Resistance – Potentiometer, Strain gauges, Resistance Thaductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Optiof Physical Parameters: Flow, displacement, velocity, force, pressure and temporation.</li> </ul> </li> </ul>	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder. erature.
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T Measurement	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. <b>TRANSDUCERS</b> of Transducers- Resistance – Potentiometer, Strain gauges, Resistance Th ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Opti	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder. erature.
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T Measurement of Text Book(s)	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. <b>TRANSDUCERS</b> of Transducers- Resistance – Potentiometer, Strain gauges, Resistance Th ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Option of Physical Parameters: Flow, displacement, velocity, force, pressure and tempor <b>Total Hours</b>	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder. erature. 45 Hours
Signal General Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T Measurement Text Book(s) 1. David A	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. TRANSDUCERS of Transducers- Resistance – Potentiometer, Strain gauges, Resistance Th ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Option of Physical Parameters: Flow, displacement, velocity, force, pressure and tempor Total Hours A Bell, "Electronic Instrumentation and Measurements", PHI, Second Edition	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder. erature. 45 Hours n, 2003.
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T Measurement Text Book(s) 1. David A 2. Joseph	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. <b>TRANSDUCERS</b> of Transducers- Resistance – Potentiometer, Strain gauges, Resistance Th ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Option of Physical Parameters: Flow, displacement, velocity, force, pressure and tempor <b>Total Hours</b> A Bell, "Electronic Instrumentation and Measurements", PHI, Second Edition J.Carr, "Elements of Electronics Instrumentation and Measurement", Pearson	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder. erature. 45 Hours n, 2003.
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T Measurement of Text Book(s) 1. David A 2. Joseph Third E	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. TRANSDUCERS of Transducers- Resistance – Potentiometer, Strain gauges, Resistance TH ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Opt of Physical Parameters: Flow, displacement, velocity, force, pressure and tempor Total Hours A Bell, "Electronic Instrumentation and Measurements", PHI, Second Edition J.Carr, "Elements of Electronics Instrumentation and Measurement", Pearson dition, 2003.	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder. erature. 45 Hours n, 2003. on Education,
Signal Genera Generators, A Distortion An Spectrum Ana UNIT-V Classification Thermistor. In transducers, T Measurement Text Book(s) 1. David A 2. Joseph Third E 3. A.K. S	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. <b>TRANSDUCERS</b> of Transducers- Resistance – Potentiometer, Strain gauges, Resistance TH ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Option of Physical Parameters: Flow, displacement, velocity, force, pressure and tempor <b>Total Hours</b> A Bell, "Electronic Instrumentation and Measurements", PHI, Second Edition J.Carr, "Elements of Electronics Instrumentation and Measurement", Pearson dition, 2003. awhney: "A Course in Electrical and Electronic Measurements and Instru-	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder. erature. 45 Hours n, 2003. on Education,
Signal Generators, A Distortion An Spectrum Ana <b>UNIT-V</b> Classification Thermistor. In transducers, T Measurement of <b>Text Book(s)</b> 1. David A 2. Joseph Third E 3. A.K. S	tors: Function Generators, Pulse Generators, RF Signal Generators, Swee rbitrary Waveform Generator, Frequency Synthesizers. Waveform Analyzer alyzers, Heterodyne Wave Analyzers, Distortion Meter, Spectrum Analy lyzer. TRANSDUCERS of Transducers- Resistance – Potentiometer, Strain gauges, Resistance TH ductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, hermocouples, Synchros. Digital Transducers – Encoder, Shaft Encoder, Opt of Physical Parameters: Flow, displacement, velocity, force, pressure and tempor Total Hours A Bell, "Electronic Instrumentation and Measurements", PHI, Second Edition J.Carr, "Elements of Electronics Instrumentation and Measurement", Pearson dition, 2003.	p Frequency rs: Harmonic zers, Digital 9 Hours hermometers, Photoelectric ical Encoder. erature. 45 Hours n, 2003. on Education,



Refer	rence Book(s)
1.	Albert D. Helfrick and William D.Cooper "Modern Electronic Instrumentation and
	Measurement Techniques", Prentice Hall of India, 2007.
2.	James W. Dally, William F. Riley and Kenneth G. McConnell, "Instrumentation for
	Engineering Measurements", John Wiley, Second Edition, 2003.
3.	Alan.S. Morris, "Principles of Measurements and Instrumentation", Prentice Hall of India,
	Second Edition, 2003.
4.	Jones L.D. and Foster Chin A."Electronic Instruments and Measurements", John Wiley and
	Sons, Second Edition, 1991.
5.	Doeblin: "Measurement Systems - Application and Design", McGraw-Hill, Fourth Edition,
	1990.
6.	Copper D, "Electronic Instrumentation and Measurement Techniques", PHI, Second Edition,
	1978.



Course	Code	9	BECF1	86T20				L	Т	P	С	IA	EA		ГМ	
Course	Nam	e	COMI	PUTE	R NET	WOR	KS	3	0	0	3	40	60	1	100	
Course	Cate	gorv	PROG	RAMN	IE CO	RE CC	OURSE		Svlla	abus R	levisio	 n		V.1.(	)	
Pre-req			BECFI	84T30	– Ana	log &	Digita	Com								
Course						0										
The cou				e stude	ents											
1. I	ntrod	luce th	e layere	ed con	munic	ation a	archite	ctures	and u	ndersta	ind var	rious p	ohysica	al, data	a lin	
1	ayer	protoco	ols.													
2. I	Perfor	rm and	underst	and m	ethods	for er	ror det	ection	and co	rrectio	n of da	ata.				
3. I	Be ex	posed	to vario	us add	ressing	schen	nes and	l routii	ng prot	ocols.						
		-	w contr		-											
			with rea		-			-								
	Je lu	iiiiiai	with rea	I think	uppnet		or netw	orks.								
Course	Oute	omes														
On com			e course	e, the st	udent	will be	able to	)								
Cours	-			,			scriptio							Highe	st	
Outcon	ne	Bloom'														
S			Taxonomy													
CO1		Well	versed	on the	e laye	red co	ommun	icatior	arch	itectur	es and	their	r	K3		
	i	nterwo	rking.											КJ		
CO2	1	Analyz	e Error I	Detecti	on in c	lata lin	k layer	•						K4		
CO3	1	Analyz	e differe	ent netv	vork p	rotocol	s and r	outing	algorit	hms.				K4		
CO4			he flow								node	in the	e			
	1	networ	ζ.											K3		
CO5	1	Develo	p real ti	me app	licatio	ns of n	etwork	S.						K5		
				and app										110		
Correla	tion	hetwee	n Cour	se Out	comes	(COs)	) and F	Progra	m Out	comes	(POs)	•				
<u> </u>				<u></u>		(005)	, una 1	10814			(1 0 0)	•	P	rogra	m	
					<b>D</b>	O	4.0.000.00							Specifi		
COs					Progra	im Ou	tcomes	s (POs)					0	utcom	es	
COS				_	-					-	-	-		(PSOs	)	
	PO		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	
	1	2	3	4	5	6	7	8	9	<b>10</b>	11	12	01	02	0.	
CO1	S	S	М	L	-	Μ	Μ	-	М	S	S	S	S	L	Μ	
CO2	S	S	Μ	M	-	Μ	Μ	L	S	S	S	S	S	Μ	Μ	
CO3	S	S	S	Μ	-	L	Μ	-	S	S	S	S	S	L	N	
CO4	S	Μ	S	Μ	-	Μ	Μ	L	L	Μ	L	Μ	S	Μ	N	
CO5	S	Μ	S	S	-	Μ	S	L	S	S	S	S	S	L	N	
	•		•			•	•	•					•	•		
UNIT-I		FUI	NDAM	ENTA	LS &	SIGN	AL TI	RANSI	MISSI	ION				10 H	ours	
Fundam	enta	s:Bu	ilding a	netwo	ork – F	leauire	ements	- Lav	ering a	and pro	otocol	s - OS	I Mod	el - In	tern	

Fundamentals : Building a network – Requirements - Layering and protocols - OSI Model - Internet Architecture – Performance - Network Topology ; Physical Layer: Data and Signals - Digital Transmission - Analog Transmission - Multiplexing and Spread Spectrum - Transmission Media.



UNIT	-II	MEDIA ACCESS & LOGICAL LINK CONTROL	9 Hours
	0	ror Detection and Correction - Media access control - Ethernet (802.3) I – Bluetooth - Switching and bridging - Flow control.	– Wireless
UNIT	-III	ROUTING & ADDRESSING SCHEMES	9 Hours
	s – Globa	working (IP, CIDR, ARP, DHCP, ICMP) - Routing (RIP, OSPF, metrics) al Internet (Areas, BGP, IPv6), Multicast – addresses – multicast routing	
UNIT	C-IV	END TO END COMMUNICATION	9 Hours
contro		ransport layer - UDP - Reliable byte stream (TCP) - Connection managements and a stream of the constant of the	
UNIT	<b>-V</b>	APPLICATION LAYER PROTOCOLS	8 Hours
	onic Mai ations.	l (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS - SNMP - I	Multimedia
		Total Hours	45 Hours
Text ]	Book(s)		
1.		2. Peterson, Bruce S. Davie, "Computer Networks: A Systems Appro Morgan Kaufmann Publishers, 2011.	each", Fifth
2.	Behrouz 2011.	A. Forouzan, "Data Communications and Networking", Fourth Edition, M	cGraw Hill,
Refer	ence Boo	bk(s)	
1.		F. Kurose, Keith W. Ross, "Computer Networking - A Top-Down Approac rnet", Fifth Edition, Pearson Education, 2009.	h Featuring
2.		F. Mir, "Computer and Communication Networks", Pearson/Prentice Hall	Publishers,
3.	Ying-Da	ar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks – An O ch, First Edition, McGraw Hill, 2011.	pen Source



Course Code	BECF186ED0	L	Т	Р	С	IA	EA	ТМ					
Course Name	VLSI DESIGN	3	0	0	3	40	60	100					
Course Category	PROGRAMME CORE	Syllabus Revision V.1											
	COURSE												
Pre-requisite Electronic Devices (BECF183T30), Analog Electronics (BECF184T20), Digita													
System Design (BECF183T40), Network Theory (BECF183T60)													
<b>Course Objectives:</b>													
The course should ena	ble the students												
1. To study the fu	indamentals of MOS transistor and	CMO	DS ci	cuits	and t	heir cl	naracteristics.						
2. To understand	the concepts of CMOS processing	techr	olog	y and	desig	n layo	outs.						
3. To discuss the technology.	e performance trade-offs involved	in de	esigni	ng ai	nd rea	alizing	the circuits	in CMOS					
4. To discuss arc	hitectural choices and design and re	ealiza	tion o	of sub	-syste	ems.							
5. To learn the different FPGA architectures and testability of VLSI circuits.													

#### **Course Outcomes:**

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Understand MOS transistor theory and design Inverters.	K2
CO2	Realize the concepts of CMOS circuits using processing technology and	K2
	layouts.	
CO3	Design and realize the circuits in CMOS logic circuits.	K3
CO4	Design arithmetic building blocks and memory subsystems.	K3
CO5	Apply and implement FPGA design flow and testing.	K3

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

				Program Specific Outcomes (PSOs)											
COs	PO1	PO2	PO3	PO4	PO5	PO 6	P 07	PO8	P 09	P O 10	P 0 1	PO 12	PS O 1	PS O2	PSO 3
CO1	S	М	М	L	L	L	-	-	-	-	L	L	S	М	L
CO2	S	L	S	М	L	L	-	-	-	-	-	L	S	М	L
CO3	S	М	М	М	L	L	-	-	-	-	L	L	S	Μ	L
CO4	S	М	М	М	L	L	-	-	-	-	L	L	S	Μ	L
CO5	S	L	S	М	L	L	-	-	-	-	L	L	S	Μ	L
	•	•	•	•	•	•	•	•	•	•	•	•	•		



UNIT-I	INTRODUCTION TO VLSI AND MOS TRANSISTOR 9 Hours											
	THEORY											
Evolution of IC	Technologies: SS1, MSI, LSI, VLSI, ULSI, and GLSI. The Moore's	Law, MOS										
THEORY: The	MOS as switch - nMOS and pMOS. CMOS logic and its features,	The nMOS										
Enhancement Tra	nsistor - Working and Characteristics. Threshold voltage and Body effe	ect of MOS.										
MOS device des	ign equations (First order effects).MOS INVERTERS: The CM	IOS inverter										
Transfer character	ristics, Noise margin. The nMOS and pseudo-nMOS inverter, Tile BiCM	IOS Inverter,										
Tile CMOS Trans	mission gate.											

UNIT-IICMOS PROCESSING TECHNOLOGY AND LAYOUTS9 HoursSilicon Semiconductor fabrication technology, Fabrication forms and CMOS (Basic n-WELL process)LAYOUTS AND DESIGN RULES: Layout based rules, Simple CMOS Stick Layout diagrams -Inverter, NAND, NOR gates and Multiplexer. Scaling: Constant Field, and Constant voltage.

# UNIT-III MOS CIRCUIT PERFORMANCE AND CMOS LOGIC 9 Hours CIRCUITS 9 Hours

Sheet Resistance definition, MOS device capacitances – model, Distributed RC effects, switching characteristics - Rise time, fall time and Delay time. Stage ratio, Simple examples of Combinational and Sequential circuits using CMOS: NANDI NOR gates, and Compound gates, Latches, and Registers.

#### UNIT-IV SUB SYSTEM DESIGN AND TESTING

General System Design-Design of ALU subsystems, Adder and Multipliers Memories - Static RAM, Control Logic Implementation using PLA's. Testing of VLSI circuits - Need for Testing, Fault models, and ATPG. Design for Testability (DFT) - Scan Based and Self-test approaches.

#### UNIT-V PROGRAMMABLE LOGICS

Basic ROM structures, PLAs, PALs, PLDs, Implementation of Traffic Light controller using PLD, FPGAs and CPLDs: XILINX and ALTERA series.

Total Hours 45 Hours

9 Hours

9 Hours

Text Book	<b>κ(s)</b>
1.	Neil Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design"-Addison Wesley, 1998.
2.	Charles H Roth, Jr. "Digital Systems Design using VHDL"-Thomson Learning, 2001.
Reference	e Book(s)
1.	VLSI Design Principles- John P. Uyemura, John Wiley, 2002.
2.	E. Fabricious, Introduction to VLSI design, McGraw-Hill, 1990.
3.	Wayne Wolf, Modern VLSI Design, Pearson Education, 2003.



	CSTU														
Course	cod	<b>e</b> ]	BECF	186T4	10			L	Т	P	•	C	IA I	EA	TM
Course	Nam	e 1	EMB	EDDF	D SY	STEN	/IS	3	0	0	)	3	40	60	100
Course	•	]	PROC	GRAM	ME C	ORE			Syll	abus	Revi	sion			V.1.0
Catego	ory	(	COUF	RSE					,						
Pre-ree	quisit	<b>e</b> ]	BECF	184T4	10 - M	IICRC	PRO	CESS	ORS A	AND ]	MIC	ROC	ONTRO	OLLE	RS
Course															
The cou	urse sl	nould	enable	e the st	udent	S									
1.	Learn	the a	rchited	cture a	nd pro	ogrami	ming o	of AR	M pro	ocesso	r.				
2.	2. Be familiar with the embedded computing platform design and analysis.														
3. Be exposed to the basic concepts and overview of real time Operating system.															
<ol> <li>Be exposed to the basic concepts and overview of real time Operating system.</li> <li>Learn the system design techniques and networks for embedded systems to industrial applications.</li> </ol>															
4. Learn the system design techniques and networks for embedded systems to industrial applications.															
Course	Outo	comes	:												
On con				ırse, tł	ne stuc	lent w	ill be	able to	0						
Cours	-						scripti							Hi	ghest Bloom's
Outco	m						_								Taxonomy
es															
CO1	D	escrib	e the	archite	ecture	and p	orogra	mmin	g of A	ARM 1	proce	essor.			K2
CO2	0	utline	the co	oncept	s of e	mbedd	led sy	vstems	5.						K3
CO3	U	se th	e sys	stem	desig	n tecl	hnique	es to	dev	elop	soft	ware	for		V2
	eı	nbedd	led sys	stems.											K3
CO4	D	ifferei	ntiate	betwe	en the	e gene	ral pu	irpose	e and	real t	ime	opera	ting		
	SY	/stem.				C	-					•	Ū		K3
CO5	-		real-ti	me co	nsum	er/indu	ıstrial	appli	catior	ns usir	ng er	nbedo	led-		
		stem						T I			0				K5
	2,		••••••	P*St											
Correl	ation	betwe	en Co	ourse	Outco	mes (	COs)	and H	Progr	am O	utco	mes (	POs):		
			<u>un et</u>											Prog	ram Specific
				Pr	ogran	n Outo	comes	s (POs	5)						omes (PSOs)
COs	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	P	PO	PS	Р	PSO3
COS	1	2	3	4	5	06	7	8	9	10	0	12	01	S	
											1			0	
											1			2	
CO1	S	S	Μ	S	-	S	-	-	Μ	S	S	Μ	S	L	М
CO2	S	Μ	Μ	Μ	-	Μ	-	-	Μ	S	Μ	Μ	S	Μ	М
CO3	S	L	М	Μ	-	L	-	-	Μ	S	Μ	Μ	S	Μ	М
CO4	S	М	Μ	S	-	L	-	-	Μ	Μ	S	Μ	S	L	М
CO5	S	S	S	S	-	М	-	-	Μ	Μ	Μ	S	S	L	М
	I	1	1	I					1	1	1	I	1		

#### UNIT-I INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS

9 Hours

Complex systems and microprocessors– Embedded system design process – Overview on formalisms for system design –Design example: Model train controller– Instruction sets preliminaries – ARM Processor – CPU: programming input and output– supervisor mode, exceptions and traps – Co– processors– Memory system mechanisms – CPU performance– CPU

power consumption- Introduction to Embedded Industrial CPUs for rugged environment.

UNIT-IIEMBEDDED COMPUTING PLATFORM DESIGN9 HoursThe CPU Bus-Memory devices and systems-Designing with computing platforms – consumer<br/>electronics architecture – platform-level performance analysis – Components for embedded<br/>programs- Models of programs- Assembly, linking and loading – compilation Programming<br/>techniques- Program level performance analysis – Software performance optimization –Program<br/>validation and testing.

UNIT-III PROCESSES AND OPERATING SYSTEMS	
------------------------------------------	--

Introduction – Kernel, Threads –Multiple tasks and multiple processes – Multirate systems– Preemptive real–time operating systems– Priority based scheduling– Interposes communication mechanisms – Evaluating operating system performance– power optimization strategies for processes - GPOS versus RTOS- Classification of RTOS- Example Real time operating systems– POSIX– Windows CE.

UNIT-IV	SYSTEM DESIGN TECHNIQUES AND NETWORKS	9 Hours
		/

Design methodologies– Design flows – Requirement Analysis – Specifications–System analysis and architecture design – Quality Assurance techniques– Distributed embedded systems – Multiprocessors–CPUs, accelerators, MPSoCs– Overview on Internet of (robotic) Things– Ubiquitous optimization.

#### UNIT-V CASE STUDY

Data compressor – Alarm Clock – Audio player – Software modem–Digital still camera – Telephone answering machine–Engine control unit – Video accelerator–Challenges and trends in embedded systems in industrial applications.

	Total Hours 45 Hours
Text	Book(s)
1.	Marilyn Wolf, "Computers as Components - Principles of Embedded Computing System
	Design", Third Edition "Morgan Kaufmann Publisher, 2012.
Refe	rence Book(s)
1.	Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Third
	Edition, Cengage Learning, 2012.
2.	David. E. Simon, "An Embedded Software Primer", 1st Edition, Addison Wesley Professional,
	2007.
3.	Raymond J.A. Buhr, Donald L.Bailey, "An Introduction to Real-Time Systems- From Design to
	Networking with C/C++", Prentice Hall, 1999.
4.	C.M. Krishna, Kang G. Shin, "Real-Time Systems", International Editions, McGraw Hill, 1997.
5.	K.V.K.K.Prasad, "Embedded Real-Time Systems: Concepts, Design & Programming", Dream
	Tech Press, 2005.
6.	Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", McGraw Hill, 2004.

9 Hours

9 Hours



Course (	Code		BECF1	86P70				L	Т	P	C	IA	EA		ГМ					
Course N	Name		COMF LABO			WOR	KS	0	0	3	2	40	60	1	.00					
Course (	Categ	ory	PROG	RAMM	1E CO	RE CO	OURSE		Sylla	abus F	evisio	n		V.1.(	)					
Pre-requ																				
Course (																				
The cour								_												
			d the f				-													
			LAN a							- <b>1 1</b> -	~									
	-		chnica te desig	-							0	nologi	0.9							
			students								ss tech	noiogi	es.							
3. 1	0 enai		students			team a		iu app.	incation	15.										
Course ( On comp			course	the st	udent	will be	able to	)												
Course		or the	course	, the st	udent		criptio						]	Highes	t					
Outcom							<b>I</b>							Bloom'						
													Taxonomy							
CO1	us	sing N	to desi S2/ QU	JALN	ET/ NS	53/ ON	ANET/	CISC	Ю.					K4						
CO2			to d ment u									reless		K3						
CO3		-	the tion on			-						ustry		К3						
CO4			the ab									t real		K4						
			quireme																	
CO5			trate ca	pabilit	y to w	ork in	a team	and to	build of	circuits	s for va	rious	K4							
	ap	plicat	ions.																	
Correlat	ion b	etwee	n Cours	se Out	comes	(COs)	) and F	Progra	m Out	comes	(POs)	:	1							
														rogra Specifi						
00				]	Progra	m Ou	tcomes	s (POs)	)					utcom						
COs														(PSOs						
F	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	РО	РО	РО	PSO	PSO	PS					
001	C		0	C	C		\ <b>1</b>		<u>۲</u>	10 M	11 M	12	1	2	3					
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S					
CO2	<u>S</u>	S S	S S	S S	S S	M	M	M	M	M	M M	S S	S S	S S	S S					
CO3 CO4	<u>S</u>	S S	S S	<u> </u>	S S	M M	M M	M M	M M	M M	M	<u> </u>	S S	S S	S S					
CO4 CO5	<u>S</u>	S S	S S	S S	S S	M	M	M	M	M	M	S S	S S	S S	S S					
	5	5	5	0	5	111	111	111	111	111	101	8	5	5	5					
			Г OF E																	
	1.		tudy of		-	-			ibles a	nd im	plemen	t cros	s-wire	d cable	e an					
	str	aight t	hrough	cable	using c	lampir	ıg tool.													



(b) Study of Network devices.

(c) Study of Network IP.

- 2. Configuration of Local Area Network (LAN) and VPN.
- 3. Wireless LAN protocols.

4. To create scenario and study the performance of network with CSMA/CA protocol and compare with CSMA/CD protocols.

- 5. Implementation and study of stop and wait protocol.
- 6. Implementation and study of Go back-Nand selective repeat protocols.
- 7. Implementation of client server using TCP protocol.
- 8. Implementation of Remote Procedure Call.
- 9. Implementation of distance vector routing algorithm.

10. Configure a network using address resolution protocol (ARP) and routing information protocol (RIP) and analyze the performance of the network.

11. Configuration of internet protocol (IP).

12. Configuration of network using Adhoc On demand distance vector (AODV) routing.

13.Configuration of network using Dynamic Source Routing (DSR) routing.

#### Total Hours 45 Hours

Text 1	Book(s)
1.	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers, 2011.
2.	Behrouz A. Forouzan, "Data Communications and Networking", Fourth Edition, McGrawHill,
	2011.
Refer	rence Book(s)
1.	James F. Kurose, Keith W. Ross, "Computer Networking - A Top-Down Approach Featuring the
	Internet", Fifth Edition, Pearson Education, 2009.
2.	Nader. F. Mir, "Computer and Communication Networks", Pearson/Prentice Hall Publishers, 2010.



Course	Code	e	BECF1	86P80				L	Т	P	C	IA	EA		ГМ	
Course	Nam	ie	EMBE DESIG				Y	0	0	3	2	40	60	1	.00	
Course	Cate	gory	PROG	RAMN	1E CO	RE CO	DURSE		Sylla	abus R	Revisio	n		V.1.(	)	
Pre-requ	uisite	e														
Course																
The cour						-		_								
			e work	-	f ARI	M pro	cessor	and	to unc	lerstar	id the	Build	ling E	Blocks	of	
			ystems													
2. T	o le	arn the	concep	t of m	emory	map a	ind mer	nory i	nterfa	ce.						
3. Т	o kr	now the	charac	teristic	cs of R	eal Ti	me Sys	tems.								
4. T	o w	rite pro	ograms	to inte	erface	memo	ory, I/O	, swit	ch pro	ocesso	r and	to stuc	ly the	interr	upt	
р	erfo	rmance														
5. T	lo en	able to	students	s to wo	rk in a	team a	and buil	d app]	icatior	ıs.						
Course																
On comp	oletic	on of the	e course	, the st	udent	will be	able to									
Course	e					Des	criptior	ı						Highes		
Outcom	ne												Bloom'			
S												Taxonomy				
<u>CO1</u>		Write programs in ARM for a specific Application.											K3			
<u>CO2</u>												ons.	K3 K3			
CO3 CO4			$\frac{2}{2} e \frac{A}{D}$						•		rd dia	nlow		<u>кэ</u> К4		
004		•	and sens			i inter	rupt an	u mie		keyb02	uu ,uis	spiay,		<b>N</b> 4		
CO5			strate ca		v to w	ork in	a team	and to	build a	circuits	s for va	rious		K4		
000		applicat		P	<b>j</b> 00 m				e unite .		, 101 10					
		11														
Correla	tion	betwee	n Cour	se Out	comes	(COs)	) and P	rogra	m Out	comes	(POs)	:				
														rograi		
				]	Progra	m Ou	tcomes	(POs)						Specifi		
COs					0									utcom		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	(PSOs) PS	) PS	
	1	$\begin{array}{c c} & \mathbf{r} 0 \\ & 2 \end{array}$	3	4	5	<b>6</b>	го 7	<b>FU</b> 8	<b>PO</b> 9	10	11	12	01	02	<b>O</b> 3	
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO3	S	S	S	S	S	М	М	М	Μ	М	М	S	S	S	S	
<b>CO4</b>	S	S	S	S	S	М	М	М	М	М	Μ	S	S	S	S	
CO5	S	S	S	S	S	М	М	М	Μ	Μ	Μ	S	S	S	S	
			<u>F OF E</u>													
			dy of A			•	stem.									
			dy of K		-											
			erfacing													
			erfacing													
		5. Inte	erfacing	real t	ime cl	ock an	d serial	port.								



### Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

- 6. Interfacing keyboard and LCD.
- 7. Interfacing EPROM and interrupt.
- 8. Mailbox.
- 9. Interrupt performance characteristics of ARM and FPGA.
- 10. Flashing of LEDS.
- 11. Interfacing stepper motor and temperature sensor.
- 12. Implementing Zigbee protocol with ARM.

	Total Hours 45 Hours
Text Boo	$\mathbf{b}\mathbf{k}(\mathbf{s})$
1.	Marilyn Wolf, "Computers as Components - Principles of Embedded Computing System
	Design", Third Edition "Morgan Kaufmann Publisher, 2012.
2.	Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Third
	Edition, Cengage Learning, 2012.
Reference	ce Book(s)
1.	David. E. Simon, "An Embedded Software Primer", 1st Edition, Addison Wesley Professional,
	2007.
2.	Raymond J.A. Buhr, Donald L.Bailey, "An Introduction to Real-Time Systems- From Design to
	Networking with C/C++", Prentice Hall, 1999.



Course	Code		BECF1	86P90				L	Т	P	С	IA	EA	]	ſΜ				
Course	Name		VLSI I					0	0	3	2	40	60	1	00				
			LABO																
Course		ory	PROG	RAMN	1E CO	RE CC	OURSE	,	Sylla	abus R	levisior	1		V.1.0	)				
Pre-req																			
Course																			
The cour								•1 /		、 、									
		rn Harc		-	-	-	-	-											
		rn the f							U	n in di	gital ar	id ana	log do	main.					
		niliariz		0	0														
4. ]	Го pro	vide ha	ands or	n desig	gn expe	erience	e with	profes	sional	design	(EDA	) platf	forms.						
5. 7	Гo ena	ble to s	tudents	s to wo	rk in a	team a	and bui	ld app	lication	IS.									
Course	Outco	mes:																	
On com		n of the	course	, the st	udent	will be	able to	)											
Course	-					Desc	cription	n						Highes					
Outcon	ne													Bloom'					
<u>S</u>		7 °4 - 111	NT 1	<u> </u>	•	11	1	1 1'	• • • •	. 1	· ·,		Та	axonon	ny				
<u>CO1</u>		/rite HI						Ũ		0				<u>K3</u>					
CO2		nport t alidatio				ito FP	GA BC	ards a	ind car	ry out	a serie	es of		K4					
CO3		esign, S	Simulat	e and	Extract	t the la	youts c	of Anal	log IC	Blocks	using	EDA	K4						
<b>CO4</b>		ools. ynthesiz	ze Pla	ce and	Route	the dig	ital ICs							K4					
C04 C05		emonst							build	circuits	for va	rious		K4					
005		oplicatio	-	Juointy	10 110	1 K 111 C	i touin	und to	ound	eneun		110005		114					
Correla	tion b	etween	o Cours	se Out	comes	(COs)	) and P	rogra	m Out	comes	(POs)								
														rograi					
				I	Progra	m Ou	tcomes	(POs)	)					Specifi					
COs		Program Outcomes (POs)											Outcomes						
	DOI		DOA	DO 4	<b>D</b> O <b>F</b>	DO (		DOG	DOG	<b>D</b> O	DO	<b>D</b> O		(PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3				
CO1	S	S	S	S	S	М	М	М	М	M	M	S	S	S	S				
CO2	S	S	S	S	S	M	Μ	Μ	М	Μ	М	S	S	S	S				
<b>CO3</b>	S	S	S	S	S	М	М	М	Μ	М	М	S	S	S	S				
<b>CO4</b>	S	S	S	S	S	М	М	М	М	Μ	М	S	S	S	S				
CO5	S	S	S	S	S	М	М	М	М	М	М	S	S	S	S				
	•			·		•													
			OF E																
	(a) S	Study of	f IC de	sign flo	ow usii	ng EDA	A tools	of diff	ferent v	rendors	8								
	(b) I	ntrodu	ction to	JTAG	r														
	. /		1 -																
	FPG	GA Bas	-			4 1	. 1.	:		1			4	/חחח	a				
	FPG	G <b>A Bas</b> IDL ba	-			est ber	nch crea	ation a	and sim	nulatio	n of B	CD co	unters	/PRBS	S				



2. Synthesis, Placement and Routing (P&R) and post P&R simulation of the components simulated in Expt. No. 1 above

3. Critical paths and static timing analysis results to be identified. Identify and verify possible conditions under which the blocks will fail to work correctly.

4. Hardware fusing and testing of each of the blocks simulated in Expt. 1above (Using either chip scope feature (Xilinx) or equivalent tools).

5. Invoke the PLL and demonstrate the use of the PLL module for clock generation in FPGAs.

### **IC Design Experiments:**

6. Design and PSPICE simulation of

(a) Simple 5 transistor differential amplifier. Measure gain, BW, output impedance, ICMR, and CMRR.

(b) Ring Oscillator

7. Layout generation, DRC and LVS Checking, Parasitic Extraction and Re-simulation of CMOS Inverter.

8. Synthesis and Standard cell-based design of a circuit simulated in Expt. 6-b above -

Synthesis principles, Logical Effort, Interpreting Scripts, Constraints and Library preparation and generation, Boolean Optimization, Optimization for Area, Power.

9. For Expt. 6-b above, Floor Planning, Placement and Routing (P&R), Power and Clock Routing, and post P&R simulation

10. Static Timing analyses procedures and constraints. Critical path considerations.

11. DFT - Scan chain insertion / Clock Tree Synthesis / Stick diagrams.

	Total Hours 45 Hours									
Text	Book(s)									
1.	Muhammad Rashid, "Introduction to PSPICE using Orcad for circuits and electronics",									
	Thirdedition, Pearsoneducation, 2003.									
2.	Douglas L.Perry, "VHDL–Programming by Example", Fourth edition, TMH, 2002									
Refe	rence Book(s)									
1.	Neil Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", Second edition,									
	Addison Wesley,1998.									
2.	CharlesHRoth, Jr., "DigitalSystemsDesignusingVHDL", Secondedition, Thomson Learning,									
	2008.									



Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

### SEMESTER - VII

Course	Code		BECF1	87T50				L	Т	P	C	IA	EA	r	ГМ			
Course			OPTIC COMN	CAL	CATIC	DN		3	0	0	3	40	60		00			
Course	Categ		PROG				OURSE		Sylla	abus R	evisio	n		V.1.(	)			
Pre-req	uisite		Analog	and D	igital (	Comm	unicati	on										
	rse sho To lear	ould en	able the basic e			optical	fiber	transm	ission	link, f	iber m	odes o	configu	iration	s and			
	tructu		1.1 1	сс <i>(</i>	1 • 1	61		1 1 4	<i>.</i> • <i>.</i>	<b>TN 7 (*1</b>								
			the di				-				ers.							
			arious	-					-	-	dataat							
			iber op				-			-		Л.						
5. 7	o exp	lore III	ık budg	et, wr	JNI, SO	lutions	and S	UNEI	SDH I	letwor	K.							
<b>Course</b> On com			course	, the st	udent	will be	able to	)										
Course	e					Desc	criptio	n						Highes				
Outcom	ne													Bloom				
<u>S</u>													Ta	axonol	ny			
CO1		Demonstrate an understanding of optical fiber communication link, structure, propagation and transmission properties of an optical fiber.												K5				
CO2	E	Estimate the losses and analyze the propagation characteristics of an												K5				
	oj	ptical s	ignal ir	differ	ent typ	es of f	ibers.						K5					
CO3	D	escribe	e the pr	inciple	s of op	ptical s	sources	and p	ower la	aunchi	ng-cou	pling	К3					
	m	ethods												K5				
<b>CO4</b>	C	ompare	e the ch	aracter	ristics of	of fiber	r optic	receive	ers.					K5				
CO5		-	a fiber les to ir	-				-		sess tl	ne diff	ferent	K6					
Correla	tion b	etweer	ı Cours	se Out	comes	(COs)	) and F	rogra	n Out	comes	(POs)	:						
COs				J	Progra	m Ou	tcomes	s (POs)					O O	rogra Specifi utcom (PSOs	c ies			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3			
CO1	S	Μ	L	-	-	-	-	-	-	-	Μ	L	М	-	S			
CO2	М	S	L	-	-	-	L	-	-	-	L	S	М	-	Μ			
<u>CO3</u>	S	L	M	-	-	-	Μ	-	-	-	S	M	M	L	S			
<u>CO4</u>	L	S	S	-	-	-	- C	-	-	-	M	L		<u>M - M</u>				
CO5	L	Μ	-	-	-	-	S	-	-	-	L	S	Μ	L	S			
UNIT-I	n of F	INTRODUCTION TO OPTICAL FIBERS										interne	9 Hours					
Acceptar Mode th		-		-			•	• •	-					-				

Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts- Linearly Polarized



Modes -Single Mode Fibers-Graded Index fiber structure.

### UNIT-II SIGNAL DEGRADATION OPTICAL FIBERS 9 Hours

Attenuation - Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, Signal Distortion in Optical Waveguides-Information Capacity determination - Group Delay- Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers - Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers - Mode Coupling -Design Optimization of SM fibers - RI profile and cut-off wavelength.

UNIT-III FIBER OPTICAL SOURCES AND COUPLING

Direct and indirect Band gap Materials -LED structures -Light source materials -Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition – Rate equations-External Quantum efficiency -Resonant frequencies -Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers- Power Launching and coupling, Lencing schemes, Fiber -to- Fiber joints, Fiber splicing-Signal to Noise ratio, Detector response time.

#### UNIT-IV FIBER OPTIC RECEIVER AND MEASUREMENTS

Fundamental receiver operation, Pre-amplifiers, Error sources – Receiver Configuration– Probability of Error –Quantum limit, Fiber Attenuation measurements- Dispersion measurements – Fiber Refractive index profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture Measurements – Fiber diameter measurements.

#### UNIT-V OPTICAL NETWORKS AND SYSTEM TRANSMISSION

Basic Networks – SONET / SDH – Broadcast – and – select WDM Networks –Wavelength Routed Networks – Non linear effects on Network performance – Link Power budget - Rise time budget- Noise Effects on System Performance-Operational Principles of WDM Performance of WDM + EDFA system – Solutions – Optical CDMA – Solitons in Optical Fiber -Ultra High Capacity Networks.

	Total Hours 45 Hours
Text ]	Book(s)
1.	Gerd Keiser, "Optical Fiber Communication" Mc Graw-Hill International, 4th Edition, 2010.
2.	John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education, 2007.
Refer	ence Book(s)
1.	Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.
2.	J.Senior, "Optical Communication, Principles and Practice" Prentice Hall of India, 3rd Edition,
	2008.
3.	J.Gower, "Optical Communication System" Prentice Hall of India, 2001.

9 Hours

9 Hours

9 Hours



Course Code		L	Т	Р	С	IA	EA	TM
Course Name	CYBER SECURITY	3	0	0	1	40	60	100
Course Category	MANDATORY COURSE (MC)*	Syllabus Revision V.1.0						V.1.0
Pre-requisite	Nil							
Course Objectives	•							

#### Course Objectives:

- 1. To learn the foundations of Cyber security & threat landscape and to equip students with technical knowledge and skills needed to protect and defend against cyber threats.
- 2. To develop skills that can help plan, implement and monitor cyber security mechanisms for protection of information technology assets.
- 3. To expose students to governance, regulatory, legal, economic, environmental, social & ethical contexts of cyber security and use of online social media networks.
- 4. To systematically educate the necessity for understanding impact of cyber crimes and threats with solutions in a global and societal context.
- 5. To select suitable ethical principles & commit to professional responsibilities and human values and contribute value/wealth for the benefit of the society.

#### **Course Outcomes:**

On completion of the course, students will be able to -

Course Outcome s	Description	Highest Bloom's Taxonomy
CO1	To understand the concept of Cyber security, Issues and challenges associated with it.	K3
CO2	To understand cyber crimes, their nature, legal remedies and report about crimes through available platforms and procedures.	K3
CO3	To appreciate various privacy and security concerns on online Social media and understand reporting procedure of inappropriate content, legal aspects and best practices for the use of Social media platforms.	К3
CO4	To understand the basic concepts related to E-Commerce and digital payments.	K3
CO5	To understand the basic security aspects related to Computer and Mobiles.	K3

Correla	tion b	etween	Cour	se Out	comes	(COs)	) and F	Program	m Out	comes	(POs)	:			
COs		Program Outcomes (POs)													m c es )
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	PO	PO	PSO	PSO	PSO
										10	11	12	1	2	3
CO1	S	S M												S	-
CO2	S	Μ	-	-	-	-	-	-	-	-	-	S	-	S	-



CO3	S	М	-	-	-	-	-	-	-	-	-	S	-	S	-
CO4	S	Μ	-	-	-	-	-	-	-	-	-	S	-	S	_
CO5	S	М	-	-	-	-	-	-	-	-	-	S	-	S	-

#### UNIT-I

#### **INTRODUCTION TO CYBER SECURITY**

9 Hours

9 Hours

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace, Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

### UNIT-II CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransom ware attacks, zero day and zero click attacks, Cybercriminals modus-operandi , Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

#### UNIT-III SOCIAL MEDIA OVERVIEW AND SECURITY

9 Hours

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

# UNIT-IVE-COMMERCE AND DIGITAL PAYMENTS9 Hours

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payment Settlement Act, 2007.

# UNIT-VDIGITAL DEVICES SECURITY , TOOLS AND TECHNOLOGIES9 HoursFOR CYBER SECURITY9 Hours

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

Total Hours 45 Hours

Text Book(s)



1.	R. C. Mishra, "Cyber Crime Impact in the New Millennium", Auther Press Edition, 2010.
2.	Sumit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer
	Forensics and Legal Perspectives", Wiley India Pvt. Ltd, First Edition, 2011.
	Forensics and Legar refspectives, whey india rvt. Ltu, Thist Edition, 2011.
Refer	rence Book(s)
1.	Henry A. Oliver, "Security in the Digital Age: Social Media Security Threats and Vulnerabilities",
	Create Spac e Independent Publishing Platform, Pearson, 2001.
2.	Elias M. Awad, "Electronic Commerce", Prentice Hall of India Pvt Ltd, 2001.
3.	Kumar K, "Cyber Laws: Intellectual Property & E-Commerce Security", Dominant Publishers.
4.	Eric Cole, Ronald Krutz and James W. Conley, "Network Security Bible", Wiley India Pvt. Ltd,
	Second Edition, 2008.
5.	E. Maiwald, "Fundamentals of Network Security", McGraw Hill, 2003.
5.	



Course C	ode BECF197P60	L	Τ	Р	С	IA	EA	TM						
Course Na	ame OPTICAL	0	0	3	2	40	60	100						
	COMMUNICATION													
	LABORATORY													
Course	PROGRAMME CORE		Sylla	bus Re	visio	n		V.1.0						
Category	COURSE													
Pre-requi														
	bjectives:													
	e should enable the students			_		_								
1. To	understand the working principle of optical sources, detector, fibers and optical													
CO	mponents.													
2. To	develop understanding of simple of	ptical co	ommu	nicatio	n linl	κ.								
3. To	learn about the characteristics and	measure	ement	s in op	tical f	ibers.								
4. To	understand various losses involved	l in OFC	2.											
5. To	enable to students to work in a team	and buil	ld appl	ication	s.									
Course O	utcomes:													
On comple	etion of the course, the student will b	e able to												
Course	Descrip	otion					Hi	ighest Bloom's						
Outcom								Taxonomy						
es														
CO1	Understand the working principl	e of op	tical s	sources	s, det	ector,		K2						
	fibers and microwave components	5.												
CO2	Develop understanding of simple	optical o	comm	unicati	on lin	ık.		K2						
CO3	Learn about the characteristics	-						K2						
	fiber.					1								
CO4	Analyza the losses in Optical Fibe	r Comr	unico	tion				K2						

	noer.	
CO4	Analyze the losses in Optical Fiber Communication.	K3
CO5	Demonstrate capability to work in a team and to build circuits for various applications.	K4

Correl	ation	betwe	en Co	ourse	Outco	mes (	(COs)	and l	Progra	am O	utco	mes (l	POs):		
				Pr	ogran	n Out	comes	s (POs	5)					0	am Specific omes (PSOs)
COs	PO 1	PO 2	PO 3	<b>PO</b> 4	PO 5	P 06	PO 7	PO 8	PO 9	PO 10	P 0 1	PO 12	PS O 1	P S O	PSO3
	~	~	~	~	~						1	~	~	2	~
CO1	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S
CO2	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S
CO3	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S
<b>CO4</b>	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S
CO5	S	S	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S
		LIST	<b>COF</b>	EXPE	RIM	ENTS	5								
	1. DC Characteristics of Light Emitting Diode.														
							IN Ph		0						

#### Syllabus (2023-24)



B.E. (Electronics and Communication Engineering)

- 3. Mode Characteristics of Fibers.
- 4. Measurement of connector and bending losses.
- 5. Analysis of Fiber optic Analog -frequency response (analog).
- 6. Analysis of Fiber optic Digital Link-eye diagram (digital).
- 7. Numerical Aperture determination for Optical Glass Fibers.
- 8. Numerical Aperture determination of Plastic Fiber.
- 9. Attenuation Measurement in Fibers.
- 10. Bit error rate Measurement.
- 11. Design of basic Optical Communication system using computational tool.
- 12. Study experiment Optical Wavelength Multiple Access.
- 13. Study of computational tools of Optical Communication.

	Total Hours 45 Hours
Text	Book(s)
1.	Gerd Keiser, "Optical Fiber Communication" Mc Graw-Hill International, 4th Edition, 2010.
2.	John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education, 2007.
Refe	rence Book(s)
1.	Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.
2.	J.Senior,"Optical Communication, Principles and Practice" Prentice Hall of India, 3rd Edition,
	2008.
3.	J.Gower, "Optical Communication System" Prentice Hall of India, 2001.



Syllabus (2023-24) B.E. (Electronics and Communication Engineering)

### SEMESTER VIII

Course	Cod	e ]	BECF	186T3	30			L	, j	[]	P	C	IA	EA	ТМ								
Course	Nam	]	MAN		MENT		HICS	3	(	) (	0	3	40	60	100								
Course Catego		:	SCIEN	NCES	/	SOCIA			Sy	llabus	s Rev	vision			V.1.0								
Pre-rec	misit		MAN	AGEN	<u>/IENT</u>	COU	RSE																
Course			s:																				
			enable the students																				
1.	To de	velop	op knowledge on the principles of management essential for all kinds of people in a																				
	kinds	of org	ganiza	zations.																			
2.	To ha	ive a	clear	under	standi	ng of	the n	nanag	erial	functi	ions	like p	lannin	ng, org	ganizing, leading								
	and c	ontrol	ling.																				
3.	To un	dersta	and gl	obal t	ousine	ss and	l dive	rsity.															
4.	To ga	in sor	ne bas	sic kn	owled	lge on	inter	natior	al as	pect o	f ma	nagen	nent.										
	0		ome basic knowledge on international aspect of management. stand the concepts of computer ethics in work environment.																				
Course	Outo	comes																					
On com				ırse, tł	ne stuc	lent w	ill be	able to	0														
Cours				· · · ·			escrip							H	ighest Bloom's								
Outcor	n														Taxonomy								
es																							
CO1						on of		-		hough	ts a	nd va	arious		K2								
	cł	nallenş	ges of	mana	gerial	activit	ies in	a glo	bal.						112								
CO2		Explain the types of Planning and Decision making at various levels management in the Organizations												K2									
CO3	D	iscuss	vario	us typ	es of (	Organi	izatior	n struc	cture.						K2								
CO4		Understanding the code of ethics and standards of computer professionals.												K2									
CO5	A	Analyze professional responsibility and empowering access to											W2										
	in	forma	tion i	n the	work 1	place.	-				-				К3								
														1									
Correl	ation	betwe	en Co	ourse	Outco	mes (	COs)	and J	Progr	am O	utco	mes (]	POs):										
				Pr	ogran	n Oute	comes	s (POs			-	-		Outco	ram Specific omes (PSOs)								
COs	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	P	PO	PS	P	PSO3								
CUS	1	2	3	4	5	06	7	8	9	10	0	12	01	S									
											1			0									
001			 			┝───┤			~		1 V	<b>.</b>	Ŧ	2	Ŧ								
CO1	-	-	-	-	-	-	-	M	S	M	M	L	L	-	L								
CO2	-	-	-	-	-	L	-	M M	S S	M M	M S	L M	L L	- L	M L								
CO3																							

UNIT-I INTRODUCTION TO MANAGEMENT 9 Hours															
CO5	-	-	-	-	-	Μ	-	3	М	М	Μ	3	L	-	М
CO4	-	-	-	-	-	- M	-	5 5	S M	M	M	<u> </u>		-	M
004								C	C	М	Л	C	т		М

Definition of Management, process of Management, Planning, Organizing, leading, Controlling Classical Approach-Contribution and Limitation, Management Science Approach, Skills, Roles and Performance: Types of managers Managerial Skills,- Technical Skill, Analytical Skill Decision Making skill, Human Relation skill, Communication skill. Managerial Roles – Interpersonal Role, Informational Role, Decisional Role.

UNIT-II **PLANNING FUNCTION 10 Hours** Elements of Planning-Objectives, Action, Resource, Implementation, Managerial Decision Making: Types of Decision, Process of Decision Making, Decision Making-Certainty Condition, Uncertainty Condition, Selecting Alternative. Managing Information System; Need for Decision Support System, MIS and DSS Strategic Planning –Organizational Strategy, Business Portfolio Matrix.

UNIT-III **ORGANIZING FUNCTION** Organizational Structure- Job Design, Departmentation, Span of Control, Delegation of Authority, Decentralized authority, Chain of Command and Authority, Line and Staff concept Matrix organizational Design.

#### UNIT-IV **ENGINEERING ETHICS** 9 Hours Senses of 'engineering ethics' – variety of moral issues – types of inquiry – moral dilemmas – moral autonomy - kohlberg's theory - Gilligan's theory - consensus and controversy - professions and professionalism - professional ideas and virtues - theories about right action - self-interest - customs and religion – uses of ethical theories.

#### **ENGINEER'S RESPONSIBILITY FOR SAFETY UNIT-V** 8Hours Safety and risk - Assessment of safety and risk - Risk benefit analysis - Reducing risk - The Three Mile Island and Chernobyl- case studies.

**Total Hours** 45 Hours

Text Book(s)

- Mike Martin & Roland schinzinger "Ethics in engineering" McGraw Hill, 2009. 1.
- Govindarajan M, Natarajan. S.Senthilkumar V.S, "Engineering Ethics", PHI, 2004. 2.
- 3 Dr. T. Ramaswamy, Principles of Management, Himalaya Publishing House, 2014.

**Reference Book(s)** 

- Charles D.Fleddermamm, "Engineering Ethics", Pearson Hall, 2004. 1.
- 2. Charles E.Haris, Michael S.Protchard & Michael J.Rabins, "Engineering Ethics- concepts and cases", Wadsworth Thompson Learning, 2009.

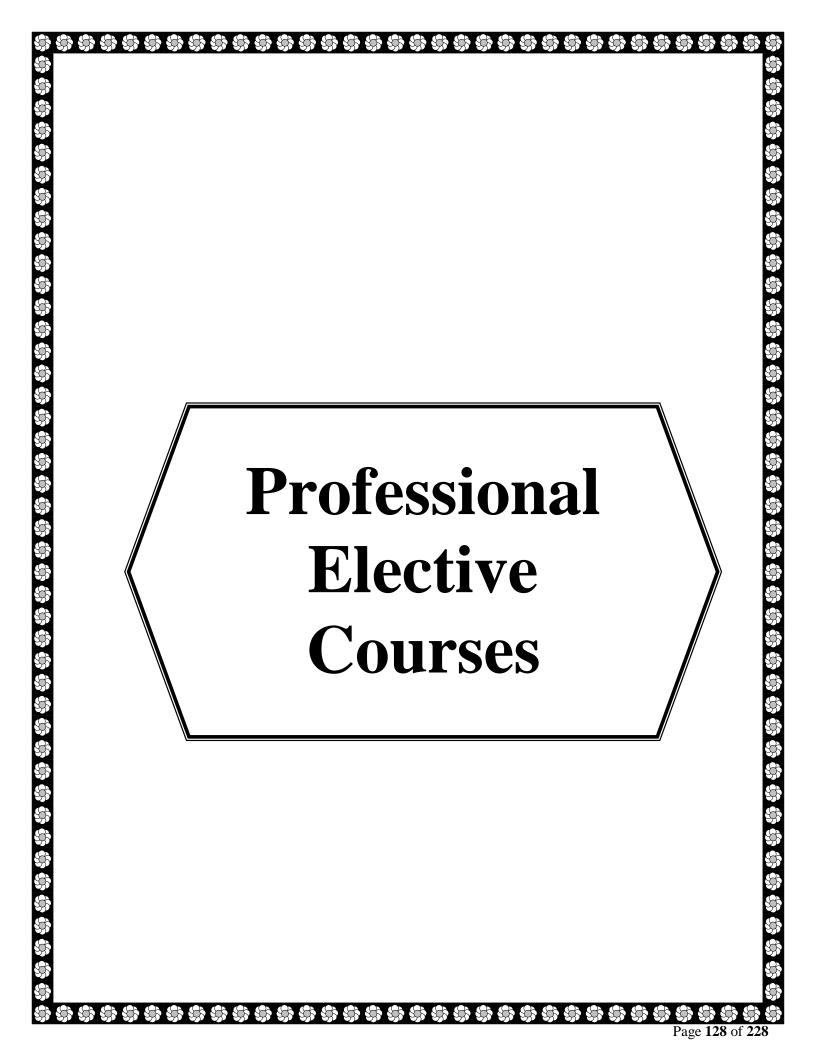
JhonR.Boartright, "Ethics and conduct of Business", Pearson Education, 2003. 3.

Edmund G.See Bauer & Robert L.Bany, "Fundamental of Ethics for Scientists and 4. Engineering", Oxford University, 2005.

9 Hours



Course	Code	•							L	Т	Р	(		IA I	EA	Γ	M	
Course	Nam	e	UNIV	ERSA	L HUN	MAN V	VALU	ES	2	1	0	3	3 4	40	50	1	00	
Course	Cate	gory	MANI	DATO	RY CO	URSE	E (MC)	*	S	Syllab	us Re	evisi	on		V	.1.0	)	
Pre-req			Nil															
2. U 3. S	rse sh Devel societ Under Streng	ould e opmer y and standi gthenir	enable that of a nature/enable of the nature/end of the ng of sel	holisti xistenc e harm f-reflec	ic pers ce. ony in ction.	the hu	man be	eing, fa		_						faı	nily	
4. 1	Devel	opmer	nt of cor	nmitme	ent and	coura	ge to a	ct.										
Course On com				e, the s	tudent	will b	e able t	to -										
Cours	se					Des	criptio	on							Higl	nest		
Outcon	nes	*													Bloo			
		Awara of themselves and their surroundings (family society return)												<b>I</b>	axor		ıy	
C01		Aware of themselves and their surroundings (family, society, nature)													K			
CO2	2	Become more responsible in life and handling problems with													K	4		
~ ~ ~		sustainable solutions																
CO3		Have better critical ability													K			
CO4	•	Become sensitive to their commitment towards what they has understood													K	2		
CO	-			1 1	1		(1		16 :	1:66		4 -	1	K2				
CO5	)		y what t	-	ive lea	rnt to	their o	wn sel	II in (	amere	ent da	y-to	-day	K3				
		settin	gs in rea															
Correla	tion	betwe	en Coui	rse Ou	tcome		s) and	Progr	am C	Dutco	nes (]	POs	):					
COs				]	Progra	m Ou	tcome	s (POs	;)					(	Prog Spec Dutco (PS)	cific ome <u>Os)</u>	es	
	PO 1	PO 2	PO 3	<b>PO</b> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PC 10			PO 12	PS 01	P: O		PS 03	
CO1	-	-	-	-	-	M	L	H	-	-			M	-	-	-	-	
CO2	-	-	_	-	-	М	L	Н	-	-		-	Μ	-	-		-	
CO3	-	-	-	-	-	М	L	Н	-	- 1	1.	-	Μ	- 1	-		-	
<b>CO4</b>	-	M L H M ·												-				
CO5	-	-	-	-	-	М	L	Н	-	-	-	-	Μ	-	-		-	
UNIT-I		CO	URSE NTENI	Γ AND	PRO	CESS	FOR <b>V</b>		E ED	UCA	TION	J		INES,		Hou		
Purpose and Exp A look requiren Underst	berien at bas nents	tial Va sic Hu for	alidatior man Asj fulfillme	n- as the piration ent of	ne proc ns. Rig aspir	ess foi ht und ations	self-e erstand of ev	xplora ling, F very l	tion. Relation numai	Conti onshij n bei	nuous and ng w	s Ha Phy ⁄ith	ppine sical theii	ess an Facili corr	d Pro ity- t rect	ospe he t pric	erity basic brity	




to fulfill the above human aspirations: understanding and living in harmony at various levels. **UNDERSTANDING HARMONY IN HUMAN BEING - HARMONY** UNIT-II 9 Hours **IN MYSELF** Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail. Programs to ensure Sanyam and Health. UNIT-III UNDERSTANDING HARMONY IN FAMILY AND SOCIETY-9 Hours HARMONY IN HUMAN- HUMAN RELATIONSHIP Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and Respect as the foundational values of relationship. Understanding the meaning of Trust; Difference between intention and competence. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family UNIT-IV UNDERSTANDING HARMONY IN NATURE AND EXISTENCE -9 Hours WHOLE EXISTENCE AS COEXISTENCE Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self regulation in nature. Understanding Existence as Co-existence of mutually interacting units in all- pervasive space. Holistic perception of harmony at all levels of existence. UNIT-V IMPLICATIONS OF ABOVE HOLISTIC UNDERSTANDING OF 9 Hours HARMONY ON PROFESSIONAL ETHICS Natural acceptance of human values. Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in professional ethics: a. Ability to utilize professional competence for augmenting universal human order b. Ability to identify scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. Case studies of typical holistic technologies, management models and production systems. Strategy for transition from present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations. Sum up. Total Hours | 45 Hours Text Book(s) Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New 1 Delhi, 2010. **Reference Book(s)** 

- ² Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- ³ The Story of Stuff (Book)



4	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi
5	Small is Beautiful - E. F Schumacher.
6	Slow is Beautiful - Cecile Andrews
7	Economy of Permanence - J C Kumarappa
8	Bharat Mein Angreji Raj – Pandit Sunderlal
9	Rediscovering India - by Dharampal
10	Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi
11	India Wins Freedom - Maulana Abdul Kalam Azad
12	Vivekananda - Romain Rolland (English)
13	Gandhi – Romain Rolland (English)





	Code	e ]	BECF	185EA	40			L	Т	P	(		IA F	CA	TM		
Course	Nam				S AN TION			3	0	0	3	; 4	40 6	50	100		
Course			PROF	ESSI	ONAL	L ELEC	TIVE		Sy	llabus	Revisi	ion		V.1.0			
Catego	ry			RSE -I													
Pre-req	luisite	e	Basic	know	ledge	of Ele	ectrom	agneti	c Fiel	ds and	l Wave	e guid	es				
Course	Obje				U			0				0					
The cou	irse sł	nould	enable	e the s	tudent	s:											
	-		-		-	henom			-								
2. '	To gi	ve the	orougł	n unde	erstand	ling of	the ra	diation	chara	cterist	tics of	differe	ent type	es of an	tenna		
:	arrays	5.															
3. '	To un	dersta	and the	e conc	ept of	differe	nt type	s of ap	erture	anten	nas.						
								-		tennas	and m	easure	ment of	antenna	lS.		
5. '	To un	dersta	and the	e conc	ept of	antenna	as prop	pagatio	n.								
Course					,	1 . ••		1.									
On com	-	on of t	he cou	irse, tl	ne stuc									TT: -h -	-4		
Course Outcon			Description Highest Bloom's														
es			Bloom's Taxonomy														
C01	A	ntenna	ennas Parameters. K4														
CO2	D	ifferei	erent types of antenna arrays. K3														
CO3			• •			nnas ar		r types.						K4			
CO4				-		Special		• •						K2			
CO5						es of pi			antenr	nas.				K4			
					• •	-											
Correla	ation	betwe	en Co	ourse	Outco	mes (C	COs) a	nd Pro	gram	Outco	omes (l	POs):					
					Prog	ram Oı	itcome	es (POs	s)				0	ram Spe omes (P			
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03		
		S	-	S	-	-	L	-	-	L	-	L	S	L	-		
CO1	Μ								- N/T	Μ	_	-	L	Μ	Μ		
CO1 CO2	M M	Μ	-	- т	-	-	L	-	Μ	101					т		
CO1 CO2 CO3	M M S	M L	-	- L	- - M	-	М	-	-		-	- T	-	- T	L		
CO1 CO2 CO3 CO4	M M S M	M L L		- L -	- - M	-	M S	-	M - -	L	-	L	-	- L L	L		
CO1 CO2 CO3	M M S	M L	-	- L -		-	М	- - - -	-		-			L L			
CO1 CO2 CO3 CO4 CO5	M M S M L	M L L L	- - -	-	M -	-	M S S	-	-	L	-	L	-		L S		
CO1 CO2 CO3 CO4 CO5 UNIT-I	M M S M L	M L L FUN	- - - JDAN	- - 1ENT	M - TALS	- - OF R	M S S ADIA	- - TION	-	L S	-	L L	- L	L 9 Hou	L S Irs		
CO1 CO2 CO3 CO4 CO5 UNIT-I Definiti	M M S M L	M L L FUN f ante	- - - <b>IDAN</b>	- - IENT	M - CALS eters -	- - OF R. - Gain,	M S S ADIA Direc	- - TION ctivity,	- - - Effec	L S	- - apertui	L L	- L adiation	L       9 Hot       Resist	L S Irs		
CO1 CO2 CO3 CO4 CO5 UNIT-J Definiti Band w	M M S M L	M L L FUN f ante Bear	- - - <b>NDAN</b> nna p n wid	- IENT arame th, In	M - CALS eters - put In	- - - Gain, npedan	M S S ADIA Direc	- TION ctivity,	- - Effec g Bal	L S etive luns,	- - apertur Polari	L L re, Ra zation	- L adiation misma	L       9 Hot       Resist       tch, An	L S Irs		
CO1 CO2 CO3 CO4 CO5 UNIT-J Definiti Band w	M M S M L	M L L FUN f ante Bear	- - - <b>NDAN</b> nna p n wid	- IENT arame th, In	M - CALS eters - put In	- - - Gain, npedan	M S S ADIA Direc	- TION ctivity,	- - Effec g Bal	L S etive luns,	- - apertur Polari	L L re, Ra zation	- L adiation misma	L       9 Hot       Resist       tch, An	L S Irs		
CO1 CO2 CO3 CO4 CO5 UNIT-I Definiti	M M S M L	M L L FUN f ante Bear rature,	- - - NDAN nna p n wid , Radi	- - arame th, In ation	M - CALS eters - put In	- OF R. - Gain, npedan oscillat	M S S ADIA Direc	- TION ctivity,	- - Effec g Bal	L S etive luns,	- - apertur Polari	L L re, Ra zation	- L adiation misma	L       9 Hot       Resist       tch, An	L S Irs cance, tenna		



arrays, Adaptive array, Basic principle of antenna Synthesis-Binomial array, Yagi Arrays.

#### UNIT-III APERTURE AND SLOT ANTENNAS

Radiation from rectangular apertures, Uniform and Tapered aperture, Horn antenna, Reflector antenna, Aperture blockage, Feeding structures, Slot antennas, Micro strip antennas – Radiation mechanism – Application, Numerical tool for antenna analysis.

#### UNIT-IV SPECIAL ANTENNAS

Principle of frequency, independent antennas –Spiral antenna, helical antenna, Log periodic, Modern antennas- Reconfigurable antenna, Active antenna, Dielectric antennas, Electronic band gap structure and applications, Antenna Measurements-Test Ranges, Measurement of Gain, Radiation pattern, Polarization, VSWR.

#### UNIT-V PROPAGATION OF RADIO WAVES

Modes of propagation , Structure of atmosphere , Ground wave propagation, Tropospheric propagation , Duct propagation, Troposcatter propagation , Flat earth and Curved earth concept Sky wave propagation – Virtual height, critical frequency , Maximum usable frequency – Skip distance, Fading , Multi hop propagation.

	Total Hours 45 Hours
Text	Book(s)
1.	John D Kraus," Antennas for all Applications", 4th Edition, McGraw Hill, 2010.
Refe	rence Book(s)
1.	Edward C. Jordan and Keith G. Balmain" Electromagnetic Waves and Radiating Systems"
	Prentice Hall of India, 2 nd Edition 2011.
2.	Rajeswari Chatterjee, "Antenna Theory and Practice" Revised Second Edition New Age
	International Publishers, 2006.
3.	Constantine.A. Balanis "Antenna Theory Analysis and Design", Wiley Student Edition,
	4 th Edition, 2016.
4.	H. Sizun "Radio Wave Propagation for Telecommunication Applications", First Indian
	Reprint, Springer Publications, 2007.

9 Hours

9 Hours

9 Hours



<b>Course Code</b>	BECF185EB0	L	Т	Р	С	IA	EA	TM
Course Name	INFORMATION THEORY	3	0	0	3	40	60	100
	AND CODING							
Course Category	PROFESSIONAL ELECTIVE COURSE -I		Sylla	abus R	evision			V.1.0
Pre-requisite		1.D.		r	• ,•			

#### Basic Knowledge of Analog and Digital Communication

#### **Course Objectives:**

The course should enable the students:

- 1. To provide an insight into the concept of information in the context of communication theory and its significance in the design of communication receivers.
- 2. To explore in detail, the calculations of channel capacity to support error-free transmission and also, the most commonly used source coding and channel coding algorithms.
- 3. To encourage and train to design coding schemes for data compression and error correction,
- 4. They will also get an overall perspective of how this impacts the design of an optimum communication receiver.

#### **Course Outcomes:**

On completion of the course, the student will be able to:

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Overview of Probability Theory, significance of "Information" wi	th <b>K2</b>
	respect to Information Theory.	
CO2	Derive equations for entropy, mutual information and channel capaci	ty <b>K3</b>
	for all kinds of channels.	
CO3	Implement the various types of source coding algorithms and analy-	ze K4
	their performance.	
CO4	Explain various methods of generating and detecting different types	of K3
	error correcting codes.	
CO5	Understand the fundamentals of Field Theory and polynomi	al K2
	arithmetic.	
CO6	Design linear block codes and cyclic codes (encoding and decoding).	K3
Correlation	between Course Outcomes (COs) and Program Outcomes (POs):	
	Program Autcomes (PAs)	Program Specific

				Program Specific Outcomes (PSOs)											
COs	COs     PO     PO											PS			
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	Μ	-	-	-	-	-	-	-	-	-	-	S	L	-
CO2	S	S	L	-	-	-	-	-	-	-	-	-	S	L	-
CO3	S	S	-	Μ	S	-	-	-	-	-	-	-	S	L	-



<b>CO4</b>	S	S	-	L	-	-	-	-	-	-	-	-	S	L	-
CO5	S	L	-	-	-	-	-	-	-	-	-	-	S	L	-
CO6	S	Μ	-	-	L	-	-	-	-	-	-	-	S	Μ	-

#### UNIT-I SOURCE CODING AND ENTROPY

9 Hours

9 Hours

9 Hours

**10 Hours** 

Definition and Examples- Uniquely Decodable Codes-Instantaneous Codes-Constructing Instantaneous Codes- Kraft's Inequality - McMillan Inequality- Information and Entropyproperties of the Entropy function - Entropy and Average Word-Length- Shannon-Fano coding-Entropy of Extensions and products-Shannon's First Theorem.

#### UNIT-II

**INFORMATION CHANNEL** 

Information Channel- Definitions- Binary Symmetric channel-System Entropies-system entropies for the Binary Symmetric Channel-Extension to Shannon's First Theorem to information channels-Mutual Information-Mutual information for the Binary Symmetric channel-Channel Capacity.

#### UNIT-III CHANNELS AND OPTIMAL CODES

Decision rules- Improved Reliability- hamming Distance- Statement and proof of Shannon's Theorem- Converse of Shannon's Theorem- Optimality-Binary Huffman Codes-Average Word-length of Huffman codes-Optimally of Binary Huffman codes-r-ary Huffman codes-Extensions of source.

#### UNIT-IV CYCLIC CODES

Description of cyclic codes- Generator and parity check matrices of Cyclic codes- Encoding of cyclic codes- Cyclic hamming codes- Syndrome Computation and error Detection- Decoding of cyclic codes- Cyclic Hamming Codes- Error- Trapping Decoding- Improved error-Trapping Decoding- The (23,12) Golay code- shortened Cyclic codes-Cyclic Product codes- Quasi-Cyclic codes.

UNI	Г-V	CONVOLUTIONAL ARITHMETIC CODES	8 Hours
Enco	ding of	Convolutional codes - Structural properties of Convolutional co	odes- Distance
	-	convolutional codes.	
		Total Hours	45 Hours
Text	Book(s)		
1.	N.Abran	nson, "Information and Coding", McGraw Hill, 1963.	
2.	M. Mans	surpur, "Introduction to Information Theory", McGraw Hill, 1987.	

## **Reference Book(s)**

1.	R.B. Ash, "Information Theory", Prentice Hall, 1970.
2.	Shu Lin and D.J. Costello Jr., Error Control Coding, Prentice Hall, 1983.
	G.A.Jones and J.Mary Jones, "Information and Coding Theory", Springer SUMS.



Microcontrollers.

# Syllabus (2023-24) B.E. (Electronics and Communication Engineering)

Course C	Code	]	BECF	187EJ	0			L	r 1	Г	Р	С	Ι	A	EA	TM
Course N	Jame		ADV	ANCE	<b>D</b>			3	(	0	10	60	100			
		]	MICH	ROCC	ONTR	OLLE	RS									
Course		]	PROF	ESSI	ONAL	ELEC	TIVE		Sy	llab	ıs Re	vision			V.:	1.0
Category	y	(	COUH	RSE -I					-							
Pre-requ	·	e ]	Micro	proce	ssors	and M	icroco	ntrolle	rs							
Course (			5:													
The cour	•			e the s	tudent	s :										
1. T	1. To study architecture and instruction set of RISC and CISC processors.															
2. T	To study architecture and instruction set of R8C microcontroller.															
3. T	'o stu	idy ar	chitec	ture a	nd inst	ruction	set of	MSP 4	130 mi	icroc	ontro	ler				
4. T	'o ga	in kno	wledg	ge on o	develo	pment	of emb	bedded	softw	are.						
5. T	'o ga	in kno	wledg	ge on o	develo	pment	of syst	em and	l appli	icatio	ons.					
Course (	Outc	omes	:													
On comp	oletio	on of t	he cou	urse, tl	he stuc	lent wi	ll be at	ole to								
Course		Description     Highest														
Outcom		Bloom's														
es		Taxonomy														
CO1	U	Use RISC and CISC processors for system development. K3														
CO2	Use R8C microcontroller for system development. K3											3				
CO3	U	se MS	SP 43	0 mic	rocont	roller	for sys	tem de	evelop	men	t.				K	3
CO4	W	rite so	oftwa	re for o	embed	ded sys	stems.								K	3
CO5	D	esign	and d	evelop	micro	ocontro	ller ba	sed sys	tems.						K	4
Correlat	tion	betwe	en Co	ourse	Outco	omes (C	COs) a	nd Pro	gram	Out	come	s (PO	s):			
														]	Progra	m
					Drogr	am Oı	toom		-)						Specif	ic
COs					rrogi		ICOIII		5)					(	Dutcon	ies
COS															(PSOs	5)
[]	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	P	D P	0	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	1	l 1	2	01	02	03
CO1	S	S	S	-	-	-	-	-	-	-	-	Ι	_	S	-	-
CO2	S	S	S	-	-	-	-	-	-	-	-	Ι	_	S	-	-
CO3	S	S	S	-	-	-	-	-	-	-	-	Ι	-	S	-	-
CO4	S	S	S	Μ	-	-	-	-	-	-	-	Ι	_	S	Μ	-
CO5	S	S	S	Μ	-	-	-	-	-	-	-	Ι	_	S	S	M
															· · · · · ·	
UNIT-I		RIS	C PR	OCE	SSOR	S									9 Ho	urs

Page 133 of 228



		<b></b>
UNIT-II	<b>R8C 16-BIT MICROCONTROLLER</b>	9 Hours
The R8C	Architecture, CPU Registers, Instruction Set, On-Chip Peripherals,	R8C Tiny
Developm	nent Tools, ADC, PWM, UART, Timer Interrupts, System design	using R8C
Microcon	troller.	
		0.11
UNIT-III	MSP430 16 - BIT MICROCONTROLLER	9 Hours
	2430 Architecture, CPU Registers, Instruction Set, On-Chip Periphera	
-	nent Tools, ADC, PWM, UART, Timer Interrupts, System design usi	ng MSP430
Microcon	troller.	
UNIT-IV	EMBEDDED SOFTWARE DEVELOPMENT	9 Hours
	velopment tools, Debugging techniques, Real-time Operating Syster	m, Memory
Managem	ent, scheduling techniques.	
		0.77
UNIT-V	SYSTEM DEVELOPMENT	9 Hours
Microcon	troller based System Design, Peripheral Interfacing, Inter-Integra	ted Circuit
		lication in
Automob	iles, Robotic and consumer Electronics.	
		45.77
TT (D)	Total Hours	45 Hours
Text Boo	K(S)	_
1. Juli	o Sanchez Maria P.Canton, Microcontroller Programming: The mic	rochip PIC,
CR	CPress, Taylor & Francis Group, 2007.	
Reference	e Book(s)	
1. D. I	E. Simon, An Embedded Software Primer, Addison-Wesley, 1999.	
2. Way	vne Wolf, Computers as Components: Principles of Embedded Compu	ting System
	ign, Morgan Kaufman Publishers, 2006.	
3. Joh	n H.Davis, MSP 430 Micro controller basics; Elsevier, 2008.	
3011		



Course	Code	;	BECF	186EE	0				L	<b>r</b>	P	C	IA	EA	ŗ	ТМ		
Course	Nam			ГІМЕ				3	0	0	3	40	60	1	100			
				PRES														
		'	TECH	INIQU	JES													
Course			PROF	ESSIO	NAL	ELECT	IVE		Sy	llabus	Revi	sion		I I	1.1.0	0		
Catego	ry		COUR	SE -II														
Pre-req	Pre-requisite Basic knowledge of Coding Theory and CommunicationSy											Syster	ns					
Course	-																	
The cou																		
			-			ding of				0								
				-		ecoding		-					•	<b>.</b> .				
						generati							-		ques	5.		
					-	of com nultime	-			-	ssion	techi	inque	5.				
J	10 10			oncep		nunnne		mmul	ncatio									
Course	Oute	omes:																
On com			e cours	se. the	studen	t will be	e able t	0										
Cours	-	<u> </u>	o court	, en e	studen		ription							Highest				
Outcon	-						<b>r</b>							Blog				
s		Taxonomy											ny					
CO1	Ι	Describ	e vario	ous m	ultime	dia con	nponer	nts.						K	(4			
CO2	Ι	Describ	e com	pressi	on and	l decon	npressi	on tec	chniqu	les.				K	4			
CO3	A	apply t	he cor	npress	sion co	oncepts	in mu	ltimed	lia coi	nmun	icatio	n.		K	3			
CO4	_					nology								K	2			
CO5		Describe												K	4			
Correla	tion	betwee	n Cou	rse Ou	itcome	es (COs	) and l	Progra	am Ot	itcom	es (PC	)s):						
								0						Prog	gran	n		
				1	Drogr	am Out	aamaa							Spe				
COs				L	Progra	am Out	comes	(PUS)						Outo	omo	es		
COS														(PS	Os)	)		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PC			S	PS		
	1	2	3	4	5	6	7	8	9	10	11	12			02	03		
CO1	S		-	-	S	-	-	-	-	-	-	-	Ν		-	-		
CO2	S	Μ	-		S	-	-	-	-	-	-	L			<u>_</u>	S		
CO3	S	L	-	-	М	-	-	-	-	-	-	L	I		Л	S		
CO4 CO5	S S	S S	S	-	M M	-	-	-	-	-	-	M M			Л Л	L M		

UNIT-I **MULTIMEDIA COMPONENTS** 

Introduction - Multimedia skills - Multimedia components and their characteristics - Text, sound, images, graphics, animation, video, hardware.

#### UNIT-II AUDIO AND VIDEO COMPRESSION

Audio compression-DPCM-Adaptive PCM -adaptive predictive coding-linear Predictive codingcode excited LPC-perpetual coding Video compression-principles-H.261-H.263-MPEG 1, 2, and 4.

#### UNIT-III TEXT AND IMAGE COMPRESSION

Compression principles-source encoders and destination encoders-lossless and lossy compression- entropy encoding-source encoding-text compression-static Huffman coding dynamic coding-arithmetic coding- Lempel ziv-welsh Compression-image compression.

UNIT-IV **VOIP TECHNOLOGY** 

Basics of IP transport, VoIP challenges, H.323/ SIP -Network Architecture, Protocols, Call establishment and release, VoIP and SS7, Quality of Service- CODEC Methods- VOIP applicability.

#### **MULTIMEDIA NETWORKING** UNIT-V

Multimedia networking -Applications-streamed stored and audio-making the best Effort serviceprotocols for real time interactive Applications-distributing multimedia-beyond best effort servicesecluding and policing Mechanisms-integrated services-differentiated Services-RSVP.

> 45 Hours Total Hours

Text	Book(s)
1.	Fred Halshall "Multimedia communication-Applications, Networks, Protocols and
	Standards", Pearson Education, 2007.
Refe	rence Book(s)
1.	Tay Vaughan, "Multimedia: Making it work", Seventh Edition, TMH, 2008.
2.	Kurose and W.Ross "Computer Networking- a Top Down Approach", Pearson Education,
	2005.
3.	Marcus Goncalves "Voice over IP Networks", McGraw Hill,1999
4.	KR. Rao,Z S Bojkovic, D A Milovanovic, "Multimedia Communication Systems:
	Techniques, Standards, and Networks", Pearson Education, 2007.
5.	R. Steimnetz, K. Nahrstedt, "Multimedia Computing, Communications and Applications",
	Pearson Education, 1995.

9 Hours

9 Hours

9 Hours

9 Hours



Course Code	BECF186EF0	L	Т	Р	С	IA	EA	ТМ
Course Name	NANO ELECTRONICS	3	0	0	3	40	60	100
Course Category	PROFESSIONAL ELECTIVE COURSE -II		Syll	abus R	evisio	1		V.1.0
Pre-requisite	Basic knowledge of Material Sci	ence	and ]	Electro	nics			

### **Course Objectives:**

The course should enable the students

- 1. To learn and understand basic concepts of Nano Electronics.
- 2. To learn the concepts of Nano Scale MOSFET Devices.
- 3. To know the techniques of fabrication and measurement.
- 4. To gain knowledge about Nanostructure devices.
- 5. To understand the concepts of Nanostructure logic devices.

#### **Course Outcomes:**

On completion of the course, the student will be able to

	1	011 01 0		, i o o , i i		lent wi									
Cours	e					De	script	ion					I	Highest	Bloom's
Outco	m													Taxo	onomy
es															
CO1	U	Inderst	tand v	variou	s aspe	ects of	Nanc	-tech	nology	and	the	basics	of	I	K2
	Q	uantu	m Me	chanic	cs.										
CO2	U	Inders	tand t	he pro	ocesse	es invo	lved i	n fab	ricatio	on of 1	Nano	materi	ials	I	K2
	a	nd cor	npone	ents.											
CO3	A	nalyze	e the	variou	is cor	ncepts	of log	ic dev	vices	and to	o calc	ulate	the	I	<b>K4</b>
	p	ower c	lissipa	tion ii	n reve	rsible c	omput	ation.							
CO4	U	power dissipation in reversible computation.K2Understand the concepts of Nano structured Devices and theirK2functioning.K2													
	fı														
CO5	L	everag	ge adv	vantag	ges of	the Na	ano-m	ateria	ls and	d appi	ropria	te use	e in	I	K4
	se	olving	pract	ical p	robler	ns.									
Correl	ation	betwe	en Co	ourse	Outco	mes (C	COs) a	nd Pr	ogran	n Out	come	s (POs	5):		
				т									Pro	gram S	Specific
<b>CO</b> -				ł	rogra	m Out	comes	6 (PO9	5)				Out	tcomes	(PSOs)
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	М	-	Μ	L	-	-	-	-	-	-	L	S	-	-
	1	1		М	L	_	-	-	-	-	-	L	S	Μ	_
CO2	S	Μ	-	Μ	L				1						
CO2 CO3	S S	M M	- M	-	S	-	-	-	-	-	-	L	S	М	М
						-	-	-	-	-	-	L L	S S	M M	
CO3	S	М	М	-	S										М



	INTRODUCTION TO NANO TECHNOLOGY	9 Hours
Introduction	to nano technology, meso structures, Basics of Quantum Mechani	cs: Schrodinger
-	ensity of States. Particle in a box Concepts, Degeneracy, Band Th	neory of Solids,
Kronig-Pen	ny Model, Brillouin Zones.	
UNIT-II	CMOS SCALING AND ITS LIMITS	9 Hours
	n approaches: Introduction, CMOS Scaling, The nanoscale MOSFET,	
	limits to scaling, system integration limits (interconnect issues etc.), N	Nano Materials -
Measureme	nt and Fabrication of Nano materials.	
UNIT-III	FUNDAMENTALS OF NANOELECTRONICS	9Hours
	als of logic devices:- physical limits to computations; concepts of	
	ns – two terminal devices – field effect devices – coulomb bloc	e
spintronics-	quantum cellular automata – quantum computing – DNA com	puter; Ultimate
computation	n:- powerdissipation limit – dissipation in reversible computation.	
		1
UNIT-IV	NANO STRUCTURE DEVICES	9 Hours
electronic d	ectronics, Band structure and transport, devices, applications, 2D sem evices, Graphene, atomistic simulation.	
electronic d UNIT-V	evices, Graphene, atomistic simulation.  LOGIC DEVICES AND APPLICATIONS	9 Hours
electronic d UNIT-V Logic Dev	evices, Graphene, atomistic simulation.           LOGIC DEVICES AND APPLICATIONS           ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quartered	<b>9 Hours</b> ntum Transport
electronic d UNIT-V Logic Dev Devices Ba	evices, Graphene, atomistic simulation. LOGIC DEVICES AND APPLICATIONS ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quan- used on Resonant Tunneling-Single-Electron Devices for Logic	<b>9 Hours</b> ntum Transport c Applications-
electronic d UNIT-V Logic Dev Devices Ba Supercondu	evices, Graphene, atomistic simulation. LOGIC DEVICES AND APPLICATIONS ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quant used on Resonant Tunneling-Single-Electron Devices for Logic ctor Digital Electronics-Quantum Computing Using Supercom	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon
electronic d UNIT-V Logic Dev Devices Ba Supercondu	evices, Graphene, atomistic simulation. LOGIC DEVICES AND APPLICATIONS ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quan- used on Resonant Tunneling-Single-Electron Devices for Logic	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon
electronic d UNIT-V Logic Dev Devices Ba Supercondu Nanotubes	evices, Graphene, atomistic simulation. LOGIC DEVICES AND APPLICATIONS ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quant used on Resonant Tunneling-Single-Electron Devices for Logic ctor Digital Electronics-Quantum Computing Using Supercom	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon
electronic d UNIT-V Logic Dev Devices Ba Supercondu Nanotubes	evices, Graphene, atomistic simulation. LOGIC DEVICES AND APPLICATIONS ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quant used on Resonant Tunneling-Single-Electron Devices for Logic ctor Digital Electronics-Quantum Computing Using Supercom	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon
electronic d UNIT-V Logic Dev Devices Ba Supercondu Nanotubes Trends.	evices, Graphene, atomistic simulation. LOGIC DEVICES AND APPLICATIONS ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quant used on Resonant Tunneling-Single-Electron Devices for Logic ctor Digital Electronics-Quantum Computing Using Superconfor Data Processing- Molecular Electronics. MEMS/NEMS, Future a Total Hours	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon applications and
electronic d UNIT-V Logic Dev Devices Ba Supercondu Nanotubes Trends. Text Book(s	evices, Graphene, atomistic simulation. LOGIC DEVICES AND APPLICATIONS ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quant used on Resonant Tunneling-Single-Electron Devices for Logic ctor Digital Electronics-Quantum Computing Using Superconfor Data Processing- Molecular Electronics. MEMS/NEMS, Future a Total Hours	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon applications and
electronic d UNIT-V Logic Dev Devices Ba Supercondu Nanotubes Trends. Text Book(s 1. G.W.	evices, Graphene, atomistic simulation.          LOGIC DEVICES AND APPLICATIONS         ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quantased on Resonant Tunneling-Single-Electron Devices for Logic ctor Digital Electronics-Quantum Computing Using Superconfor Data Processing- Molecular Electronics. MEMS/NEMS, Future at Total Hours         Total Hours	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon applications and <b>45 Hours</b>
electronic d UNIT-V Logic Dev Devices Ba Supercondu Nanotubes Trends. Text Book(s 1. G.W. 2. W.Ra	evices, Graphene, atomistic simulation.          LOGIC DEVICES AND APPLICATIONS         ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quantased on Resonant Tunneling-Single-Electron Devices for Logic ctor Digital Electronics-Quantum Computing Using Superconfor Data Processing- Molecular Electronics. MEMS/NEMS, Future a         Total Hours         S)         Hanson, Fundamentals of Nano electronics, Pearson, 2009.	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon applications and <b>45 Hours</b>
electronic d UNIT-V Logic Dev Devices Ba Supercondu Nanotubes Trends. Text Book(s 1. G.W. 2. W. Ra 3. K.E. I	evices, Graphene, atomistic simulation.          LOGIC DEVICES AND APPLICATIONS         ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quantased on Resonant Tunneling-Single-Electron Devices for Logic         ctor Digital Electronics-Quantum Computing Using Superconfor Data Processing- Molecular Electronics. MEMS/NEMS, Future a         Total Hours         s)         Hanson, Fundamentals of Nano electronics, Pearson, 2009.         nier, Nano electronics and Information Technology, Wiley-VCH, 2003.         Drexler, Nano systems, Wiley, 1992.         Davies, The Physics of Low-Dimensional Semiconductors, Cambr	9 Hours ntum Transport c Applications- nductors-Carbon applications and 45 Hours
electronic d UNIT-V Logic Dev Devices Ba Supercondu Nanotubes Trends. Text Book(s 1. G.W. 2. W.Ra 3. K.E.I 4. J.H.	evices, Graphene, atomistic simulation.          LOGIC DEVICES AND APPLICATIONS         ices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quantased on Resonant Tunneling-Single-Electron Devices for Logic         ctor Digital Electronics-Quantum Computing Using Superconfor Data Processing- Molecular Electronics. MEMS/NEMS, Future a         Total Hours         s)         Hanson, Fundamentals of Nano electronics, Pearson, 2009.         nier, Nano electronics and Information Technology, Wiley-VCH, 2003.         Drexler, Nano systems, Wiley, 1992.         Davies, The Physics of Low-Dimensional Semiconductors, Cambr 1998.	<b>9 Hours</b> ntum Transport c Applications- nductors-Carbon applications and <b>45 Hours</b>



						-		-	
Course	Code	BECF187ER0	L	Т	Р	С	IA	EA	TM
Course ]	Name	RF DESIGN	3	0	0	3	40	60	100
Course		PROFESSIONAL ELECTIVE		Sylla	bus Re	evision		V	V.1.0
Categor	У	COURSE -II							
Pre-requ	uisite	Basic knowledge of Electronic	Circu	its and	d Micro	owave	Engin	eering	5
Course	Objectiv	es:							
The cour	se should	d enable the students							
1. Т	o unders	tand the characteristics of active/pa	assive	e RF d	evices	and co	mpone	ents.	
2. Т	'o learn t	he characteristics of RF filters.							
3. Т	o learn t	he design of RF amplifiers and Osc	cillato	ors.					
Course	Outcome	s:							
On comp	oletion of	the course, the student will be able	to						
Course		Description	ı					Н	ighest
Outcom	L							Bl	oom's
es								Tax	onomy
CO1	-	ret the properties of passive co ations.	mpon	ents	at high	n frequ	iency		K2
CO2	Devel	op RF filter design at high frequenci	es.						K4
CO3	Devel	op RF components for transmission	line.						K2
CO4	Devel	op RF amplifier design.							K3
CO5	Analy	ze RF circuits.							K3
Correlat	tion betw	veen Course Outcomes (COs) and	Prog	ram (	Outcom	es (PC	<b>s</b> ):		
								Prog	ram
		Drogram Autoomas (						Spe	cific
COa		Program Outcomes (I	$(\mathbf{U}\mathbf{S})$					Outcomes	
COs								(PS	Os)

COs														(PSOs	)
	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	Μ	Μ	Μ	-	L	-	-	-	L	-	Μ	Μ	Μ	L
CO2	Μ	Μ	М	Μ	-	L	-	-	-	L	-	Μ	S	Μ	L
CO3	Μ	Μ	М	М	-	L	-	-	-	L	-	L	S	Μ	L
CO4	S	Μ	Μ	Μ	-	L	-	-	-	Μ	-	Μ	S	Μ	L
CO5	Μ	Μ	М	М	-	S	-	-	-	S	-	L	S	Μ	L

# UNIT-I RF ISSUES

9 Hours

Importance of RF design, Electromagnetic Spectrum, RF behavior of passive components, Chip components and Circuit Board considerations, Scattering Parameters, Smith Chart and applications.

UNIT-II RF FILTER DESIGN
--------------------------

9 Hours



Overview, Basic resonator and filter configuration, Special filter realizations, Filter implementations, Coupled filter.

#### UNIT-III ACTIVE RF COMPONENTS & APPLICATIONS

9 Hours

RF diodes, BJT, RF FETs, High electron mobility transistors; Matching and Biasing Networks – Impedance matching using discrete components, Micro-strip line matching networks, Amplifier classes of operation and biasing networks.

#### UNIT-IV RF AMPLIFIER DESIGNS

Characteristics, Amplifier power relations, Stability considerations, Constant gain circles, Constant VSWR circles, Low Noise circuits, Broadband, high power and multistage amplifiers.

#### UNIT-V OSCILLATORS, MIXERS & APPLICATIONS

9 Hours

9 Hours

Basic Oscillator model, High frequency oscillator configuration, Basic characteristics of Mixers; Phase Locked Loops; RF directional couplers and hybrid couplers; Detector and demodulator circuits.

Total Hours 45 Hours

Text	z Book(s)
1.	Reinhold Ludwig and Powel Bretchko, RF Circuit Design – Theory and Applications, Pearson Education Asia, First Edition, 2001.
2.	Pozar, Microwave Engineering, John Wiley, Third Edition, 2004.
Ref	ference Book(s)
1.	Joseph. J. Carr, Secrets of RF Circuit Design, McGrawHill, Third Edition, 2000.
2	Mathew M. Radmanesh, Radio Frequency & Microwave Electronics, Pearson, 2001



Course Code	BECF187EG0	L	Т	Р	С	IA	EA	TM
Course Name	DIGITAL IMAGE & VIDEO	3	0	0	3	40	60	100
	PROCESSING							
Course	PROFESSIONAL ELECTIVE		Sylla	abus R	evision			V.1.0
Category	COURSE -III							
Pre-requisite	Basic knowledge of Signals &	Syster	ns, Di	igital S	ignal P	rocessi	ng an	dDigital
	System Design							
<b>Course Objectiv</b>	ves:							
The course shoul	ld enable the students							
1. To study	the concepts of complexity of algo	orithm	s and	underst	and the	analys	is of	algorithms

- 1. To study the concepts of complexity of algorithms and understand the analysis of algorithms based on input size.
- 2. To learn advanced data structure and their fundamentals for application development.
- 3. To learn use of greedy and dynamic programming techniques and their application in the field of computer science to solve problems.
- 4. To learn algorithms for graph theory problem like spanning tree problem, single source shortest path and advance features of graph application in field of computer science.
- 5. To learn string matching algorithms and, P, NP problem in computer science domain.

Course Outcomes	Description	Highest Bloom's
outcomes		Taxonomy
CO1	Understand theory and models in Image and Video Processing.	K2
CO2	Explain the need of spatial and frequency domain techniques for image compression.	K3
CO3	Comprehend different methods, models for video processing and motion estimation.	К3
CO4	Illustrate quantitative models of image and video segmentation.	K4
CO5	Apply the process of image enhancement for optimal use of resources.	K3
CO6	Compose various Morphological operations on binary images and Generate their transformed images.	K3

COs					Prog	ram Ou	itcom	es (POs	5)				-	pecific (PSOs)	
COS	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	L	L	Μ	Μ	L	-	L	-	-	L	-	S	Μ	Μ	-
CO2	Μ	Μ	М	L	-	М	L	-	-	L	-	S	М	М	-
CO3	S	Μ	Μ	L	-	М	Μ	-	-	L	-	S	S	Μ	-
<b>CO4</b>	S	Μ	Μ	Μ	S	L	Μ	-	-	L	-	S	S	Μ	-



CO5	L	L		S	-	Μ	L	-	-	L	_	S	S	Μ	-
CO6	М	М	Μ	М	-	L	L	-	_	L	-	S	S	М	_
I	I												I	1	1
UNIT-I		DIG	ITAL	IMA	<b>GE</b> I	FUND	AME	NTALS	5					9 Ho	urs
Introduc			-	-		-	-		-		-				
Percepti															
between	pixe	ls - co	olor m	odels	. – Ne	eighbo	rhood,	adjace	ncy, c	onnec	tivity,	distar	nce me	asures	•
UNIT-II	r	тал	CEE	'NILI A	NCE	MEN	т							9 Ho	1180
Spatial I								listogr	m nr	ncessi	nσ – P	lasics	of Sna		
Smoothi			•					-	-		-		-		-
Transfor	-		-	-	-		-		-	-					
Gaussian															
formulat				-		-									
and shar	peni	ng; Co	olorSe	gmei	ntatio	n.									
UNIT-II	Ι	IMA	GE R	EST	ORA	TION	AND	SEGM	ENT	ATIO	N			9 Ho	urs
UNIT-IV															
Wavelet								MPRE			Sub t	and f	ilter b	<b>9 Ho</b> anks,	
Wavelet packets,	s an Imag	d Mul ge Cor	lti-res mpres	olutio sion-	on im Redu	age pr ndancy	rocessi y—inter	ng, wa [.] -pixel	velets	and sycho	-visua	l; Los	sless c	anks, [*] compre	wavelet ession –
Wavelet packets, predictiv	s and Imag ve, e	d Mul ge Cor entrop	lti-res mpres y; Lo	olutio ssion- ossy	on im Redu comp	age pr ndancy pression	rocessi y–inter n- pre	ng, wa -pixel dictive	velets and p and	and sycho trans	-visua form	l; Los	sless c	anks, [*] compre	wavelet ession –
Wavelet packets,	s and Imag ve, e	d Mul ge Cor entrop	lti-res mpres y; Lo	olutio ssion- ossy	on im Redu comp	age pr ndancy pression	rocessi y–inter n- pre	ng, wa -pixel dictive	velets and p and	and sycho trans	-visua form	l; Los	sless c	anks, [*] compre	wavelet ession –
Wavelet packets, predictiv Transfor	s and Imag ve, e rm; S	d Mul ge Cor entrop till im	lti-res mpres y; Lo ageco	olutio ssion- ossy ompro	on im Redu comp ession	age pr ndancy pression stand	rocessi y–inter n- pre	ng, wa -pixel dictive	velets and p and	and sycho trans	-visua form	l; Los	sless c	anks, compre	wavelet ession – Cosine
Wavelet packets, predictiv Transfor <b>UNIT-V</b>	s and Imag ve, e rm; S	d Mul ge Cor entropy till im <b>VID</b>	lti-res mpres y; Lo ageco E <b>O P</b> I	olutio ssion- ossy ompro	on im Redu comp ession <b>ESSI</b>	age production of the product of the	rocessi y–inter n- pre ards –	ng, wa -pixel dictive JPEG a	and p and p and and JP	and sycho trans EG-2	-visua form 000.	l; Los codin	sless c g; Di	anks, compressorate	wavelet ession – Cosine urs
Wavelet packets, predictiv Transfor <b>UNIT-V</b> Fundame	s and Imag ve, e rm; S	d Mul ge Cor entropy till im <b>VIDI</b> s of V	lti-res mpres y; Lo ageco E <b>O P</b> I Video	olutio ssion- ossy ompro ROC Cod	on im Redu comp ession ESSI ling-	age produced and and and and and and and and and an	rocessi y–inter n- pre ards –	ng, wa -pixel dictive JPEG a redund	and p and p and and JP ancy,	and sycho trans EG-2 motic	-visua form 000.	l; Los codin	sless c g; Di n tech	anks, compre screte 9 Ho	wavelet ession – Cosine urs s – full
Wavelet packets, predictiv Transfor	s and Imag ve, e rm; S ental ast so	d Mul ge Cor entropy till im <b>VIDI</b> s of ` earch	lti-res mpres y; Lo ageco E <b>O P</b> Video strate	olutio ssion- ossy ompro ROC o Cod gies,	on im Redu comp ession ESSI ling- forwa	age produced ndancy pression standa NG Inter-f	rocessi y–inter ards – rame I back	ng, wa -pixel dictive JPEG a redund ward m	and p and and and JP ancy, otion	and sycho trans EG-2 motic predic	-visua form 000. on esti	l; Losi codin imatio frame	sless c g; Di n tech classi	anks, compre screte 9 Ho miques fication	wavelet ession – Cosine urs s – full n – I, P
Wavelet packets, predictiv Transfor <b>UNIT-V</b> Fundame search, fa and B; V	s and Imag ve, e rm; S ental ast so Vide	d Mul ge Cor entropy till im <b>VIDI</b> s of V earch o sequ	lti-res mpres y; Lo ageco E <b>O P</b> I Video strate ience	olutio ssion- ossy ompro ROC Cod gies, hiera	on im Redu comp ession ESSI ling- forwa	age production ndancy pression stand stand NG Inter-f urd and – Gro	rocessi y–inter ards – rame I back up of	ng, wa -pixel dictive JPEG a redund ward m picture	and p and JP ancy, otion s, fran	and sycho trans EG-2 motic predia	-visua form 000.	l; Los codin matio frame macro	sless c g; Di n tech classi -block	anks, compressorete	wavelet ession – Cosine urs s – full n – I, P blocks;
Wavelet packets, predictiv Transfor <b>UNIT-V</b> Fundamo search, fa	s and Imag ve, e cm; S ental ast so Vide	d Mul ge Cor entropy till im <b>VIDI</b> s of V earch o sequ a vide	lti-res mpres ageco E <b>O P</b> I Video strate ience	olutio ssion- ossy ompro <b>ROC</b> o Cod gies, hiera	n im Redu comp ession ESSI ling- forwa archy and	age pr ndancy pression standa NG Inter-f ard and – Gro decode	rocessi y-inter ards - rame l back up of er; Vic	ng, wa dictive JPEG a redund ward m picture	and p and JP ancy, otion s, fran	and sycho trans EG-2 motic predi- nes, s	-visua form 000. on estiction, lices, ds – M	l; Losi codin matio frame macro MPEG	sless c g; Di n tech classi -block and l	anks, compressorete	wavelet ession – Cosine urs a – full n – I, P blocks; . Video
Wavelet packets, predictiv Transfor <b>UNIT-V</b> Fundame search, fa and B; V Element Segment	s and Imag ve, e rm; S ental ast se Vide s of tation	d Mul ge Cor entropy till im <b>VIDI</b> s of V earch o sequ a vide n- Ter	lti-res mpres y; Lo ageco EO PI Video strate ience o enc mpora	olutionsion- ossy compresentation <b>ROC</b> o Cod gies, hiera coder l seg	on im Redu comp ession ESSI ling- forwa archy and of menta	age produced ation—s	rocessi y-inter ards - rame l back up of er; Vic shot be	ng, wa -pixel dictive JPEG a redund ward m picture leo cod	and p and JP ancy, otion s, fran ing st	motic predia ction, ction,	-visua form 000. on estiction, lices, ds – M hard	l; Losi codin imatio frame macro MPEG cuts a	sless c g; Di n tech classi -block and l nd sof	anks, compressorate screte 9 Homiques fication ts and H.26X.	wavelet ession – Cosine urs 5 – full n – I, P blocks; . Video spatial
Wavelet packets, predictiv Transfor <b>UNIT-V</b> Fundame search, fa and B; Element Segment	s and Imag ve, e cm; S ental ast so Vide s of tation	d Mul ge Cor entropy till im <b>VIDI</b> s of V earch o sequ a vide n- Ter n – mo	lti-res mpres y; Lo ageco EO PI Video strate ience o enc mpora	olutionsion- ossy compresentation <b>ROC</b> o Cod gies, hiera coder l seg	on im Redu comp ession ESSI ling- forwa archy and of menta	age produced ation—s	rocessi y-inter ards - rame l back up of er; Vic shot be	ng, wa -pixel dictive JPEG a redund ward m picture leo cod	and p and JP ancy, otion s, fran ing st	motic predia ction, ction,	-visua form 000. on estiction, lices, ds – M hard	l; Losi codin matio frame macro MPEG	sless c g; Di n tech classi -block and l nd sof	anks, compressorete	wavelet ession – Cosine urs 5 – full n – I, P blocks; . Video spatial
Wavelet packets, predictiv Transfor UNIT-V Fundame search, fa and B; V Element Segment segment Text Boo	s and Imag ve, e rm; S ental ast se Vide s of tation ation <b>ok(s)</b>	d Mul ge Cor entropy till im <b>VIDI</b> s of V earch o sequ a vide n- Ter n – mo	lti-res mpres y; Lo lageco EO P Video strate lence o enc mpora tion-t	olutionsion- ossy ompro ROC Cod gies, hiera coder l seg based	n im Redu comp ession ESSI ling- forwa archy and s, Vide	age production ndancy pression stands stands NG Inter-for and and decode ation—secobje	rocessi y-inter ards - rame l back up of er; Vic shot be ect dete	ng, wa -pixel dictive JPEG a redund ward m picture leo cod pundary ection a	and p and JP ancy, otion s, fran ing st dete nd tra	motic predia ction, cking	-visua form 000. on estiction, lices, ds – M hard-	l; Los codin matio frame macro MPEG cuts a	sless c g; Di n tech classi -block and l nd sof Hours	anks, compressorete screte 9 Houniques fication (H.26X) (H.26X) (H.26X) (H.26X) (H.26X)	wavelet ession – Cosine urs 5 – full n – I, P blocks; Video spatial ours
Wavelet packets, predictiv Transfor UNIT-V Fundame search, fa and B; ` Element Segment segment Segment 1. R.0 Ed	s and Imag ve, e cm; S ental ast so Vide s of tation ation <b>ok(s)</b>	d Mul ge Cor entropy till im <b>VIDI</b> s of V earch o sequ a vide n- Ter n – mo	tti-res mpres y; Lo ageco EO PI Video strate aence o enc mpora tion-t	olutionsion- ossy ompro ROC Cod gies, hiera coder l seg based	n im Redu comp ession ESSI ling- forwa archy and s, Vide	age production ndancy pression stands stands NG Inter-for and and decode ation—secobje	rocessi y-inter ards - rame l back up of er; Vic shot be ect dete	ng, wa -pixel dictive JPEG a redund ward m picture leo cod pundary ection a	and p and JP ancy, otion s, fran ing st dete nd tra	motic predia ction, cking	-visua form 000. on estiction, lices, ds – M hard-	l; Los codin matio frame macro MPEG cuts a	sless c g; Di n tech classi -block and l nd sof Hours	anks, compressorete screte 9 Houniques fication (H.26X) (H.26X) (H.26X) (H.26X) (H.26X)	wavelet ession – Cosine urs 5 – full n – I, P blocks; Video spatial ours
Wavelet packets, predictiv Transfor UNIT-V Fundame search, fa and B; Y Element Segment segment Text Boo1. R.0Ed2. An	s and Imag ve, e cm; S ental ast so Vide s of tation ation <b>ok</b> (s) C. C	d Mul ge Cor entropy till im <b>VIDI</b> s of V earch a vide n- Ter n – mo Gonzal	tti-res mpres y; Lo ageco EO PI Video strate nence o enc mpora tion-t	olutionsion- ossy ompro- ompro- ompro- ompro- ompro- gies, hiera coder l seg oased nd R	ESSI ing- forwa and a menta ; Vide	age production of the stands o	rocessi y-inter ards - rame l back up of er; Vic shot be ect dete	ng, wa dictive JPEG a redund ward m picture leo cod pundary ection a	and p and jp and JP ancy, otion s, fran ing st dete nd tran	and sycho trans EG-2 motic predi- nes, s candar ction, cking Proces	-visua form 000. on estiction, lices, ds – N hard	l; Losi codin frame macro MPEG cuts a Fotal H Secon	sless c g; Di n tech classi -block and l nd sof Hours nd Ec	anks, compressorete 9 Horniques fication s and H.26X. t-cuts; 45 Horniques	wavelet ession – Cosine urs 5 – full n – I, P blocks; . Video spatial



Course	Cod	e	BECF	187EI	HO			L	Τ	P	· (	C	IA	EA	TM			
Course	Nam	-	WIRF			ISOR		3	0	0		3	40	60	100			
			NETV															
Course						ELEC	TIVE		Sy	llabus	s Revis	ion		V.	1.0			
Catego	-		COUR	RSE -I	II													
Pre-rec	luisit	e	Basi	c kno	wledg	ge of E	Data C	ommu	nicatio	on Ne	tworks	5						
Course	Obje	ective	s:															
The cou																		
						Vireless	senso	r Netw	orks.									
			e Arch															
					-	Netwo	-			-								
4.	To lea	arn th	e senso	or nod	e hard	ware p	latform	n and so	oftwar	e plat	forms.							
	_																	
Course				-				1										
On com	-	on of t	the cou	irse, th	ne stuc													
Cours						D	escrip	tion						-	hest			
Outcor	n			-	om's													
es															nomy			
CO1		Define the overview of wireless sensor networks and enabli													g <b>K2</b>			
CO2		technologies for wireless sensor networks. Apply the design principles of WSN architectures and operating system													K3			
02					-			rennee	tures		perating	g syste	ms	K3				
<b>CO3</b>			-			nt situa		ofMA	Codd	<b>r</b> 00000				Ľ	(4			
C03					-	or assig						tina	and		<u> </u>			
004		-			-	e infra for wire				-	ni iou	ung	anu	r	14			
CO5						rk plat					ic prog	rammi	na	L	<u>.</u>			
05		inary s	e the s	C11501	lictwo	ik plati	or in ai		state		ic prog		ng.	ľ	17			
Correla	ation	hetw	een Co	nirse	Outco	mes (C	'Os) ai	nd Pro	oram	Oute	omes (	POs)·						
Correa		beem					-		0	Oute	onies (	05)	Pro	gram S	necifi			
					Prog	ram Ou	itcome	es (POs	5)					comes	-			
COs	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PS	PS	PS			
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03			
CO1	М	L	-	-	-	-	-	-	-	-	-	-	L	-	-			
CO2	S	Μ	-	-	-	-	-	-	-	-	-	-	Μ	-	-			
CO3	S	Μ	L	-	L	-	-	-	-	-	-	-	-	-	_			
CO4	S	S	M	М	М	-	-	-	-	-	-	-	-	L	-			
CO5	S	S	М	S	S	-	-	-	-	-	-	-	-	М	M			
		1	1	I		L	1		I	1	1	1	1		1			
UNIT-I	[	OV	ERVI	EWC	<b>FW</b>	IRELE	ESS SE	ENSO	R NET	гwо	RKS			9 Ho	urs			
Single-	Node	Arch	nitectu	re - H	Hardw	are Co	mpon	ents- N	Vetwo	rk Ch	aracte	ristics	- unic	ue con	strain			
and cha							-							•				
	ks.																	



UNIT-II	ARCHITECTURES	9 Hours
Transceiver	rchitecture- Sensor Networks-Scenarios- Design Principle, Physical Design Considerations, Optimization Goals and Figures of Merit, Gatew ystems and Execution Environments- introduction to TinyOS and nest nunication.	vay Concepts,
UNIT-III	NETWORKING SENSORS	9 Hours
S-MAC, - B Wakeup Ra	cols for Wireless Sensor Networks, Low Duty Cycle Protocols And Waker B-MAC Protocol, IEEE 802.15.4 standard and ZigBee, the Mediation Dev adio Concepts, Address and Name Management, Assignment of MAC cocols Energy-Efficient Routing, Geographic Routing.	vice Protocol,
UNIT-IV	INFRASTRUCTURE ESTABLISHMENT	9 Hours
Topology C Tasking and	Control, Clustering, Time Synchronization, Localization and Positio Control.	ning, Sensor
UNIT-V	SENSOR NETWORK PLATFORMS AND TOOLS	9 Hours
	le Hardware – Berkeley Motes, Programming Challenges, Node-le ode level Simulators, State-centric programming.	evel software
platforms,N Text Book(s	ode level Simulators, State-centric programming. Total Hours	45 Hours
platforms, N     Text Book(s     1.	ode level Simulators, State-centric programming. Total Hours	45 Hours
platforms, N     Text Book(s     1.     Holge     Network     2.	ode level Simulators, State-centric programming. Total Hours ) r Karl & Andreas Willig, "Protocols and Architectures for Wi	<b>45 Hours</b> reless Sensor
platforms, N Text Book(s 1. Holge Netwo 2. Feng 2 Appro 3. Walter	ode level Simulators, State-centric programming. Total Hours Total Hours Total Hours Total Hours Total Hours Tr Karl & Andreas Willig, "Protocols and Architectures for Wi brks", John Wiley, 2005. Zhao & Leonidas J.Guibas, "Wireless Sensor Networks - An Information	<b>45 Hours</b> reless Senson
platforms, N       Text Book(s       1.     Holge       2.     Feng       3.     Walter	ode level Simulators, State-centric programming. Total Hours ) r Karl & Andreas Willig, "Protocols and Architectures for Wi prks", John Wiley, 2005. Zhao & Leonidas J.Guibas, "Wireless Sensor Networks - An Information ach", Elsevier, 2007. negus Dargie, Christian Poellabauer, "Fundamentals Of Wireless Sensor y And Practice", By John Wiley & Sons Publications, 2011.	<b>45 Hours</b> reless Senson
platForms, NText Book(s1.Holge Network2.Feng 2 Appro3.Walter TheoryReference B1.Kazen	ode level Simulators, State-centric programming. Total Hours ) r Karl & Andreas Willig, "Protocols and Architectures for Wi prks", John Wiley, 2005. Zhao & Leonidas J.Guibas, "Wireless Sensor Networks - An Information ach", Elsevier, 2007. negus Dargie, Christian Poellabauer, "Fundamentals Of Wireless Sensor y And Practice", By John Wiley & Sons Publications, 2011.	<b>45 Hours</b> reless Senson Processing Networks -



Course	Code	e :	BECF	187EI	0			L	Τ	P		C	IA	EA	TM
Course	Nam	e .	ASIC	DES	IGN			3	0	0	3	3	40	60	100
Course		]	PROF	ESSI	ONAL	ELEC	TIVE		Sy	llabu	s Revis	ion		V	1.0
Catego	ry		COUF	RSE -I	Π				ľ						
Pre-req	uisite	è	Basi	ic kno	wledg	ge of D	Digital	Syster	n Des	ign a	nd VLS	SI			
Course	Obje	ctives	5:												
The cou	ırse sł	nould	enable	the st	tudent	S									
1.	Expla	in the	e types	s of A	SICs	and dea	sign fl	ows.							
2.	Give	the s	tuden	ts an	under	rstandi	ng of	HDL	codin	g gui	delines	and	synth	esizabl	e HDL
	const	ructs.													
	-			•			-	-			ost fun				
			e vario	ous ab	stract	ion lev	els in	physic	al des	ign ai	nd guid	leline	s at ea	ch abs	traction
	level.														
~															
Course				.1		1 / 1		1,							
On com	-	on of t	ne cou	irse, ti	ne stuc										1 4
Course	-					D	escrip	tion						-	hest
Outcor	n	Bloom's Taxonomy													
es CO1		Taxonomy       Understand different types of ASICs and design flows       K2													
CO1 CO2		Understand different types of ASICs and design flows.K2Understand concept of different programmable device.K5													
C02 C03				-							ideline	0			<u>x5</u> X3
C03											DL con		0		K5 K5
C04		-	-			-		-			nd Rou		8		<u>x3</u> X3
005	1	0 unu	cistan	u inc	logic	011100	n pian	ining, j	nacen	ient a		ung.		ſ	
Correla	tion	hetwe	en Co	nirce	Outco	mes ((	ັ <b>ດ</b> ເ) ອາ	nd Pro	aram	Oute	omes ()	POs)·			
Correa		Detwe		Juise	Outco	mes (e	. ( <b>b</b> s) a		gram	Out	onics (1	1 (3).		oram §	Specific
					Progr	ram Ou	itcome	es (POs	5)						(PSOs)
COs	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	М	Μ	L	-	L	-	-	-	-	М	-	S	M	S
CO2	S	М	М	-	-	L	-	-	-	-	М	-	S	М	S
CO3	S	Μ	М	L	-	М	-	-	-	-	S	-	S	М	S
CO4	S	М	М	L	-	М	-	-	-	-	М	_	S	М	S
CO5	S	М	М	-	-	М	-	-	-	-	М	-	S	М	S
			1	1			1 1		1	1	1	1	1	1	1
UNIT-I	[		ROD RAR		ION 7	FO AS	SICS,	CMOS	5 LOO	GIC &	& ASI	С		9 Ho	urs
Types	of A				flow	- CM	OS tr	ansisto	rs C	MOS	Desig	n rule	es - (	 Combii	nationa
• 1				0							0				ansisto
LUZIUN		~~~~		51			- p								
Parasiti															



UNIT-II	PROGRAMMABLE ASICS, ASIC LOGIC CELLS AND ASIC	9 Hours
	I/O CELLS	
Anti-fuse -	static RAM - EPROM and EEPROM technology - PREP benchmarks	- Actel ACT
Xilinx LC.	A –Altera FLEX-Altera MAX DC & AC inputs and outputs-Clock & I	Power inputs
Xilinx I/O	blocks.	_
UNIT-III	PROGRAMMABLE ASIC INTERCONNECT, ASIC DESIGN SOFTWARE AND LOW LEVEL DESIGNENTRY	9 Hours
Actel ACT	-Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera	MAX 9000 -
Altera FLE	X – Design systems - Logic Synthesis - Half gate ASIC -Schematic entr	y - Low leve
design lang	uage - PLA tools -EDIF- CFI design representation.	
		0.11
UNIT-IV	LOGIC SYNTHESIS, SIMULATION AND TESTING	9 Hours
-	d logic synthesis -VHDL and logic synthesis - types of simulation -bour simulation - automatic test pattern generation.	ndary scan
lest- lault s	sinulation - automatic test pattern generation.	
UNIT-V	ASIC CONSTRUCTION, FLOOR PLANNING, PLACEMENT	9 Hours
	& ROUTING	
System pa	rtition - FPGA partitioning - partitioning methods - floor planning -	placement
physical de	sign flow-global routing-detailed routing-special routing-circuit extraction	-
physical de	esign flow-global routing-detailed routing-special routing-circuit extraction	-
physical de	esign flow–global routing-detailed routing-special routing-circuit extraction	-
Text Book	Total Hours	on -DRC.
Text Book	Total Hours (s) S .Smith, "Application Specific Integrated Circuits, Addison -Wesley L	on -DRC.
Text Book	Total Hours (s) S .Smith, "Application Specific Integrated Circuits, Addison -Wesley L	on -DRC.
Text Book1.M.J.S1997Reference1.Farza	Total Hours (s) S .Smith, "Application Specific Integrated Circuits, Addison -Wesley L Book(s) d Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practic	on -DRC. 45 Hours
Text Book 1. M.J.S 1997 Reference 1. Farza Prent	Total Hours (s) S .Smith, "Application Specific Integrated Circuits, Addison -Wesley L Book(s) Id Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practic ice Hall PTR, 2003.	on -DRC. 45 Hours
Text Book1.M.J.S1997Reference1.FarzaPrent2.Wayn	Total Hours (s) S .Smith, "Application Specific Integrated Circuits, Addison -Wesley L Book(s) Id Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practic ice Hall PTR, 2003. he Wolf, FPGA-Based System Design, Prentice Hall PTR, 2004.	on -DRC. 45 Hours ongman Inc.
Text Book1.M.J.S.1997Reference1.FarzaPrent2.Wayn3.R. RPublic	Total Hours (s) S .Smith, "Application Specific Integrated Circuits, Addison -Wesley L Book(s) Id Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practic ice Hall PTR, 2003.	on -DRC. 45 Hours ongman Inc.
Text Book1.M.J.S.1997Reference1.FarzaPrent2.Wayn3.R. RPubli4.F.Nel	Total Hours (s) S .Smith, "Application Specific Integrated Circuits, Addison -Wesley L Book(s) Id Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practic ice Hall PTR, 2003. The Wolf, FPGA-Based System Design, Prentice Hall PTR, 2004. ajsuman, System-on-a-Chip Design and Test. Santa Clara, CA: Ar	on -DRC. 45 Hours ongman Inc cal Approach tech House



2. То 3. То	7 <b>isite</b> <b>Dbjecti</b> se shou o introc o know o know o under <b>Dutcom</b>	PRO COU Basic ves: Id enabluce the the fabric the des stand ap	FESSI RSE -] : Know e the s conceprication ign con	ONAL III vledge tudent pts of a n proce	micro a ess of N of mic	TIVE egrated and nar Microsy	d Circu	iits, M		Revis	sion			100 .1.0 n		
Category Pre-requi Course O The cours 1. To 2. To 3. To 4. To	isite Dbjecti se shou o introc o know o know o under Dutcom	COU Basic ves: Id enabl uce the the fabr the des stand ap	RSE -] c Know e the s conceprication ign con	III vledge tudent pts of m n procents	e of Int s micro a ess of N of mic	egrated and nar Microsy	no elect	iits, M	easur			strum				
Pre-requi Course O The cours 1. To 2. To 3. To 4. To	isite Dbjecti se shou o introc o know o know o under Dutcom	COU Basic ves: Id enabl uce the the fabr the des stand ap	RSE -] c Know e the s conceprication ign con	III vledge tudent pts of m n procents	e of Int s micro a ess of N of mic	egrated and nar Microsy	no elect			ement	t & In	strum	entatio	<u>n</u>		
Course O The cours 1. To 2. To 3. To 4. To	Dbjecti se shou o introc o know o know o under Dutcom	Basic ves: d enabl uce the the fab the des stand ap	e Knov e the s conceprication ign con	vledge tudent pts of a n proce	s micro a ess of N of mic	and nar	no elect			emen	t & In	strum	entatio	n		
The cours 1. To 2. To 3. To 4. To	se shou o introc o know o know o under Dutcom	ves: d enabl uce the the fabi the des stand ap	e the s conceprication ign con	tudent pts of a n proce	s micro a ess of N of mic	and nar	no elect									
The cours 1. To 2. To 3. To 4. To	se shou o introc o know o know o under Dutcom	d enabl uce the the fab the des stand ap es:	conce rication ign con	pts of a n proce ncepts	micro a ess of N of mic	Micros		romea								
<ol> <li>To</li> <li>To</li> <li>To</li> </ol>	o know o know o under <b>Dutcom</b>	the fabric the design of the d	rication	n procence	ess of N of mic	Micros		romed								
3. To 4. To	o know o under Dutcom	the des stand ap es:	ign coi	ncepts	of mic		ystems.		hanic	al dev	ices.					
4. To	o under Dutcom	stand ap	-	-		ro sens										
	Outcom	es:	plicati	ion of i	MEMS		ors and	l micro	o actu	ators.						
Course A						in diff	ferent i	ndustr	ies &	provic	les rea	al-wor	ld case	studies.		
Course O																
	letion c															
On compl		f the co	urse, tl	he stuc	lent wi	ll be at	ole to									
Course					D	escript	tion							ghest		
Outcom														om's		
es													Taxonomy			
CO1	Understand the historical background of MEMS development and the impact of MEMS on technology advancement.							the	]	K2						
~~~												_				
CO2	Recognize the use of materials in micro fabrication and describe the fabrication processes including surface micromachining, bulk micromachining and LIGA.										K2					
									ulk							
			-				<u> </u>		1 .	1.4	1					
CO3		ze the				spects	of elec	etrome	chani	cal tra	ansduc	ers	_	K3		
CO4		ling ser				hniqua	for a	naaifi	o ME	MC fo	briggt	ion		K4		
004			meron	liaciiii	ing tec	iiiique	101 a	specifi		WIS 18	lorical		_	74		
CO5	proce	ss. sis of N	NEMS	annlia	pations	in diff	arant ir	ductri	96					K4		
0.05	Allai	515 01 1		appin	20110115	mun		luustii	C 3.				1	.14		
Correlati	ion bet	ween C	ourse	Outco	omes (C	COs) a	nd Pro	gram	Outc	omes	(POs)	:				
				Ducan	O	4.0.0		<u>`</u>				Pro	gram	Specific		
COs _				Progra	am Ou	licome	s (PUs)				Out	tcomes	(PSOs)		
P	PO PO) PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS		
	1 2	3	4	5	6	7	8	9	10	11	12	01	02	03		
	S L	-	-	-	-	-	-	-	-	-	-	-	-	-		
	S L	-	L	-	-	-	-	-	-	-	-	-	-	-		
CO3	S N	[-	М	-	-	-	-	-	-	-	-	S	-	-		
CO4	S N	[L	М	-	-	-	-	-	-	-	-	-	Μ	-		
CO5	S S	Μ	Μ	Μ	-	-	-	-	-	-	-	S	М	L		
	T	ΠΡΟΓ											0.11			
UNIT-I Introduct		TROE											9 Ho			

MEMS, Overview of Micro fabrication, Microelectronics Fabrication Process flow, Process selection and Design.

UNIT-II SENSORS AND ACTUATORS

9 Hours Introduction to electrostatic sensors and actuators – parallel plate capacitors and applications – Inertia sensor, pressure sensor, flow sensor, tactile sensor, parallel-plate actuators, Thermal Sensors and actuators. Piezo resistive sensors - piezo resistive sensor materials, stress analysis of mechanical elements and applications. Piezoelectric sensing and actuators - Quartz, PZT, PVDF,

ZnO.

UNIT-III LITHOGRAPHY (LIGA) AND ETCHING TECHNIQUE

Lithography's origin, Overview of photolithography, Lithography sensitivity and intrinsic resist sensitivity, resolution in photolithography and its enhancement technique, Dry Etching: Definitions and Jargon, Physical etching, plasma etching, Deep reactive Ion etching, Comparing Wet and Dry etching.

UNIT-IV SURFACE MICROMACHINING

Introduction, Mechanical properties of Thin films, Surface Micromachining processes, Poly-Si surface Micromachining modifications, comparison of bulk micromachining and surface micromachining. Top-Down and Bottom-Up micromachining technique.

UNIT-V APPLICATIONS AND CASE-STUDIES

MEMS in Automotive market, MEMS in Medical and Biomedical Market, Environmental Monitoring, Industrial/Automation, IT/Peripheral, Telecommunication. CASE-STUDIES: Blood Pressure (BP) Sensor, Microphone, Acceleration sensor, Gyros.

> **Total Hours** 45 Hours

Text	z Book(s)
1.	"Foundation of MEMS" Chang Liu, Second Edition, Parson, 2012.
2.	"Fundamentals of Micro fabrication - The Science of Miniaturization" Marc J.Madou,
	Second Edition, CRC Press, 2011.
Refe	rence Book(s)
1.	"Micro and Smart Systems" – Anantha suresh & Gopal Krishnan - Wiley India.
2.	"Microsystem Design" - S.D.Senturia, Kluwer Academic Publishers.
3.	"MEMS and Microsystems Design and Manufacture", Tai Ran Hsu, TataMcraw Hill, 2002.
4.	"MEMS and NEMS: Systems, Devices, and Structures" Sergey Edward Lyshevski, CRC
	Press,2002.

9 Hours

9 Hours

9 Hours

Course	Code	e	BECF	187E	K0			L	Т	P		C	IA	EA	TM				
Course	Nam	e I	MOB	ILE				3	0	0	3	3	40	60	100				
			СОМ	MUN	ICAT	'ION A	ND												
		•	NETV	VORI	KS														
Course)		PROF	ESSI	ONAL	LEC	TIVE		Sy	llabus	s Revis	ion		V	.1.0				
Catego	ry		COUF	RSE -I	V														
Pre-rec	quisite	e	Basic	knov	vledge	e of Dig	gital C	Commu	inicati	ion an	d Ante	ennas							
Course	Obje	ectives	5:																
The cou	urse sl	nould	enable	the s	tudent	S													
1.	To de	scribe	the e	voluti	on and	l history	y of wi	reless	techno	ology a	and to a	unders	erstand the concept of						
	freque	ency r	euse, o	cell sp	litting	, sector	ing.												
2.	To un	dersta	and the	efund	ament	al techn	iques a	about c	liffere	nt fadi	ing effe	ects.							
		-		-		-	-	-				rious	anten	tenna arrays.					
		-		-	-	tems wi			receiv	e dive	rsity.								
5.	To an	alyze	the pe	rform	ance c	of MIM	O syste	ems.											
9	0 /																		
Course				41		1 / 1	11 1	1 /											
	-	on of t	n of the course, the student will be able to																
Cours						D	escrip	tion							ghest				
Outco	n														om's				
es			-44		1		- C	• •	- f	·	1	•	1	Taxo	onomy				
CO1						nding or their ev		-			example	e wire	less]	K6				
CO2						standing					on in	cell	ular						
		nviron						U	1	10				J	K6				
CO3	D	evelop	p the	math	ematic	cal tool	to an	nalyze	radiat	ion c	haracte	ristics	of	1	K4				
						lication								1	7				
CO4				g of	diffe	erent c	liversit	y sch	eme	to e	nhance	sys	tem	J	K3				
005	1	erform		6		1 4	1 .	6		1.1	T (N / 1/'	1						
CO5					-	and te	-			utiple	-input	wulti	pie-	J	K5				
		ulput		(0) the	eory to	comm	umcati	on sys	eins.										
Correl	ation	betwe	en Co	ourse	Outco	mes (C	:0s) ar	nd Pro	gram	Oute	omes ()	POs).							
	auton				54100		. 		8. 4111	Guit				Progr	am				
														Speci					
					Prog	ram Ou	itcome	es (POs	5)					Outco					
COs														(PSC					
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	-				
	1	$\frac{10}{2}$	$\frac{10}{3}$	4	5	6	7	8	9	10	11	10	01	02					
CO1	S	M	M	L	-	-	_	-	M	S	-	L	S	M	S				
CO1	S	M	S	M	_	_	_		M	L	_	M	S	M	M				
CO2	M	L	S	L	_	_	_	_	L	M	-	M	S		M				
CO4	M	L	M	L	_	_	_		M	M	_	M	S		M				
	141	L	141	L		-	_	-	141	141	_	141	5	L	141				

CO5 M L S L L S - S S	M M
UNIT-I CELLULAR CONCEPTS	9 Hours
Cellular concepts- Cell structure, frequency reuse, cell splitting, channel assignme interference, capacity, power control; Wireless Standards: Overview of 2G and standards.	
UNIT-II THE WIRELESS CHANNEL	9 Hours
Signal Propagation-Propagation mechanism- reflection, refraction, diffraction and large scale signal propagation and lognormal shadowing. Fading channels -Multipat scale fading- Doppler shift, statistical multipath channel models, narrowband and fading models, power delay profile, average and rms delay spread, coherence ban coherence time, flat and frequency selective fading, slow and fast fading, average fa and level crossing rate.	h and smal d wideband dwidth and
UNIT-III ANTENNAS FOR MOBILE TERMINALS	9 Hours
Capacity of flat and frequency selective channels, Antennas- Antennas for mob monopoleantennas, PIFA, base station antennas and arrays	ile termina
UNIT-IV MULTI-ANTENNA COMMUNICATION	9 Hours
UNIT-IVMULTI-ANTENNA COMMUNICATIONReceiver structure-Diversity receivers-selectionandMRCreceivers,RAKequalization:linear-ZFE and adaptive,DFE.Transmit Diversity-Altamonte scheme.	
Receiver structure- Diversity receivers- selection and MRC receivers, RAK	
Receiver structure-Diversity receivers-selectionandMRCreceivers,RAKequalization:linear-ZFE and adaptive,DFE.Transmit Diversity-Altamonte scheme.UNIT-VMIMO AND MULTIPLEXING	E receiver 9 Hours
Receiver structure- Diversity receivers- selection and MRC receivers, RAK equalization: linear-ZFE and adaptive, DFE. Transmit Diversity-Altamonte scheme.	E receiver 9 Hours ng tradeoff
Receiver structure- Diversity receivers- selection and MRC receivers, RAK equalization: linear-ZFE and adaptive, DFE. Transmit Diversity-Altamonte scheme. UNIT-V MIMO AND MULTIPLEXING MIMO and space time signal processing, spatial multiplexing, diversity/multiplexi Performance measures- Outage, average SNR, average symbol/bit error rate. System	E receiver 9 Hours ng tradeoff
Receiver structure- Diversity receivers- selection and MRC receivers, RAK equalization: linear-ZFE and adaptive, DFE. Transmit Diversity-Altamonte scheme. UNIT-V MIMO AND MULTIPLEXING MIMO and space time signal processing, spatial multiplexing, diversity/multiplexi Performance measures- Outage, average SNR, average symbol/bit error rate. System GSM,EDGE, GPRS, IS-95, CDMA 2000 and WCDMA.	E receiver 9 Hours ng tradeoff n examples
Receiver structure- Diversity receivers- selection and MRC receivers, RAK equalization: linear-ZFE and adaptive, DFE. Transmit Diversity-Altamonte scheme. UNIT-V MIMO AND MULTIPLEXING MIMO and space time signal processing, spatial multiplexing, diversity/multiplexi Performance measures- Outage, average SNR, average symbol/bit error rate. System GSM,EDGE, GPRS, IS-95, CDMA 2000 and WCDMA. Total Hours	E receiver 9 Hours ng tradeoff n examples
Receiver structure- Diversity receivers- selection and MRC receivers, RAK equalization: linear-ZFE and adaptive, DFE. Transmit Diversity-Altamonte scheme. UNIT-V MIMO AND MULTIPLEXING MIMO and space time signal processing, spatial multiplexing, diversity/multiplexi Performance measures- Outage, average SNR, average symbol/bit error rate. System GSM,EDGE, GPRS, IS-95, CDMA 2000 and WCDMA. Total Hours Text Book(s)	E receiver 9 Hours ng tradeoff n examples
Receiver structure- Diversity receivers- selection and MRC receivers, RAK equalization: linear-ZFE and adaptive, DFE. Transmit Diversity-Altamonte scheme. UNIT-V MIMO AND MULTIPLEXING MIMO and space time signal processing, spatial multiplexing, diversity/multiplexi Performance measures- Outage, average SNR, average symbol/bit error rate. System GSM,EDGE, GPRS, IS-95, CDMA 2000 and WCDMA. Total Hours Text Book(s) 1. WCY Lee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990.	E receiver 9 Hours ng tradeoff n examples
Receiver structure- Diversity receivers- selection and MRC receivers, RAK equalization: linear-ZFE and adaptive, DFE. Transmit Diversity-Altamonte scheme. UNIT-V MIMO AND MULTIPLEXING MIMO and space time signal processing, spatial multiplexing, diversity/multiplexi Performance measures- Outage, average SNR, average symbol/bit error rate. System GSM,EDGE, GPRS, IS-95, CDMA 2000 and WCDMA. Total Hours Total Hours MIWCY Lee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990. 2. WCY Lee, Mobile Communications Design Fundamentals, Prentice Hall, 1993.	E receiver 9 Hours ng tradeoff n examples
Receiver structure- Diversity receivers- selection and MRC receivers, RAK equalization: linear-ZFE and adaptive, DFE. Transmit Diversity-Altamonte scheme. UNIT-V MIMO AND MULTIPLEXING MIMO and space time signal processing, spatial multiplexing, diversity/multiplexi Performance measures- Outage, average SNR, average symbol/bit error rate. System GSM,EDGE, GPRS, IS-95, CDMA 2000 and WCDMA. Total Hours Text Book(s) 1. WCY Lee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990. 2. WCY Lee, Mobile Communications Design Fundamentals, Prentice Hall, 1993. Reference Book(s) Text Book(s)	E receiver 9 Hours ng tradeoff n examples 45 Hours

Course	Cod	e	BECF	187EI	L0			L	Т	P	C		IA	EA	TM
Course			CMO	S IC	DESI	GN		3	0	0	3		40	60	100
Course	•		PROF	ESSI	ONAL	ELEC	TIVE		S	yllabu	s Revisi	on		V.1	0.1
Catego	ry		COUF	RSE -I	V				•						
Pre-rec	quisit	e	Basic	know	ledge	of VL	SI De	sign					I		
Course	Obje	ectives	s:					-							
The cou	urse sl	hould	enable	the s	tudent	S									
1.	To ui	nderst	and M	IOS E	D evice	s and C	CMOS	IC's.							
2.	Desig	gn of a	a CM(OS Ar	nplifi	er, CM	OS os	cillator	circu	its an	d compa	rators			
						ircuit d	-								
4.	To di	scuss	seque	ntial	circuit	desigr	n and r	nemor	y devi	ces.					
<u> </u>	0.1														
Course						1	160.04	1. 4.0							
On con Cours	-	on of t	ne cot	irse, ti	ie stuc		Descri							Hig	host
Outco						1	Jeschij	JUOII						Bloo	
es														Taxoi	
C01											· ·				
001		their circuit layout.													
CO2															
CO3	D	esign	and an	nalysis	s of Co	ombina	tional	and Sec	luentia	al MO	S Circui	ts.		K	4
CO4	E	xtend	the D	igital l	C Des	sign to I	Differe	ent App	licatio	ons.				K	3
CO5							emico	nductor	Men	nories	, Flash	Memo	ory,	K	3
	R	AM a	array o	organi	zation	l .									
0 1		1 4			0.4			1.D		0.1	(D (
Correl	ation	betwe	een Co	ourse	Outco	mes (C	COs) a	nd Pro	gram	Outco	omes (P	Us):		Ducano	
														Progra Specif	
					Prog	ram O	utcom	es (PO	s)					Outcon	
COs														(PSOs	
	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	Μ	Μ	L	-	L	-	-	-	-	-	-	S	М	Μ
CO2	S	Μ	М	-	-	L	L	-	М	-	L	-	S	М	M
CO3	S	Μ	Μ	L	-	М	-	-	Μ	-	М	-	S	L	M
CO4	S	Μ	Μ	L	-	М	-	-	Μ	-	М	-	S	L	Μ
CO5	S	Μ	Μ	-	-	М	-	-	-	-	L	-	S	М	М
UNIT-	[[ON,]	DESIG	N ISS	UES A	ND I	MAN	UFACT	URIN	IG	9 Ho	urs
			DCES			<u></u>			~•	-	-		<u> </u>		
		-	-			-	-				lgn, Qua	•			-
Design	, Int	roduc	tion t	o Ma	anufac	cturing	Proc	ess, M	lanufa	acturir	ng CMO	JS Ir	ntegra	ted Ci	rcuits,

IntegratedCircuit Layout: Design Rules, Parasitics. 9 Hours **UNIT-II** INTERCONNECT AND DELAY MODELS Interconnect Modelling: Capacitive Parasitics, Resistive Parasitics, Inductive Parasitics, Advanced Interconnect Techniques. Delay Model & Robustness: Introduction, RC Delay model, Linear Delay model, logical path efforts of paths. Robustness: Variability- Reliability- Scaling-Variation Tolerant design. COMBINATIONAL CIRCUIT DESIGN **UNIT-III** 9 Hours Review of Circuit Families, Circuit pitfalls and Fallacies- the CMOS Inverters and CMOS Logic Gates - Static View: Introduction to CMOS Inverter, The Static CMOS Inverter - An Intuitive Perspective, Evaluating the Robustness of the CMOS Inverter, Introduction to Static CMOS Design, Complementary CMOS, Ratioed Logic, Pass-Transistor Logic. CMOS Inverter: Dynamic View: Performance of CMOS Inverter: The Dynamic Behavior, Power, Energy, and Energy-Delay, Perspective: Technology Scaling and its Impact on the Inverter Metrics. UNIT-IV SEQUENTIAL CIRCUIT DESIGN 9 Hours Static and Dynamic Sequential Circuits -Static Latches and Registers, Dynamic Latches and Registers, Alternative Register Styles: Pulse Registers and Sense-Amplifier Based Registers, Pipelining: An Approach to Optimize Sequential Circuits – Latch Vs Register-Based Pipelines – A Logic Style for Pipelined Structures, Non bistable Sequential Circuits. **DESIGN OF ABB AND MEMORY STRUCTURES UNIT-V** 9 Hours Arithmetic Building Blocks: Introduction, Data paths in Digital Processor Architecture, The Adder, The Multiplier, The Shifter, Other Arithmetic Operators, Power and Speed Trade-off's in Data path Structures, Perspective: Design as a Trade-off. Memory and Array Structures: Introduction, The Memory Core, Memory Peripheral Circuitry, Memory Reliability and Yield, Power Dissipation in Memories, Case Studies in Memory Design: The PLA, A 4-Mbit SRAM and A 1-Gbit NAND Flash memory, Perspective: Semiconductor Memory Trends and Evolution. Total Hours **45 Hours** Text Book(s) 1. Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, Digital Integrated Circuits – A Design Perspective, 2nd edn., Pearson Education, 2003. 2. Digital Integrated Circuits – A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, 2nd Ed., PHI. **Reference Book(s)** 1. N.H.E. Weste and D.M. Harris, CMOS VLSI design: A Circuits and Systems Perspective, 4th Edition, Pearson Education India, 2011. 2. C.Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, 1979.

3.	J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall India, 1997.
4.	P. Douglas, VHDL: programming by example, McGraw Hill, 2013.
5.	L. Glaser and D. Dobberpuhl, Design and Analysis of VLSI Circuits, Addison Wesley, 1985.

Course	Code	e	BECF	187EI	M0			Ι	/ T	P		C	IA	EA	TM							
Course	Nam	e	SPEE	CH A	ND A	UDIO		3	0	0)	3	40	60 100								
			PROG	CESSI	ING																	
Course	:		PROF	ESSI	ONAL	ELEC	TIVE		S	yllabu	s Revi	sion		V	1.0							
Catego	ry		COUF	RSE -I	V					-												
Pre-rec	quisite	e	Basic	know	vledge	Signa	1 & S	ystems	and	Digita	l Signa	al Pro	Processing									
Course	Obje	ectives	5:		-	-		-		-				-								
The cou	irse sl	nould	enable	the st	tudent	S																
1.	To in	trodu	ce spe	eech p	oroduc	tion ar	nd rela	ited pa	ramet	ers of	speec	h.										
2.	To le	arn th	le con	nputat	ion ar	nd use	of tecl	hnique	s in t	ne ana	alysis o	of spee	ech.									
3.	To un	dersta	und dif	ferent	speec	h mode	eling p	rocedu	res an	d their	· implei	menta	tion is	sues.								
					-		01				1											
Course	Outo	comes	:																			
On com	pletic	on of t	he cou	irse, tl	ne stuc	lent wil	ll be at	ble to														
Cours	e					D	escrip	tion						Hig	hest							
Outcor	n		Bloom's									om's										
es														Taxo	nomy							
CO1			understand basic concepts and methodologies for the analysis and K2									K2										
		modeling of speech signal.K3To understand the mechanism of speech and audio perception, and theK3																				
CO2							-			-	ception	, and	the	ŀ	K3							
						analysis	-			10.				T	T A							
CO3	A	naryze	e the q	luanty	and p	ropertie	es of sj	peech s	ignai.					r	K4							
CO4	Т	o perf	orm th	ne ana	lysis o	f speec	h signa	al using	g LPC	•				ŀ	K 4							
		Ŧ			•	•	C															
CO5	Ic	lentify	differ	rent pi	oblem	is in rea	al time	speech	n proc	essing	•			ŀ	K 3							
Correla	ation	betwe	en Co	ourse	Outco	mes (C	COs) a	nd Pro	gram	Outc	omes (POs):										
001101		~~~~							8					Progr	am							
					_			(= 0						Speci								
~ ~					Progr	am Ou	itcom	es (PO	5)					Outcol								
COs														(PSO	s)							
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS							
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03							
CO1	S	L	-	L	-	-	-	-	-	-	-	-	S	S	L							
CO2	S	Μ	-	L	-	-	-	-	-	-	-	-	S	М	-							
CO3	S	Μ	L	Μ	М	-	-	-	-	-	-	-	Μ	S	L							
CO4	S	S	Μ		М	-	-	-	-	-	-	-	S	М	-							
CO5	S	Μ	-	Μ	S	-	-	-	-	-	-	Μ	S	S	М							
		1																				
UNIT-	NIT-IINTRODUCTION TO SPEECH PRODUCTION AND9 Hours																					

MODELING

Human Auditory System; General structure of speech coders; Classification of speech coding techniques – parametric, waveform and hybrid; Requirements of speech codecs –quality, coding delays, robustness. Speech Signal Processing- Pitch-period estimation, all-pole and all-zero filters, convolution; Power spectral density, periodogram, autoregressive model, autocorrelation estimation.

UNIT-II LINEAR PREDICTION OF SPEECH

Basic concepts of linear prediction; Linear Prediction Analysis of non-stationary signals – prediction gain, examples; Levinson-Durbin algorithm; Long term and short-term linear prediction models; Moving average prediction.

UNIT-III SPEECH QUANTIZATION

Scalar quantization–uniform quantizer, optimum quantizer, logarithmic quantizer, adaptive quantizer, differential quantizers; Vector quantization – distortion measures, codebook design, codebook types.

UNIT-IV SCALAR QUANTIZATION OF LPC

Spectral distortion measures, Quantization based on reflection coefficient and log area ratio, bit allocation; Line spectral frequency – LPC to LSF conversions, quantization based on LSF Linear Prediction Coding- LPC model of speech production; Structures of LPC encoders and decoders; Voicing detection; Limitations of the LPC model.

UNIT-V CODE EXCITED LINEAR PREDICTION

CELP speech production model; Analysis-by-synthesis; Generic CELP encoders and decoders; Excitation codebook search – state-save method, zero-input zero-state method; CELP based on adaptive codebook, Adaptive Codebook search; Low Delay CELP and algebraic CELP. Speech Coding Standards-An overview of ITU-T G.726, G.728 and G.729 standards.

	Total Hours 45 Hours
Text	z Book(s)
1.	"Digital Speech" by A.M.Kondoz, Second Edition, Wiley, 2004.
2.	"Speech Coding Algorithms: Foundation and Evolution of Standardized Coders", W.C.
	Chu, Wiley Inter science, 2003.
Refe	Prence Book(s)
1.	Ben Gold And Nelson Morgan, "Speech And Audio Signal Processing, Processing
	AndPerception Of Speech And Music", Wiley- India Edition, 2006.

9 Hours

9 Hours

9 Hours

9 Hours

Course Code	BECF187EN0	L	Т	Р	С	IA	EA	TM	
Course Name	HIGH SPEED	3	0	0	3	40	60	100	
	ELECTRONICS								
Course	PROFESSIONAL ELECTIVE		Sylla	abus R	evision		1	V.1.0	
Category	COURSE -IV								
Pre-requisite	Basic Knowledge in Electronic Circuits and Transmission Lines								

Course Objectives:

The course should enable the students -

- 1. To understand significance and the areas of application of high-speed electronics circuits.
- 2. To understand the importance of high-speed electronics circuits in various applications.
- 3. To learn the characteristics of various components used in high speed electronics.
- 4. To implement the design of High-speed electronic system using those components.
- 5. To understand the significance of noise analysis.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcom	Description	Highest Bloom's
es		Taxonomy
CO1	Understand significance and the areas of application of high-speed electronics circuits.	K2
CO2	Understand the properties of various components used in high speed electronics.	K2
CO3	Design High-speed electronic system using appropriate components.	K6
CO4	Understand about CAD tools for PCB Design.	K2
CO5	Understand about noise analysis.	K2

Correl	ation	betwe	en Co	ourse	Outco	omes (COs)	and Pr	ogran	n Out	comes	(POs)	:					
													Program Specific					
				1	Progr	am O	utcom	nes (PA	c)									
COs		Program Outcomes (POs)													Outcomes			
005														(PSOs)				
	PO	PO	PO	PO	PO	PO	PO	PO8	PO	PO	PO	PO	PS	PS	PS			
	1	2	3	4	5	6	7		9	10	11	12	01	02	03			
CO1	L	S	Μ	-	-	-	-	-	-	-	-	-	Μ	-	-			
CO2	Μ	L			-	-	-	-	-	-	-	L	L	-	-			
CO3	S	L	S	-	-	-	-	-	-	-	-	L	М	L				
CO4	S		S		S	-	-	-	-	-	-	L	М	Μ				
CO5	Μ	S	-	-	-	-	-	-	-	-	-	L	М	-	Μ			
	•		•	•	•	•		•	•	•		•		•				
UNIT-	UNIT-I TRANSMISSION LINE THEORY CROSSTALK AND								9 Hours		urs							
	NONIDEAL EFFECTS																	

Signal integrity: impact of packages, vias, traces, connectors; non-ideal return current paths, high frequency power delivery, methodologies for design of high speed buses; radiated emissions and minimizing system noise.

UNIT-II DEVICES

Passive and active, Lumped passive devices (models), Active (models, low vs. high frequency).

UNIT-III **RF AMPLIFIER**

Design, Stability, Low Noise Amplifiers, Broadband Amplifiers (and Distributed) Power Amplifiers, Class A, B, AB and C, D E Integrated circuit realizations, Cross-over distortion Efficiency RF power output stages Mixers –Up conversion Down conversion, Conversion gain and spurious response. Oscillators.

UNIT-IV PRINCIPLES

PLL Transceiver architectures Printed Circuit Board Anatomy, CAD tools for PCB design, Standard fabrication, Microvia Boards. Board Assembly: Surface Mount Technology, Through Hole Technology, Process Control and Design challenges.

UNIT-V NOISE ANALYSIS

Sources, Noise Figure, Gain compression, Harmonic distortion, Inter-modulation, Cross-modulation, Dynamic range.

Total Hours 45 Hours

Text	Book(s)
1.	Stephen H. Hall, Garrett W. Hall, James A. McCall "High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices", August 2000, Wiley-IEEE.
Refe	rence Book(s)
1.	Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge University Press, 2004.
2.	Behzad Razavi, "RF Microelectronics", Prentice-Hall 1998.
3.	Guillermo Gonzalez, "Microwave Transistor Amplifiers", 2nd Edition, Prentice Hall.
4.	Kai Chang, "RF and Microwave Wireless systems", Wiley, 2000.
5.	R.G. Kaduskar and V.B.Baru, Electronic Product design, Wiley India, 2011.
6.	Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge
	University Press, 2004.

8 Hours

10 Hours

9 Hours

9 Hours

Course	Code	9	BECF	187E	0C			L	Т	P	(2	IA	EA	TM		
Course	Nam	e	BIO-N	MEDI	CAL			3	0	0	3	3	40	60	100		
			ELEC	TRO	NICS												
Course			PROF	ESSI	ONAL	ELEC	TIVE		Sy	llabus	Revis	ion		V	7.1.0		
Categor	y		COUF	RSE -V	V												
Pre-req	uisite	e	Basic	Knov	vledge	e in Ele	ectroni	c Devi	ces an	d Circ	uits						
Course	Obje	ectives	5:														
The cou	rse sł	nould	enable	the s	tudent	S											
							-	nysiolog	-								
3.]	 To understand the function of bio amplifiers. To be sensitive of sensitive above the function. 																
4. To know the configuration of various electrodes.																	
Course																	
		etion of the course, the student will be able to															
Course			Description Hi														
Outcon	1		Blood														
es CO1		Describe the electrode behaviour and singuit module													Taxonomy K2		
CO1 CO2																	
CO2 CO3		Describe the fundamentals of Bio potential recording. K2															
C03		Design various bio amplifiers.K5Measure various nonelectrical physiological parameters.K3													K3 K3		
C04						ical pa	-		aranne						K3 K3		
000	1.1	lousui	e van			neur pu		10.									
Correla	tion	betwe	en Co	ourse	Outco	mes (C	COs) a	nd Pro	gram	Outco	omes (]	POs):					
							,		0			,		Prog	ram		
					Drogs	nom Or	itaam	es (POs)					Spec	ific		
COs					TTUgi		ittoin	cs (1 U 5)					Outco	omes		
		n	1		r	r	1	[T		•		(PSC			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS			
<u> </u>	1	2	3	4	5	6	7	8	9 	10	11	12	01	02			
CO1	S	M	L	-	-	S	L	-	M	-	S	M	M		S		
CO2	S M	L	M	-	-	S M	т	-	M	-	M	M	M	L	S S		
CO3	M	L	- т	-	-	M	L	-	M	-	<u>M</u>	M	M				
CO4 CO5	L S	M L	L	-	-	L M	L	-	L L	-	S S	L L	M S	M M			
005	ы	L	-		-	IVI		_	L	-	د	L	3	IVI	S S		
UNIT-I		BIO	ΡΟΤ	ENT		LECT	RUD	FS						01	Iours		
UNIT-IBIO POTENTIAL ELECTRODES9 HoursOrigin of bio potential and its propagation, Electrode-electrolyte interface, electrode-skin																	
interface, half cell potential, impedance, polarization effects of electrode – non polarisable																	
electrodes. Types of electrodes - surface, needle and micro electrodes and their equivalent																	
circuits,														- 1			
,			- 1												ao 159 o		

Bio signals characteristics - frequency and amplitude ranges. ECG - Einthoven's triangle, standard 12 lead system. EEG - 10-20 electrode system, unipolar, bipolar and average mode, EMG-unipolar and bipolar mode.

UNIT-III **BIO AMPLIFIER**

Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier - right leg driven ECG amplifier. Bands pass filtering, isolation amplifiers - transformer and optical isolation isolated DC amplifier and AC carrier amplifier. Chopper amplifier, Power line interference.

UNIT-IV **MEASUREMENT OF NON-ELECTRICAL PARAMETERS**

Temperature, respiration rate and pulse rate measurements. Blood Pressure: indirect methods auscultatory method, oscillometric method, direct methods: electronic manometer, Pressure amplifiers- systolic, diastolic, mean detector circuit. Blood flow and cardiac output measurement: Indicator dilution, thermal dilution and dye dilution method, Electromagnetic and ultrasound blood flow measurement.

UNIT-V BIO-CHEMICAL MEASUREMENT

Biochemical sensors - pH, pO2 and pCO2, Ion selective Field effect Transistor (ISFET), immunologically sensitive FET (IMFET), Blood glucose sensors - Blood gas analyzers, colorimeter, flame photometer, spectrophotometer, blood cell counter, auto analyzer (simplified schematic description).

	Total Hours 45 Hours
Text	Book(s)
1.	John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, 2004.
2.	Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, 2003.
Ref	erence Book(s)
1.	Leslie Cromwell, "Biomedical Instrumentation and measurement", PHI, 2007.
2.	Myer Kutz, "Standard Handbook of Biomedical Engineering and Design", McGraw Hill,2003.
3.	Joseph J. Carr & John M. Brown, "Introduction to Biomedical Equipment Technology", PearsonEducation, 2004.

Syllabus (2023-24) B.E. (Electronics and Communication Engineering)

UNIT-II **ELECTRODE CONFIGURATIONS**

9 Hours

9 Hours

9 Hours

9 Hours

Course Code	BECF187EP0	L	Т	Р	С	IA	EA	TM				
Course Name	MIXED SIGNAL DESIGN	3 0 0 3 4					60	100				
Course	PROFESSIONAL ELECTIVE	Syllabus Revision V.1.0										
Category	COURSE -V											
Pre-requisite	Basic Knowledge in Signals & Systems and Analog Electronics											

Course Objectives:

The course should enable the students

- 1. To understand the analysis of mixed signals for various applications.
- 2. To learn the inter-conversions between signals.
- 3. To design systems involving mixed signals.
- 4. To discuss different types of data convertors.

Course Outcomes:

On completion of the course, the student will be able to

Course	1									
Outcom		Bloom's								
es		Taxonomy								
CO1	Understand the practical situations where mixed signal analysis is	K3								
	required.									
CO2	Analyze and handle the inter-conversions between signals.	K3								
CO3	Design different types of data convertors.	K4								
CO4	Design systems involving mixed signals.	K4								
CO5	Understand the Concepts of frequency synthesizers.	К3								

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

COs	Program Outcomes (POs)													Program Specific Outcomes (PSOs)			
	PO												PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03		
CO1	S	Μ	Μ	L	-	L	-	-	-	-	М	-	S	L	М		
CO2	S	Μ	Μ	-	-	L	-	-	-	-	М	-	S	L	М		
CO3	S	Μ	Μ	L	-	Μ	-	-	-	-	S	-	S	L	М		
CO4	S	Μ	Μ	L	-	Μ	-	-	-	-	М	-	S	L	М		
CO5	S	Μ	М	-	-	М	-	-	-	-	М	-	S	Μ	М		

UNIT-I ANALOG AND DISCRETE-TIME SIGNAL PROCESSING

9 Hours

Introduction to sampling theory; Analog continuous-time filters: passive and active filters; Basics of analog discrete-time filters and Z-transform.

UN	IT-II	SWITCHED CAPACITOR FILTERS	9 Hours
		es in switched-capacitor filters; Switched-capacitor filter architecture er applications.	es; Switched
UN	IT-III	BASICS OF DATA CONVERTERS	9 Hours
		approximation ADCs, Dual slope ADCs, Flash ADCs, Pipeline AI res, High-resolution ADCs, DACs.	DCs, Hybrid
UN	IT-IV	MIXED SIGNAL LAYOUT	9 Hours
		and data transmission; Voltage-mode signaling and data transmission; C data transmission.	Current-mode
UN	IT-V	INTRODUCTION TO FREQUENCY SYNTHESIZERS & SYNCHRONIZATION	9 Hours
Basic	cs of PL	L, Analog PLLs; Digital PLLs, DLLs.	
		Total Hours	45 Hours
Text	Book(s)		
1.	Jacob I	Baker, CMOS mixed-signal circuit design, Wiley India, IEEE press, repr	rint 2008.
2.	Behzac	Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 200)3.
3.	R. Jaco	bb Baker, CMOS circuit design, layout and simulation, revised second	ond edition,
	IEEE p	press, 2008.	
4.	Rudy V	V. dePlassche, CMOS Integrated ADCs and DACs, Springer, Indian edit	ion, 2005.
Re	ference	Book(s)	
1.	Arthur	B. Williams, Electronic Filter Design Handbook, McGraw-Hill, 1981.	
2.	R. Sch	auman, Design of analog filters, Prentice-Hall 1990.	
3.	M. Bu	rns et al., An introduction to mixed-signal IC test and measureme	ent, Oxford
		sitypress, first Indian edition, 2008.	

Course Code	BECF187EQ0	L	Т	Р	С	IA	EA	TM				
Course Name	ADAPTIVE SIGNAL	3	0	0	3	40	60	100				
	PROCESSING											
Course	PROFESSIONAL ELECTIVE		Sylla	abus R	evision		7	V.1.0				
Category	COURSE -V											
Pre-requisite	Basic Knowledge in Signals & Systems and Digital Signal Processing											

Course Objectives:

The course should enable the students

- 1. To introduce the adaptive filter for estimation and tracking.
- 2. To develop various adaptive algorithms for communication systems.
- 3. To apply the adaptive theory to a variety of practical problems.
- 4. This course demonstrates the design of important class of adaptive filters, LMS, RLS and Kalman filters.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcom	Description	Highest Bloom's
es		Taxonomy
CO1	Able to analyze the filtering tasks and identify the need for adaptation in filtering.	К3
CO2	Able to design filter to meet performance requirements derived from various real life applications.	K2
CO3	Able to develop algorithms for the design of filters to track variations of non-stationary random process.	К3
CO4	Able to evaluate the performance of the developed filter in terms of computational complexity convergence time and stability.	K4
CO5	Implement LMS algorithm for signal processing applications.	K3
CO6	Design kalman filter for adaptive noise cancellation.	K2

Correl	Correlation between Course Outcomes (COs) and Program Outcomes (POs):																	
													Program					
		Program Outgomag (PO g)													Specific			
CO	s Program Outcomes (POs)												Outcomes					
COs													(PSOs)					
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS			
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03			
CO1	S	Μ	L	L	L	L	-	-	-	-	-	-	М	-	-			
CO2	S	М	L	М	L	L	-	-	-	-	-	-	М	-	-			
CO3	S	L	Μ	S	L	L	-	-	-	-	-	-	S	-	-			
CO4	Μ	Μ	М	S	L	L	-	-	-	-	-	-	S	-	-			
CO5	Μ	Μ	S	L	Μ	Μ	-	-	-	-	-	Μ	L	Μ	-			

		CSVM													
CO6	М	Μ	М	L	S	S	-	-	-	-	-	М	L	М	-
UNIT			ROD											9 Ho	
		-		-		-		imatio							
-	-					ind s	tationa	ary ra	ndom	proc	esses,	Corre	elation	struc	tures,
proper	ties of	corre		i mau	ices.										
UNI	Г-П	LN	IS AN	ND FI	LTE	RS								9 H	ours
							steepe	st desc	ent, ez	tensi	on to c	omple	x valu		
-			,				-	sis, we				-			
square	error	and M	IIS-ad	ljustm	ent.	_	-		-						
UNI			/IS AI												ours
								family							
					-	-		in adaj	-				-		-
-	-		-					dimens			-		-	-	
								nner pr projecti							
spaces		anon,		cepts	01 0	nnog		Jojeen	011, 0	nnog	u di	ccom	JUSITIO	1 01	vector
spaces	<u>.</u>														
UNI	Γ-IV	RA	NDC	OM V.	ARIA	BLE	S							9 H	ours
Vector	spac	e of	rand	om v	ariabl	les, c	orrela	tion as	s inne	er pro	oduct,	forwa	rd and	l bacl	cward
								ve upda	-					-	iction
errors,	relati	onshij	p with	AR 1	nodel	ing, j	oint pi	cocess e	estima	tor, gi	radient	adapt	ive latt	tice.	
				DUC				IDCIT						0.11	
UNI											-		da		ours
								oseudo RLS tra							
								aptive							
decom					-	0.000		-p - r - e		, pa		-p unit			X -1
	1										Г	otal H	Iours	45 H	ours
Text B	look(s)													
1.	S. Hay	kin, A	dapti	ve filt	er the	ory, F	Prentic	e Hall,	1986.						
2.	C.Wid	row a	nd S.I	D. Ste	arns, A	Adapt	ive sig	gnal pro	ocessii	ng, Pr	entice	Hall, 1	984.		
Refere	ence B	ook(s)			_		_							
1.	Adapti	ve Sig	gnal P	roces	sing, l	Bernie	e Widı	row and	l Stear	ms, Pr	rentice	Hall.			
2. I	Funda	menta	ls of A	Adapti	ive Fi	ltering	g, Ali	Sayed,	Wiley	, 2003	3.				
3.	Kerne	I A dat	ntive F	Filteri	ng Li	u Dri	ncine	and Ha	vkin	Wiley	2010				

^{3.} Kernel Adaptive Filtering, Liu, Principe and Haykin, Wiley, 2010.

Course C			BECF	1870	EL			L	ſ	l		С	IA	EA	TM			
Course N	Jame		ADH				S	3	0			3	40	60	100			
Course (Categ		PROF ELEC				-V		Syl	labus	Revi	sion		V	.1.0			
Pre-requ	isite		Basic	know	ledge	of Da	ata Co	mmur	nicati	on Ne	twor	ks						
Course (Objec	tives:																
At the er	nd of	the cou	rse, th	e stud	lent w	ill be	able:											
1. T	'o stu	dy the v	vireles	ss netv	works	•												
		lerstand		-			-											
		e an ov			-	-			-		ls.							
		lerstand																
			e learn	er to	ident	ify the	e diffe	erent n	netho	ds of	batte	ery an	nd system power					
n	nanag	ement.																
Course (Dutco	mag																
At the er			rse th	e stud	ent w	ill be	able t	0										
Cours			130, th	c stud			iption						High	est B	oom's			
Outcom					-	Deser	puon	L						axono				
C01		At the	end of	f the c	course	e, the	studer	nt sho	uld b	e able	to:	Ad			J			
		hoc ne												K2				
		concep	ts of c	liffere	ent wi	reless	netwo	orks.										
CO2		This c	ourse	is a	imed	to o	ffer t	rainin	ig w	hich	prep	are						
		student		emb	ark c	on M	AC	and	Multi	cast	routi	ing		K2				
		protoco																
CO3		Analyz time ap			port la	ayer a	ind Se	curity	r prot	ocols	for r	eal		K4				
CO4		Studen sensor			l the	solut	ions a	and d	esign	of v	virel	ess		K6				
CO5		Gain k	nowle	dge a	about	the c	concep	ts of	dif	ferent	ener	rgy		K2				
		manage	ement	schem	nes.									114				
Correlat	tion b	etween	Cour	se Ou	tcom	es (CO	Os) an	d Pro	gram	Outo	come	s (PO			a			
				Pro	gram	Outo	comes	(POs))				-	-	Specific			
COs	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	Outcomes (PSOs)					
	PUI		FU 3	PO 4	FO 5	FU 6	PO 7	PU 8	PU 9	PO 10	PO 11	PO 12	PSO PSO PSO3 1 2					
CO1	S	-	-	-	S	M	-	-	-	L	-	M	M	-	S			
CO2	S	М	_	М	S	L	_	_	-	M	-	М	1 M - S					
CO3	S	М		М	S	М	-	-	-	М	-	М	L	-	S			
CO4	S	М	М	L	М	М	_	_	_	L	_	L	I C					

Page 164 of 228

	0301														
CO5	S	L	М	М		М	L	-	-	L	-	L	М	М	S
UNIT-I		INT	ROD	ICT	ON T		IRFI	FSS	NFT	WOR	KS			9 Н.	ours
Characte HIPERL Wireless	AN Sta	of v andaro	vireles d, Firs	ss ch t-, Se	annels cond,	s, Fu third	ndam and b	entals eyond	of 13G-	WLA gene	Ns, ratio	n cell	ular sy	11 s vstem	tandard,
UNIT-II	r	МА	C DC		NG A		TTT 7		ST D(NC			0 11	ours
UN11-11	L		с, кс)ТОС		NG A		IULI	ICA	51 K (<i>J</i> U11	NG			9 10	JUIS
MAC P reservati protocol aware Architec efficient	on and s: Desi s, Rout routing cture re	l sch ign is ting p prot ferenc	edulir sues protoc cocols. ce mo	ng m and c ols w Mu	echan classif ith ef lticast	isms, icatio fficier t Ro	Prot on, Ta nt floa uting	cocols able-d oding Prot	usin riven, mecł ocols:	g din On- nanisr Dea	rectio dema ns, l sign	onal and a Hieran issue	antenr nd Hy chical es an	nas.] /brid and d op	Routing routing power- peration,
UNIT-II	I	TRA	NSP	ORT	LAY	ER A	ND S	ECU	RITY	PRC	ОТО	COLS	5	9 H	ours
Transpo Network Network providin QoS fran	ts, Secu secur g QoS,	irity, ity at Class	Secur tacks,	ity re Secu	equire urity	ments routir	s, Issung. Q	ues ai uality	nd ch of S	alleng Servic	ges i e: Is	n sec ssues	urity and c	provi challe	sioning, nges in
UNIT-I	V	WIF	RELE	SS SI	ENSO	R NE	ETW(ORKS	5					9 H	ours
Architec of a sens			issemi	natio	n, Dat	e gatl	hering	g, MA	C pro	otocol	s, lo	cation	disco	very,	Quality
UNIT-V		ENF	ERGY	MA	NAGI	EME	NT							9 H	ours
Classific System parameter performation application	power ers, Rou ance, H	mana ite-dis	igemei scovei	nt sch y tim	nemes .e, En	. Perf d-to-e	forma end de	nce A elay p	Analys erforn	sis -A nance	BR , Co rep	beaccommun beaccommun air tin	oning, nicatio me, T	Perfo on thre CP/II	ormance oughput P based
Text Bo	ok(s)										I	otal I	Iours	43 F	Iours
		lom N	Aurth	y and	DC	Mon	oi A	dUoo	Wire		Notu	vorlza	Arch	itactu	ires and

- 1. C. Siva Ram Murthy and B.S. Manoj, AdHoc Wireless Networks: Architectures and protocols, Prentice Hall PTR, 2004.
- 2. C.K.Toh, AdHoc Mobile Wireless Networks: Protocols and Systems, Prentice Hall PTR,2001.

Refe	erence Book(s)
1.	Mohammad Ilyas, The Handbook of AdHoc Wireless Networks, CRC press, 2002.
2.	Charles E. Perkins, AdHoc Networking, Addison – Wesley, 2000.
3.	Stefano Basagni, Marco Conti, Silvia Giordano and Ivan Stojmenovic,
	Mobile AdHocNetworking, Wiley – IEEE press, 2004.

Course	Code	e e						L	Т	P		2	IA]	EA	TM		
Course		e]			D PR MEN	ODUC T	T	3	0	0				60	100		
Course]	PROF	ESSIC	DNAL	ELEC	TIVE		Sy	llabus	Revis	ion		V .1	.0		
Catego	ry	(COUF	RSE -V	V				·								
Pre-req	luisite	e	Emb	edded	l Syste	ems											
Course																	
The cou																	
	-				-	of proc						its arc	chitectu	ire.			
			-			oaches	-				•						
					-	indust		-	-								
		•		•		onic pr		-	oment	•							
5. 7	Γo stu	dy abo	out the	e embe	edded j	product	t desig	n.									
Course	Outo	omes	•														
On com				ırse, tł	ne stuc	lent wil	l be ab	le to									
Course				,			escrip							Higl	nest		
Outcor	n						-							Bloo			
es														Taxonomy			
CO1			-			tomer r	-							K2			
CO2		pply s sting.	structu	ral ap	proacl	n to coi	ncept g	generat	ion, ci	reativi	ty, sele	ction	and	K	3		
CO3				-		of desi	0				esign, o	design	of	K	2		
						et and p											
CO4		efine halysis		is aspe	ects of	its Rev	verse E	Inginee	ring r	nanufa	cture,	econo	mic	K	3		
CO5				bedde	d prod	luct.								K	3		
CO6				rious	tool t	o desig	gn and	simul	ate th	e per	forman	ce of	the	K	4		
	pi	oduct															
Correla	ation	betwe	en Co	ourse	Outco	mes (C	COs) a	nd Pro	gram	Outc	omes (l	POs):					
														Progra			
					Progr	ram Ou	itcome	es (POs	5)					Specif			
COs)utcon (PSOs			
·	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	PO	PS	PS	PS		
	1	$\frac{10}{2}$	3	4	5	6	7	8	9	10	11	12	01	02	03		
CO1	S	M	S	М	S	M	М	L	M	L	L	L	S	S	M		
CO2	S	М	S	М	S	М	М	L	М	L	М	S	L	S	L		
CO3	S	М	S	М	S	М	М	L	М	L	М	М	S	М	М		
CO4	S	М	S	М	S	Μ	М	L	М	L	М	L	S	L	М		
CO5	S	М	S	М	S	М	М	L	М	L	L	L	S	S	L		
CO6	Μ	L	М	-	М	-	-	L	-	-	-	-	L	S	М		

UNIT-I	CONCEPTS OF PRODUCT DEVELOPMENT	9 Hours
Need for PD	- Generic product Development Process Phases- Product Development Pro-	ocess Flows-
Product Dev	elopment organization structures Strategic importance of Product Plannin	g process –
Product Spec	ifications Target Specifications-Plan and establish product specifications - in	ntegration of
customer, des	signer, material supplier and process planner, Competitor and customer – Un	nderstanding
customer an	d behaviour analysis. Concept Generation, Five Step Method-Basics	of Concept
selection- Cr	eative thinking -creativity and problem solving- creative thinking methods	- generating
design cond	epts-systematic methods for designing -functional decomposition	– physical
decompositio	n.	

UNIT-II INTRODUCTION TO APPROACHES IN PRODUCT DEVELOPMENT

Product development management - establishing the architecture - creation - Product Architecture changes - variety – component standardization , clustering -geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture competitive benchmarking- Approach for the benchmarking process-Design for manufacturing - Industrial Design-Robust Design – Prototype basics - Principles of prototyping - Planning for prototypes Economic & Cost Analysis -Testing Methodologies- Product Branding.

UNIT-III INDUSTRIAL DESIGN STRATEGIES

Role of Integrating CAE, CAD, CAM tools for Simulating product performance and manufacturing processes electronically- Basics on reverse engineering – Reverse engineering strategies – Finding reusable software components. Recycling real-time embedded software based approach and its logical basics Incorporating reverse engineering for consumer product development –case study on DeskJet Printer.

UNIT-IV ELECTRONIC PRODUCT DEVELOPMENT STAGES

Product Development Stages-Embedded product modeling- Linear, Iterative, Prototyping, Spiral - Selection of Sensor, Voltage Supply, Power supply protection, Grounding and noise elimination methods, Thermal protection with heat management – PCB design steps – Software design and testing method – documentation.

UNIT-V EMBEDDED PRODUCTSDESIGN

Creating general Embedded System Architecture (with Case study example: Mobile Phone / DeskJet Printer./ Robonoid as a product) –Architectural Structures- Criteria in selection of Hardware Software Components, processors, input/output interfaces & connectors, ADC System ,Memory, choosing Bus Communication Standards, Criteria in selection of Embedded OS/Device Drivers, Need for Developing with IDE, Translation & Debugging Tools & ApplicationSoftware, Performance Testing, Costing, Benchmarking, Documentation.

Total Hours 45 Hours

Text Book(s)

Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development", McGraw

9 Hours

9 Hours

9 Hours

9 Hours

	-Hill International Edns.1999/ Tata McGraw Education, ISBN-10-007-14679-9.
2.	R.G. Kaduskar and V.B. Baru, "Electronic Product Design", Wiley, 2014.
3.	George E.Dieter, Linda C.Schmidt, "Engineering Design", McGraw-Hill International Edition,
	Fourth Edition, 2009, ISBN 978-007-127189-9.
4.	Stephen Armstrong, "Engineering and Product Development Management; The Holistic
	Approach", Cambridge University Press (CUP),2014.
Refe	rence Book(s)
1.	Rajkamal, "Embedded system-Architecture, Programming, Design" TMH,2011.
2.	KEVIN OTTO & KRISTIN WOOD, "Product Design and Development", Fourth Edition, 2009,
	Product Design Techniques in Reverse Engineering and New Product Development, Pearson
	Education (LPE),2001.
3.	Yousef Haik, T. M. M. Shahin, "Engineering Design Process", 2nd Edition Reprint,
	Cengage Learning, 2010, ISBN 0495668141
4.	Clive L.Dym, Patrick Little, "Engineering Design: A Project-based Introduction", Third
	Edition, John Wiley & Sons, 2009, ISBN 978-0-470-22596-7.

Course Code	BECF188ES0	L	Т	Р	С	IA	EA	TM
Course Name	NEURAL NETWORKS &	3	0	0	3	40	60	100
	FUZZY LOGIC							
Course	PROFESSIONAL ELECTIVE		Sylla	abus R	evision			V.1.0
Category	COURSE -VI							
Pre-requisite	Basic knowledge of Mathemati	ics, L	linear	algebra	ı, advaı	nced ca	alculu	s, discrete
	mathematics, Boolean algebra or e	quiva	lent.					

Course Objectives:

The course should enable the students

- 1. To learn the basics of Neural Networks and essentials of Artificial Neural Networks with ADALINE and MADALINE Networks.
- 2. The main objective of this course is to provide the student with the basic understanding of neural networks and Fuzzy logic fundamentals.
- 3. It deals with Associate Memories and CPN.
- 4. To learn the various architectures of building an ANN and its applications.
- 5. To learn the fundamentals of Crisp sets, Fuzzy sets and Fuzzy Relations.

Course Outcomes:

On completion of the course, the student will be able to

On con	ipietic	mort	ne cot	115e, u		lent wi											
Cours	e					D	escrip	otion						High	est		
Outcon	m													Bloor	n's		
es														Taxon	omy		
CO1	S	tudent	s learn	n abou	t the p	orincipl	es of n	eural n	etworl	ks and	fuzzy	Logic		K2			
	ft	ındam	entals	•													
CO2	S	tudent	s can	get the	orougł	n know	ledge i	n biolo	gical r	neuron	and ar	tificia	l	K2			
	ne	eurons	5.														
CO3	S	tudent	can d	esign	the red	quired a	and rel	ated sy	stems.					К3			
CO4	S	tudent	s will	and	K4	,											
	co	omput	er.														
CO5	S	tudent	s und	erstan	d conc	cept of	classic	al and	fuzzy	sets f	uzzific	ation a	and	K3			
	de	efuzzi	ficatio	n, wi	th wh	ich the	ey can	be ab	le to	apply	the c	oncept	ual				
	th	ings t	o the r	eal w	orld el	ectroni	cs prol	blems a	nd app	plicati	ons.						
	•												·				
Correl	ation	betwe	en Co	ourse	Outco	omes (C	COs) a	nd Pro	gram	Outc	omes (I	POs):					
					Dream		4.0.0		.)				Prog	gram Sp	ecific		
COs					Progr	ram Ou	itcom	es (PUs)				Outo	comes (I	PSOs)		
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03		
CO1	S	Μ	S	Μ	S	L	-	-	-	-	-	L	L	S	Μ		
CO2	S	Μ	S	S	Μ	Μ	-	-	-	-	-	L	Μ	S	L		
000	C	Μ	S	Μ	S	L	_	-	_	_	-	Μ	L	S			
CO3	S	IVI	6	IVI	D			_	-	-	-	IVI	L	3	Μ		

CO5 Μ L Μ Μ L L L S Μ UNIT-I **INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS** 9 Hours Neuro-physiology - General Processing Element - ADALINE - LMS learning rule MADALINE - XOR Problem - MLP - Back Propagation Network - updation of output and hidden layer weights - application of BPN. **ASSOCIATIVE MEMORY & CPN** UNIT-II 9 Hours Associative memory - Bi-directional Associative Memory - Hopfield memory - travelling sales man problem Annealing, Boltzmann machine-learning-application-Counter Propagation networkarchitecture-training Applications. UNIT-III **SELF ORGANIZING MAP & ART** 9 Hours Self-organizing map - learning algorithm - feature map classifier - applications - architecture of Adaptive Resonance Theory - pattern matching in ART network. UNIT-IV **CRISP SETS AND FUZZY SETS** 9 Hours Introduction - crisp sets an overview - the notion of fuzzy sets -Basic concepts of fuzzy sets classical logic and overview – Fuzzy logic- Operations on fuzzy sets - fuzzy complement – fuzzy union – fuzzy intersection combinations of operations – general aggregation operations. **FUZZY RELATIONS** UNIT-V 9 Hours Crisp and fuzzy relations - binary relations - binary relations on a single set- equivalence and similarity relations – Compatibility or tolerance relations – orderings – morphisms-fuzzy relation equations. **Total Hours** 45 Hours Text Book(s) 1. Freeman J.A. and Skapura B.M., "Neural Networks, Algorithms Applications and Programming Techniques", Addison-Wesley, 1990. 2. George JKlir and TinaA Folger, "Fuzzysets, uncertainty and information", PHI, 1988. **Reference Book**(s) Laurene Fausett," Fundamentals of Neural Networks: Architecture, Algorithms and 1 Applications", Pearson Education, 1994. H.J. Zimmerman, "Fuzzy set theory and its Applications", Allied Publishers 2. Ltd, 1996.

Course	Code		BECF	F188E	ГО			L	Т	P	C C		IA	EA	TM
Course	Name)	5G / 4	4G C	ELLI	ULAR		3	0	0	3		40	60	100
			SYST	TEMS											
Course	e Categ	gory	PROF	FESSI	ONAI	LELEC	CTIVE			Syllab	ous Revisio	n		V.1	.0
			COUI	RSE -V	VI										
Pre-rec	quisite		Basic	knov	vledg	e of C	ellular	Mobil	e Con	ımuni	cation				
Course	Obje	ctives:													
The cou	urse sh	ould en	able th	e stud	ents										
		-									and LTE a				
		•					-			-	rements for R and Co				
							id overv				rk and Co	wip te	cimore	ogy.	
	10 40			ay dep	/10 y 11	ione un			1 1111						
Course	Outco	omes:													
On com	pletion	n of the	course	e, the s	tuden	t will b	be able t	0							
Cour	rse						Descr	iption						Higł	iest
Outco	mes													Bloo	m's
														Taxor	iomy
CO	1		be the	differ	ent st	andard	ls of L	ГЕ and	I LTE	-adv	anced sucl	n as S.	AE,	K	1
		EPC.													
CO					-		RF cha	racteri	stics.					K	
CO		Discrit												K	
<u>CO</u>							P transm			-				<u>K</u>	
CO	5	Differe	entiate	relay	schen	nes and	d compa	are LT	E with	W1 N	IAX.			K	4
Connol	ation h	otreoor	Cour		toom		a) and	Duogue		taam	es (POs):				
Correla	ation d	between	Cour	se Ou	lcom	es (CU	s) and 1	Progra	im Ou	ltcom	es (POS):		1	Drogro	
														Progra Specifi	
					Prog	gram (Outcom	es (PO	s))utcom	
COs														(PSOs	
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	L	S	-	S	-	-	-	-	-	L	-	L	S	-	L
CO2	Μ	M	-	-	-	-	-	-	М	Μ	-	-	L	-	M
CO3	S	L	-	S	-	-	М	-	-	Ī	-	L	М	-	L
CO4	Μ	L	-	-	Μ	-	L	-	-	L	-	L	М	-	Μ
CO5	L	Μ	-	-	-	-	S	-	-	S	-	М	S	L	S
UNIT-							F LTE							10 H	
											4G; Long				
-											nced; LTE				
archited	cture;	Protoco	ol stac	k: NA	AS (N	on- A	ccess	Stratui	n), R	RC	(Radio R	lesourc	ce Cor	trol),	PDC

(Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control); Evolved Packet Stratum: Mobility Management Entity (MME), Serving Gateway (S-GW), Packet Data Network Gateway (PDN-GW).

UNIT-II

SPECTRUM AND RF CHARACTERISTICS

9 Hours

9 Hours

9 Hours

8 Hours

Carrier aggregation: LTE and LTE-Advanced carrier aggregation scenario; Control channels; Multiple access scheme; Transceiver architecture; Spectrum sharing; Research challenges: Transceiver design; Increased FFT size, Resource management; Retransmission control; Overview of RF Requirements for LTE.

UNIT-III

KEY 4G TECHNOLOGIES

OFDMA; SOFTWARE DEFINED RADIO, Enhanced MIMO, HANDOVER AND MOBILITY, Enhanced MIMO: Single-User MIMO (SU- MIMO): MIMO adaptive switching scheme. LTE-Advanced main MIMO modes; Multi-User MIMO (MU-MIMO); Cooperative MIMO; Single- site MIMO: Advanced precoding concept. Downlink MIMO transmission; Uplink MIMO transmission.

UNIT-IV

COMP TRANSMISSION & RECEPTION

CoMP architecture: Centralized architecture, Distributed architecture, Mixed architectures: The CoMP schemes: Downlink, Uplink, Relays: Relay basic scheme, Relay deployment scenarios; Types; Duplexing schemes: Integration into RAN, Add-ons; Backhaul Design for Inband Relaying.

UNIT-V LTE VS WIMAX

WiMAX Overview: WiMAX Standards Evolution, WiMAX Deployment; Technology Comparison between LTE and WiMAX.

Total Hours 45 Hours

Text Book(s)

- Erik Dahlman, Stefan Parkvall, John Skold, "4G:LTE Advanced for Mobile Broadband, 2nd Edition, 2011.
- 2. Erik Dahlman, Stefan Parkvall, John Skold, "4G ,LTE Advanced Pro and The Road to 5G", 3rd Edition.

Reference Book(s)

1. Christopher Cox, Wiley, "An introduction to LTE: LTE Advanced, SAE and 4G Mobile Communication, 2012.

Jourse	e Code		BECF	F188EU	U0			L	Т	P	0		IA	EA	TM
Course	e Name	;	ERR	OR C	ORRI	ECTIN	G	3	0	0	3	;	40	60	100
			COD	ES											
Course	e Categ	gory	PROF	ESSI	ONAL	LELEC	TIVE		Sy	yllabus	s Revisi	ion			V.1.0
			COUI	RSE -V	٧I										
Pre-ree	quisite		Basic	Knov	vledge	e of An	alog a	nd Dig	ital Co	ommu	nication	ı			
Course	e Objec	ctives:													
The co	urse sh	ould enal	ole the	studer	nts										
1.	To uno	derstand	about	the co	ncept	s of vai	rious t	ypes of	error	source	es.				
2.	To lea	rn the er	ror cor	ntrol c	oding	technie	ques a	pplied i	n the	field o	f Digita	al Con	nmuni	cation.	
Course															
	-	n of the c	ourse,	the stu	ident v										
Cou						D	Descrip	otion						0	st Bloom's
Outco		A11 /	1	. 1	1	1 1	· 1	1 1	1					Tax	konomy
<u>C0</u>		Able to				•			des.						K2
<u>C0</u>		To unde													K2
<u>C0</u>		Able to													K2
<u>CO</u>		Able to				•									K2
CO	15	Able to	unders			ilyze C	onvoit		ues.						K2
Corrol	otion b	oetween	Course	Outo	omos		and P	roaron	n Out	comos					
			Course		unics	(003)		Tugran	1 Out	comes	(1 (15)).		Р	rooran	Specific
				Р	rogra	m Out	comes	(POs)						-	es (PSOs)
COs	PO	1 PO	PO	PO	PO	PO	PO	PO8	PO	PO	PO	PO	PS	PS	PS
		2	3	4	5	6	7		9	10	11	12	01	02	03
CO1	S	M	S	М	-	-	-	-	-	-	L	L	S	М	L
CO2	S	M	S	Μ	-	-	-	-	-	-	L	L	S	М	L
	S	М	S		-	-	-	-	-	-	L	L	S	М	L
CO3	5														
CO3	S S	M	S	Μ	-	-	-	-	-	-	L	L	S	Μ	L
CO3 CO4			S S	M	-	-	-	-	-	-	L L	L L	S S	M M	L L
	S	М		М	-	-	-							-	
CO3 CO4 CO5	S S	M M	S		-	- - CODES	-							-	L
CO3 CO4 CO5 UNIT-	S S I	M M	S NEAR	BLO	- CK C		-	-	-	-	L	L	S	M 9 Ho	L
CO3 CO4 CO5 UNIT-	S S I uction-	M M LIN Mathem	S NEAR atics of	BLO of Bina	- CK C ary Co	odes- P	- Parity (- Checks	- - Syst	- ematic	L c codes-	L - Minin	S	M 9 Ho Hammi	L urs ngDistanc
CO3 CO4 CO5 UNIT - Introdu	S S I uction- near bl	M M LIN Mathem ock cod	S NEAR atics of e- Hoy	BLO of Bina w to F	- CK C ary Co Encodo	odes- P e - Ge	- Parity (nerato	- Checks r Matri	- - Syst x-Enc	- ematic coding	L c codes- with p	L - Minin parity o	S mum check	M 9 Ho Hammi matrix	L urs ngDistanc - Decodin
CO3 CO4 CO5 UNIT- Introdu of a lin with p	S S I Inction- near bl parity	M M LIN Mathem ock cod check n	S NEAR atics c e- How matrix	BLO of Bina w to F - Dec	- CK C ary Co Encode coding	odes-P e - Ge g by	- Parity (nerato Standa	- Checks r Matri urd Ar	- - Syst x-Enc ray-	- ematic coding Codec	L c codes- with p Desig	L - Minin parity o gn for	S mum check line	M 9 Ho Hammi matrix ear Blo	L urs ngDistanc - Decodin ock Codes
CO3 CO4 CO5 UNIT- Introdu of a lin with p Modifi Hamm	S S I Inction- near bl parity iccations ing co	M M Mathem ock cod check n s to Blo des- We	S NEAR hatics of e- How natrix- ck Cool ight en	BLO of Bina w to F - Dec des-D numer	- CK C ary Co Encode coding orsch ators	odes-P e - Ger g by Algori and th	- Parity (nerato Standa ithm I e McV	- Checks r Matri urd Ar Decodir William	- Syst x-Enc ray- ng, Sy ng, Sy ng ide	- ematic coding Codec rndron	L c codes- with p Designe deco	L - Minin parity of gn for poding of	S mum check line on sy	M 9 Ho Hammi matrix ear Blo mmetri	L urs ngDistanc - Decodin ock Codes c channels
CO3 CO4 CO5 UNIT- Introdu of a lin with p Modifi Hamm	S S I Inction- near bl parity iccations ing co	M M LIN Mathem ock cod check u s to Blo	S NEAR hatics of e- How natrix- ck Cool ight en	BLO of Bina w to F - Dec des-D numer	- CK C ary Co Encode coding orsch ators	odes-P e - Ger g by Algori and th	- Parity (nerato Standa ithm I e McV	- Checks r Matri urd Ar Decodir William	- Syst x-Enc ray- ng, Sy ng, Sy ng ide	- ematic coding Codec rndron	L c codes- with p Designe deco	L - Minin parity of gn for poding of	S mum check line on sy	M 9 Ho Hammi matrix ear Blo mmetri	L urs ngDistance - Decoding ock Codes c channels
CO3 CO4 CO5 UNIT- Introdu of a lin with p Modifi Hamm	S S I action- near bl parity ications ing cou	M M Mathem ock cod check n s to Blo des- We ite rings-	S NEAR hatics of e- How natrix- ck Cool ight en	BLO of Bina w to F - Dec des-De numer rizatio	- CK C ary Co Encode coding coding orsch ators n of (2	odes-P e - Ger g by Algori and th	- Parity (nerato Standa ithm I e McV	- Checks r Matri urd Ar Decodir William	- Syst x-Enc ray- ng, Sy ng, Sy ng ide	- ematic coding Codec rndron	L c codes- with p Designe deco	L - Minin parity of gn for poding of	S mum check line on sy	M 9 Ho Hammi matrix ear Blo mmetri troducti	L

Introduction- Definition of a cyclic code- Example of a cyclic code- Polynomial Representation- Encoding by convolution- Establishing the cyclic property -Deducing the properties of a cyclic code- Primitive Polynomials- Systematic Encoding of cyclic codes- Syndrome of a cyclic code- Implementation of Encoding- Decoder operation - Multiple Error Correction-Example of Multiple Error Correction-Shortened Cyclic codes- Expurgated Cyclic codes-Cyclic codes for Burst - Error correction- Spectral properties of cyclic codes.

UNIT-III **BCH CODES**

Introduction- Specifying Cyclic codes by roots-Definition of BCH codes-Construction of BCH codes-roots and parity check matrices- Algebraic Decoding- BCH Decoding and the BCH Bound- Decoding in the frequency domain-Decoding examples for binary BCH codes- Polynomial form of the key equation-Euclid's method-Berlekamp- Massey Algorithm- Massey's minimum shift register synthesistechnique and its relation to Berlekamp's algorithm- A fast Berlekamp - Massey algorithm.

UNIT-IV REED SOLOMON CODES

Introduction- Generator Polynomial for a Reed Solomon Code-Time domain encoding for Reed Solomon Code-Decoding Reed Solomon Codes- Reed Solomon Code Decoding Example-FrequencyDomain Encoded Reed Solomon Code-Erasure Decoding- Generalized Minimum Distance Decoding- Welch-Berlekamp Algorithm- Singly Extended Reed Solomon Codes-Doubly Extended Reed Solomon Codes- Justeen codes, MDS codes, Alterant, Goppa codes.

UNIT-V CONVOLUTION CODES

Introduction- General properties of Convolutional codes- Generator Polynomials - Terminology- Encoder State Diagram- Distance Structure of Convolutional codes-Evaluating Distance and weight Structures-Maximum Likelihood Decoding- Viterbi Algorithm- General properties -Example of viterbi decodingissues arising- Practical implementations of viterbi decoding-Performance of Convolutional codes- Good Convolutional codes- punctured Convolutional codes- Applications of Convolutional codes- codes for multilevel modulations- Wozencraft's sequential decoding algorithm, Fann's algorithm.

	Total Hours 45 Hours
Text	Book(s)
1.	F.J. McWilliams and N.J.A. Slone, "The theory of error correcting codes", 1977.
2.	R.E. Balahut, "Theory and practice of error control codes", Addison Wesley, 1983.
Refe	erence Book(s)
1.	Peter Sweeney, "Error Control Coding from theory to practice", John Wiley & Sons ltd, 2002.
2.	Shu Lin and D.J. Costello Jr., "Error Control Coding", Prentice Hall, 1983.

9 Hours

9 Hours

9 Hours

Course	Code	9	BECF	188EV	V0			L	Т	P		С	IA 1	EA	TM
Course	Nam	e	VLSI	TES	TING	r		3	0	0	, ,	3	40	60	100
Course			PROF	ESSIC	ONAL	ELEC	TIVE		Sy	llabus	Revis	ion		١	/.1.0
Catego	ry		COUF	RSE -V	٧I										
Pre-req	luisite	e	Basic	know	vledge	of Di	gital C	Circuits							
Course	Obje	ective	s:												
The cou	ırse sł	nould	enable	the students											
						VLSI		0							
						ing eq									
					-	and Di	-	-			n VLS	I.			
4.	To lea	arn th	e con	cepts	of Loa	aded bo	oard te	sting in	n VLS	SI.					
Course															
	-	tion of the course, the student will be able to													
Course	-	Description Highes												st Bloom's	
Outcor	n													Tax	onomy
es															
CO1	E	xplair	the fu	ındam	entals	of VLS	SI Test	ting.							K2
CO2	D	iscus	s the r	need f	or tes	t proce	ss.								K2
CO3	Pe	erforn	n analo	og and	digita	al VLSI	Testir	ng.							K3
CO4				0	U	ting scl		0	circui	t.					K3
CO5	D	esign	a fun	ctiona	l bloc	k funct	ional t	olock le	evel d	esign	of in-c	ircuit	test		K3
	ec	quipm	ent.												
Correla	ation	betw	een Co	ourse	Outco	omes (C	COs) a	nd Pro	gram	Outc	omes (POs):			
					Due e-		tacres						P	rogram	Specific
COs					rrogi	ram Ou	ncome	es (PUS	5)				0	utcome	s (PSOs)
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	S	S	-	-	L	-	-	-	-	-	-	L	L	-	S
CO2	S	S	L	Μ	Μ	-	-	-	-	-	-	L	Μ	М	S
CO3	S	S	L	Μ	Μ	-	-	-	-	-	-	L	Μ	М	S
CO4	S	S	S	Μ	Μ	-	-	-	-	-	-	L	Μ	М	S
CO5	S	S	S	М	М	-	-	-	-	-	-	L	М	М	S

UNIT-I INTRODUCTION

Test process and automatic test equipment, test economics and product quality, fault modeling.

UNIT-II DIGITAL TESTING

Logic and fault simulation, testability measures, combinational and sequential circuit test generation.

UNIT-III ANALOG TESTING

Memory Test, DSP Based Analog and Mixed Signal Test, Model based analog and mixed signaltest, delay test, IIDQ test.

UNIT-IV DESIGN FOR TESTABILITY

Built-in self-test, Scan chain design, Random Logic BIST, Memory BIST, Boundary scan test standard, Analog test bus, Functional Microprocessor Test, Fault Dictionary, Diagnostic Tree, Testable System Design, Core Based Design and Test Wrapper Design, Test design for SOCs.

UNIT-V LOADED BOARD TESTING

Unpowered short circuit tests, unpowered analog tests, Powered in-circuit analog, digital and mixed signal tests, optical and X-ray inspection procedures, functional block level design of in-circuit test equipment.

Total Hours 45 Hours

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

Text Book(s)

- Michael L. Bushnell and Vishwani D. Agarwal, "Essentials of Electronic Testing for Digital, Memory & Mixed-Signal VLSI Circuits", Springer, 2006.
- Laung-Terng Wang, Cheng-Wen Wu, Xiaoqing Wen, "VLSI Test Principles and Architectures Design For Testability", Elsevier, 2006.

Reference Book(s)

1. Dimitris Gizopouilos, "Advances in Electronic Testing", Springer, 2006.

1					L	Т	P	, (С	IA	EA	TM	
MO	ART A BILE MMUN S				3	0	0		3	40	60	100	
e PROFESSIONAL ELECTIVE Syllabus Revision										V.1.0			
ry COURSE -VI puisite													
es:													
	le the st												
	e appli				-		ile Co	mmun	icatio	ıs.			
	itectur												
	rt Ante		-	-		А.							
	ledge o PS orb				-	ninati	.						
tallu G	r 5 010	ns and	10 1 3 p	osition	ueteri	mati	JII.						
es:													
	ourse, th	he stuc	lent wi	ll be ab	ole to								
	,,-			Descrip							Hi	ghest	
Bloom's													
Taxonomy													
Examine the application of smart antennas of mobile communications. K3												K3	
	um forn	ning co	onsider	ations	and Sp	atial F	Process	sing fo	r Wire	eless		K4	
ns.			~										
	rt anter		<u> </u>						and C	iPS.		<u>K3</u>	
	hart Ant			_								K2	
	bal Pos									ian		<u>K5</u> K4	
	GNSS Gignal c			inas io	r the s	satem		tion, n	aviga	.1011,		K4	
veen C	Course	Outco	omes (C	COs) a	nd Pro	ogram	Outc	omes ((POs)	:			
		Prog	ram Oı	utcome	es (PO	s)					Spec Outco	Program Specific Putcomes (PSOs)	
PO PO		PO	PO	PO	PO	PO	PO	PO	PO	PS	PS		
3	4	5	6	7	8	9	10	11	12	01	. 02	2 03	
Μ	М	L	L	-	-	-	-	-	L	L	S	L	
S	S	S	L	-	I	-	-	-	L	L	S	М	
М	М	S	М	-	I	-	-	-	М	М	S	L	
~	М	S	М	-	-	-	-	-	М	М	Μ	[L	
S	Μ	S	М	-	-	-	-	-	М	М	Μ	[L	
S S													
	S	S M	S M S	S M S M	S M S M -	S M S M	S M S M	S M S M	S M S M			S M S M M M M	

UNIT-I	INTRODUCTION TO SMART ANTENNAS	9 Hours
	ocessing for Wireless Systems, Key Benefits of Smart Antennas, Sm	
introductior	n, smart antenna configuration, SDMA, architecture of smart antenna systems	•
UNIT-II	APPLICATIONS OF SMART ANTENNAS IN MOBILE COMMUNICATIONS	9 Hours
Mobile cor	nmunication systems with smart antennas, Application of Antenna Array	rs to Mobile
Communica	tions, Beam Forming and Direction-of-Arrival Considerations.	
UNIT-III	SMART ANTENNAS TECHNIQUES FOR CDMA	9 Hours
	ent CDMA Spatial Processors, Coherent CDMA Spatial Processors and	_
Processing	Rake Receiver, Multi-User Spatial Processing, Dynamic Re-sectoring	Using Smar
Antennas, I	Downlink Beam forming for CDMA.	
UNIT-IV	OVERVIEW OF GPS & GPS SIGNALS	9 Hours
	of GPS- Global Positioning Systems: Basic concept, system architecture, s	
-	nt, GPS aided Geo-augmented navigation (GAGAN) architecture. Signal s	
spooting (A	S), selective availability, Difference between GPS and GALILEO satellite co	nstruction.
UNIT-V	GPS ORBITS AND SATELLITE POSITION DETERMINATION	9 Hours
GPS orbital	parameters, description of receiver independent exchange format (RINEX) -	-Observation
	avigation message data parameters, GPS position determination. GPS /	
antennas.		
	Total Hours	45 Hours
Text Book(s)	
	Rappaport and J.C. Liberti, "Smart Antennas for Wireless Communication ndia. 1999.	ns", Prentice
2 Tapar	n K Sarkar," Smart Antennas ", IEEE Press, John Wiley & Sons Publications,"	2003.
Reference 1		
	nan – Wellenhof, H. Liehtenegger and J. Collins, "GPS – Theory and ger – Wien, New York, 2001.	Practice",
4. Gotta	pu Sasibhushana Rao, "Global Navigation Satellite Systems", McGraw Hill Delhi, 2010.	Education,
INCW		

Course Code	BECF188EW0	L	Т	Р	С	IA	EA	TM				
Course Name	SATELLITE	3	0	0	3	40	60	100				
	COMMUNICATION											
Course	PROFESSIONAL ELECTIVE	Syllabus Revision V.1.0						.1.0				
Category	COURSE -VII											
Pre-requisite	Basic knowledge of Antennas and Digital Communication											

Course Objectives:

The course should enable the students

- 1. To understand the basics of satellite orbits.
- 2. To understand the satellite segment and earth segment.
- 3. To analyze the various methods of satellite access.
- 4. To understand the applications of satellites.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcom		Bloom's
es		Taxonomy
CO1	Understand the basic concepts of Satellite orbits using Kepler's laws.	K2
CO2	Space craft technology in space segment and Computation of link budget for	K2
	satellites to calculate received power.	
CO3	Understand the various earth station sub systems to transmit and receive	K2
	signals.	
CO4	Understand and analyze the different losses and noise in earth segment.	К3
CO5	Apply the different accessing techniques, encryption techniques to	K3
	communicate satellite systems.	

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

COs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 11	PO	PS	PSO	PS
	1	2	3	4	5	6	7	8	9	10		12	01	2	03
CO1	S	Μ	Μ	-	-	-	-	-	-	-	-	-	Μ	L	-
CO2	Μ	S	Μ	-	Μ	-	-	-	-	-	-	L	Μ	М	L
CO3	S	S	S	L	L	-	-	-	-	-	-	-	L	L	L
CO4	Μ	S	Μ	L	Μ	-	-	-	-	-	-	L	Μ	Μ	Μ
CO5	М	Μ	L	-	-	-	-	-	-	-	-	М	L	S	S

			,
UNI		SATELLITE ORBITS	9 Hours
Kepl	er's La	ws, Newton's law, orbital parameters, orbital perturbations, station k	eeping, geo
static	mary an	d non Geo-stationary orbits - Look Angle Determination- Limits of visibil	ity –eclipse-
Sub s	atellite	point -Sun transit outage-Launching Procedures - launch vehicles and propul	sion.
UN	IT-II	SPACE SEGMENT AND SATELLITE LINK DESIGN	9 Hours
Space	ecraft T	echnology- Structure, Primary power, Attitude and Orbit control, Thermal	control and
Prop	ulsion, (Communication Payload and supporting subsystems, Telemetry, Tracking an	d command.
Satel	lite Upl	ink and Downlink Analysis and Design, Link Power Budget, C/N calculation	n, G/T ratio-
Perfo	ormance	Impairments-System noise, Inter-modulation Noise, Noise Temperature,	Propagation
Facto	ors, Rair	and Ice effects, Polarization.	
UN	IT-III	EARTH SEGMENT	9 Hours
Intro	duction	- Receive - Only home TV systems (TVRO) - Outdoor UNIT - Indoor UNI	T for analog
(FM)	TV –	Master antenna TV system (MATV) - Community Antenna TV system	n (CATV) –
Trans	smit – R	Receive earth stations, Antennas, Terrestrial Interface, Equipment Measurem	ents on G/T,
C/N,	EIRP, A	Antenna Gain.	
UN	IT-IV	SATELLITE ACCESS	9 Hours
Mod	ulation	and Multiplexing: Voice, Data, Video, Analog – digital transmission sys	tem, Digital
video	Broad	cast, multiple access: FDMA, TDMA, CDMA, Assignment Methods, Sprea	ad Spectrum
comr	nunicati	on, compression – encryption.	
UN	IT-V	SATELLITE APPLICATIONS	9 Hours
INTE	ELSAT	Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, INMARSAT,	LEO, MEO,
		vigational System. Direct Broadcast satellites (DBS)- Direct to home Broad	
Digit	al audic	broadcast (DAB)- World space services, Business TV (BTV), GRAMSAT,	, Specialized
servi	ces – E -	-mail, Video conferencing, Internet.	-
		Total Hours	45 Hours
Text	Book(s)		1
1.	Denni	s Roddy, "Satellite Communication", Fourth Edition, McGraw Hill, 2006.	
Rofo	rence B	• *	
1.		r L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, "Satellite Com	munication
1.		as Engineering", Prentice Hall, 2007.	munication
2.	•	arwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.	
2. 3.	-		ouso Boston
э.		R. Elbert, "Satellite Communication Applications", Hand Book, Artech H	ouse Dostan
	Londo	n, 1997.	

4. Emanuel Fthenakis, "Manual of Satellite Communications", McGraw Hill, 1984

5. Robert G. Winch, "Telecommunication Transmission Systems", McGraw-Hill, 1983.

6. M.Richharia, "Satellite Communication Systems-Design Principles", Macmillan, 2003.

Course Code	BECF188EX0	L	Т	Р	IA	EA	TM			
Course Name	RADAR AND	3	0	0	60	100				
	NAVIGATIONAL AIDS									
Course	PROFESSIONAL ELECTIVE	Syllabus Revision V.1.0						V.1.0		
Category	COURSE -VII									
Pre-requisite	Basic knowledge of Antenna Propagation and Digital communication									

Course Objectives:

The course should enable the students

- 1. To become familiar with fundamentals of RADAR.
- 2. To gain in depth knowledge about the different types of RADAR and their operations.
- 3. To Learn Need for signal detection in RADAR and various detection techniques.
- 4. To become familiar with RADAR navigation techniques.
- 5. To understand Satellite navigation system.

Course Outcomes:

On completion of the course, the student will be able to

On con	npletio	on of t	he cou	urse, t	ne stud	dent wi	ll be a	ble to										
Cours	e					D) escrip	otion]	Highes	t Bloom's			
Outco	m													Tax	onomy			
es																		
CO1	G	raduat	tes wi	ll dem	onstra	ate the	ability	to iden	tify R	ADAI	R, form	ulate	and	nd K2				
		olve er					2											
CO2	G	radua	tes w	ill de	monst	rate th	e abil	ity to	desig	n a R	ADAR	syste	em,		K3			
	С	component or process as per needs and specifications.																
CO3	G	radua	tes w	ill der	nonsti	rate the	e abili	ty to i	dentif	y, sig	nal det	ection	in		K2			
	R	RADAR and various detection techniques.																
CO4	G	radua	tes w	vill d	emons	strate	the al	bility t	o fai	niliar	with	RAD	AR	K4				
	n	navigation techniques.																
CO5	G	Graduates will demonstrate the ability to design a system, Distance													K5			
	Measuring Equipment and Microwave Landing System.																	
Correl	ation	betwe	een Co	ourse	Outco	omes (C	COs) a	nd Pro	gram	Outc	omes (l	POs):						
					Prog	ram Ai	itcom	es (POs	c)				Pro	Program Specific				
COs					IIVgi				, ,				Ou	tcomes	s (PSOs)			
005	PO	PO	PO	PO	PO	PO	PO	PO8	PO	PO	PO	PO	PS	PS	PS			
	1	2	3	4	5	6	7		9	10	11	12	01	02	03			
CO1	S	Μ	Μ	Μ	L	L	-	-	-	-	-	L	L	S	Μ			
CO2	S	S	S	S	Μ	L	-	-	-	-	-	L	L	S	Μ			
CO3	S	S	Μ	Μ	S	Μ	-	-	-	-	-	Μ	Μ	S	L			
CO4	S	S	S	Μ	S	Μ	-	-	-	-	-	Μ	Μ	S	L			
CO5	S	S	S	Μ	S	Μ	-	-	-	-	-	Μ	L	S	L			

UNIT-I	INTRODUCTION TO RADAR EQUATION	9 Hours						
Introduction	- Basic Radar – The simple form of the Radar Equation- Radar B	lock Diagram-						
Radar Frequ	encies – Applications of Radar – The Origins of Radar - Detection	of Signals in						
Noise- Rece	eiver Noise and the Signal-to-Noise Ratio-Probability Dens	ity Functions-						
Probabilities	of Detection and False Alarm- Integration of Radar Pulses- Radar C	Cross Section of						
Targets- Ra	dar cross Section Fluctuations- Transmitter Power-Pulse Repetition	on Frequency-						
Antenna Par	ameters- System losses – Other Radar Equation Considerations.							
UNIT-II	MTI AND PULSE DOPPLER RADAR	9 Hours						
Introduction	to Doppler and MTI Radar- Delay -Line Cancellers- Staggered F	ulse Repetition						
Frequencies	-Doppler Filter Banks - Digital MTI Processing - Moving Targe	et Detector -						
Limitations	to MTI Performance - MTI from a Moving Platform (AMIT) - Pulse	Doppler Radar–						
Other Dopp	ler Radar Topics- Tracking with Radar -Monopulse Tracking -Co	nical Scan and						
Sequential I	Lobing – Limitations to Tracking Accuracy - Low-Angle Tracking	- Tracking in						
Range - Ot	her Tracking Radar Topics - Comparison of Trackers - Automatic	Tracking with						
Surveillance	Radars(ADT).							
UNIT-III	DETECTION OF SIGNALS IN NOISE	9 Hours						
Matched -F	ilter Receiver - Detection Criteria - Detectors Automatic Detector	- Integrators -						
Constant-False-Alarm Rate Receivers - The Radar operator - Signal Management - Propagation								
Radar Waves - Atmospheric Refraction - Standard propagation - Nonstandard Propagation -								
The Radar A	Antenna - Reflector Antennas - Electronically Steered Phased Arra	ay Antennas –						

Phase Shifters- Frequency-Scan Arrays Radar Transmitters and Receivers - Introduction –Linear Beam Power Tubes - Solid State RF Power Sources - Magnetron - Crossed Field Amplifiers -Other RF Power Sources – Other aspects of Radar Transmitter.- The Radar Receiver - Receiver noise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

UNIT-IV RADIO DIRECTION AND RANGES

9 Hours

Introduction - Four methods of Navigation .- The Loop Antenna - Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finding - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direction Finders – The Commutated Aerial Direction Finder - Range and Accuracy of Direction Finders - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - VOR Receiving Equipment - Range and Accuracy of VOR – Recent Developments. Hyperbolic Systems of Navigation (Loran and Decca) - Loran-A - Loran-A Equipment - Range and precision of Standard Loran - Loran-C - The Decca Navigation System -Decca Receivers - Range and Accuracy of Decca - The Omega System

UNIT-VSATELLITE NAVIGATION SYSTEM9 HoursDistance Measuring Equipment - Operation of DME - TACAN - TACANEquipment -Instrument Landing System - Ground Controlled Approach System - Microwave Landing System(MLS) The Doppler Effect - Beam Configurations -Doppler Frequency Equations - Track

Stabilization - Doppler Spectrum - Components of the Doppler Navigation System - Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation - Principles of Operation - Navigation over the Earth – Components of an Inertial Navigation System - Earth Coordinate Mechanization - Strapped- Down Systems - Accuracy of Inertial Navigation Systems- The Transit System - Navistar Global Positioning System (GPS).

	Total Hours 45 Hours										
Text	Text Book(s)										
1.	Merrill I. Skolnik," Introduction to Radar Systems", 3rd Edition, McGraw-Hill, 2003.										
2.	N.S. Nagaraja, "Elements of Electronic Navigation Systems", 2 nd Edition, TMH, 2000.										
Refe	Reference Book(s)										
1.	Peyton Z. Peebles: "Radar Principles", John Wiley, 2002.										
2.	J.C Toomay, "Principles of Radar", 2nd Edition, PHI, 2004										

Course	Cod	e	BECF	F188E	Y0			L	Τ	P			IA	EA	TM		
Course	Nam	ne	WAV	ELE	Γ ΑΝΙ) ITS		3	0	0		3	40	60	100		
			APPL	JCA	FIONS	5											
Course			PROF	ESSI	ONAL	LELEC	TIVE		Sy	llabus	s Revis	ion			V.1.0		
Catego	ry		COUI	RSE -'	VII												
Pre-rec	quisit	e	Basic	e knov	vledge	e of Sig	gnals &	& Syste	ems a	nd Di	gital Si	ignal I	Proces	sing			
Course	Obje	ectives	s:														
The cou	irse sl	hould	enable	e the s	tudent	S											
1.	To ur	ndersta	and the	e fund	ament	als of V	Wavele	et Trans	sform.								
2.	To lea	arn the	e mult	i-reso	lution	analysi	is techi	nique w	vith re	spect t	o Wav	elet T	ransfo	rm.			
3.	To kr	now th	e char	acteri	stics o	ftvnes	of way	velet tra	ansfor	ms an	d their	applic	ations				
	-					JI						TT -					
Course	Out	comes	:														
On con	pletio	on of t	he cou	urse, ti	he stud	dent wi	ll be al	ble to									
Cours	e					D	escrip	otion						Highe	st Bloom's		
Outcon	n													Ta	xonomy		
es																	
CO1				the co	oncept	of Fo	urier	transfor	rm an	d sho	ort time	e Fou	rier		K2		
	-	ansfor	-														
CO2	A	Analyze the need for time frequency analysis.K3												K3			
CO3	A	Acquire Knowledge about various wavelet transform and design wavelet											K3				
		ansfor		U							C						
CO4	A	nalyz	e the r	elatio	nship l	betwee	n the fi	ilter ba	nk and	l wave	elet.				K4		
CO5	Α	nalyz	e the a	applica	ation o	f wave	let.								K4		
													•				
Correl	ation	betwe	een Co	ourse	Outco	omes (O	COs) a	nd Pro	gram	Outc	omes (POs):					
					Progr	am Oi	utcom	es (POs	5)					0	n Specific		
COs			1	-	0				, 			1			es (PSOs)		
005	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS		
ac.t	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03		
CO1	S	S	M	L	S	-	-	-	-	-	-	S	S	S	L		
CO2	S	S	M	L	S	-	-	-	-	-	-	S	S	M	L		
CO3	S	S	M	L	S	-	-	-	-	-	-	S	M	L	- -		
CO4	S	S	M	L	S	-	-	-	-	-	-	S	S	S	L		
CO5	S	S	Μ	L	S	-	-	-	-	-	-	S	S	S	-		
TINITT	r					OFW	A 17171	ייתי יתיקר		TEOP	мс			0.11			
UNIT-	L	FUNDAMENTALS OF WAVELET TRANSFORMS										9 Ho	urs				

Vector Spaces – Properties– Dot Product – Basis – Dimension, Orthogonality and Orthonormality – Relationship Between Vectors and Signals – Signal Spaces – Concept of Convergence – Hilbert Spaces for Energy Signals- Fourier Theory: Fourier series expansion, Fourier transform, Short time Fourier transform, Time-frequency analysis.

UNIT-II MULTI RESOLUTION ANALYSIS

Definition of Multi Resolution Analysis (MRA) – Haar Basis – Construction of General Orthonormal MRA – Wavelet Basis for MRA – Continuous Time MRA Interpretation for the DTWT – Discrete Time MRA – Basis Functions for the DTWT – PRQMF Filter Banks.

UNIT-III CONTINUOUS WAVELET TRANSFORMS

Wavelet Transform – Definition and Properties – Concept of Scale and its Relation with Frequency – Continuous Wavelet Transform (CWT) – Scaling Function and Wavelet Functions (Daubechies Coiflet, Mexican Hat, Sinc, Gaussian, Bi Orthogonal) – Tiling of Time – Scale Plane for CWT.

UNIT-IV DISCRETE WAVELET TRANSFORM

Filter Bank and Sub Band Coding Principles – Wavelet Filters – Inverse DWT Computation by Filter Banks – Basic Properties of Filter Coefficients – Choice of Wavelet Function Coefficients – Derivations of Daubechies Wavelets – Mallat's Algorithm for DWT – Multi Band Wavelet Transforms Lifting Scheme- Wavelet Transform Using Polyphase Matrix Factorization – Geometrical Foundations of Lifting Scheme – Lifting Scheme in Z – Domain.

UNIT-V APPLICATIONS

Wavelet methods for signal processing- Image Compression Techniques: EZW–SPHIT Coding – Image Denoising Techniques: Noise Estimation – Shrinkage Rules – Shrinkage Functions – Edge Detection and Object Isolation, Image Fusion, and Object Detection.

Total Hours45 Hours

9 Hours

9 Hours

9 Hours

9 Hours

Text	Book(s)
1.	R. Rao R M and A S Bopardikar, "Wavelet Transforms Introduction to theory and Applications",
	Pearson Education, Asia, 2000.
2.	L.Prasad & S.S.Iyengar, "Wavelet Analysis with Applications to Image Processing", CRC
	Press, 1997.
Ref	erence Book(s)
1.	J. C. Goswami and A. K. Chan, "Fundamentals of wavelets: Theory, Algorithms and
	Applications" John Wiley, 1999.
2.	M. Vetterli, J. Kovacevic, "Wavelets and sub band coding" Prentice Hall Inc, 1995.
3.	Stephen G. Mallat, "A wavelet tour of signal processing" 2 nd Edition Academic Press, 2000.
4.	Soman K P and Ramachandran K I, "Insight into Wavelets from Theory to practice" Prentice
	Hall, 2004

	Code]	BECF1	88EZ()			L	Т	P	С	IA	EA	A	TM		
Course	Name	5	SOFT	WARI	E DEF	INED		3	0	0	3	40	60)	100		
]	RADIO	C													
Course	Categ	ory]	PROFE	ESSIO	NAL E	ELECT	IVE		Sylla	abus R	levisio	n		60 100 V.1.0 V.1.0 Highest Bloom's Taxonomy K2 K3 FS PS PS F			
			COUR														
Pre-req	uisite		Analog	g & Dig	gital Co	ommu	nicatio	n (BEC	CF1847	Г30)							
Course	•																
The cou																	
			d Softw														
) freque									abilitie	es.				
			ulti rate lowledg														
			ligital H							nus m	JDIX.						
Course	Outco	mes:															
On com	pletion	of the	course	e, the s	tudent	will be	e able t	0									
Cours	e	e Description										I	Highes	t			
Outcon	ne												E	Bloom'	S		
S															ny		
CO1	D	emons	trate th	ne und	erstand	ling o	f softw	vare de	efined	radio	archite	cture		K2			
	an	d desig	gn prin	ciples.													
CO2	D	Design and demonstrate on Radio frequency implementation issues. K3															
CO3	In	npleme	ent sma	rt ante	ennas ir	ı SDR.								K3			
CO4	A	nalyze	compl	ex pro	blems	critica	lly in t	he don	nain of	SDR	using S	Smart		K3			
	an	itenna	technic	ques.													
CO5	A	nalyze	compl	ex pro	blems	critica	lly in t	he don	nain of	SDR	using S	Smart		K3			
	an	itenna	technic	ques.													
Correla	tion b	etweer	1 Cour	se Ou	tcomes	s (COs	and (Progra	am Ou	tcome	s (POs	s):	1				
														0			
				I	Progra	m Ou	tcomes	s (POs)					-			
COs																	
	-		-											. ,			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO			PS		
	4	2	3	4	5 	6	7	8	9 I	10 I	11 M	12 M	01	O2	03		
001	1 5	n	n		Μ	-	-	-	L	L	M	Μ	S S	M	L L		
CO1	S	S	S	M								1.4			1 I		
CO2	S S	S	S	М	М	-	-	-	L	L	M	M	S	M			
CO2 CO3	S S S	S S	S S	M M	M M	-	-	-	L	L	М	М	S	М	L		
CO2 CO3 CO4	S S S S	S S S	S S S	M M M	M M L	-		-	L L	L L	M M	M M	S S	M M	L L		
CO2 CO3	S S S	S S	S S	M M	M M	-	-	-	L	L	М	М	S	М	L L L		
CO2 CO3 CO4	S S S S S	S S S	S S S	M M M	M M L S	-	-	-	L L L	L L M	M M M	M M	S S	M M	L L L		

Radio; Design Principles; Relations with other radios, issues, enabling technologies, radio frequency spectrum and regulations. UNIT-II **RADIO FREQUENCY IMPLEMENTATION** 9 Hours The purpose of the RF Front End, Dynamic Range, RF receivers front end Topologies, Importance of the components to Overall performance, Transmitter Architecture, Noise and Distortion in the RF Chain, ADC and DAC Distortion, Flexible RF systems using MEMS. UNIT-III MULTIRATE SIGNAL PROCESSING AND DIGITAL 9 Hours **GENERATION OF SIGNALS** Sample rate conversion principles. Digital filter Banks. Timing recovery in Digital Receivers using Multi rate Digital filters. Approaches to Direct Digital Synthesis. Analysis of spurious signal Band pass signal generation, Generation of Random sequences. UNIT-IV DATA CONVERTERS AND SMART ANTENNAS 9 Hours Parameters of Ideal and practical Data Converters, Techniques to Improve Data Converter performance, Common ADC and DAC Architectures. Smart Antennas- Hardware implementation of Smart Antennas. UNIT-V **DIGITAL HARDWARE AND SOFTWARE CHOICES** 9 Hours DSP Processors, FPGA, ASIC s. Tradeoffs, Object oriented programming, Object Brokers, GNU Radio-USRP. **Total Hours 45 Hours** Text Book(s) Jeffrey H.Reed, "Software Radio: A Modern Approach to Radio Engineering, Prentice Hall, 1. 2002. Joseph Mitola, "Software Radio Architecture: Object Oriented Approaches to Wireless System 2. Engineering", Wiley-Inter science; I Edition 2000. **Reference Book(s)** Tony J Rouphael, "RF and DSP for SDR," Elsevier Newnes Press, 2008. 1. 2. S.Shanmugavel, M.A.Bhagyaveni, R.Kalidoss, "Cognitive Radio-An Enabler for Internet of things", River Publishers, 2017, Modems", John Wiley & Sons, 2000. 3. Paul Burns, "Software Defined Radio for 3G," Artech House, 2002. 4. P. Kenington, "RF and Baseband Techniques for Software Defined Radio," Artech House, 2005.

Course	Cod	e	BECF	1880	ET			L	Т	P	•	C	IA	EA	TM			
Course						TUR	E &	3	0	0		3	40	60	100			
course			PROT						Ū			C		00	100			
Course	•		PROF						Syll	abus	Revi	sion		V.	1.0			
Catego	ry		ELEC	TIVE	COU	RSE -	VII		·									
Pre-rec	-	e	Basic	know	ledge	of Dat	ta Con	ımuni	cation	l			I					
Course	urse Objectives:																	
The cou	course should enable the students . To understand the Architectural Overview of IoT.																	
												-		nstraints				
			and t	he va	rious	IoT	Protoc	cols (Data	link,	Net	work,	Tran	isport,	Session,			
	Servi	ce).																
C	0 1																	
Course	Out			oftha	0011	o the	stude	ata	11 ha -	bla t								
Cours	0	Attn	e end	of the	cours				n de a	able to)			Uia	hest			
Outcon	-	Description											-					
es	11												Bloom's Taxonomy					
C01	τ	Understand the basic concepts of IoT.													2			
CO2		Study the architecture model of IoT.													2			
C02		Describe the different communication protocols used in IoT.												2				
CO4		Analyze the different standards used in IoT Systems.												2				
C05		Analyze applications of IoT in real time scenario.K2																
CO6		-					and S							K2				
Correl	ation	betwe	en Co	ourse	Outco	mes ((COs)	and I	Progra	am O	utco	mes (POs):					
													1	gram S	pecific			
				Pr	ogran		comes	(PUs	5)				Ou	tcomes	(PSOs)			
COs	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	P	PO	PS	PSO	PSO			
0.05	1	2	3	4	5	06	7	8	9	10	0	12	01	2	3			
											1							
	~	-	-							_	1							
CO1	S	-	-	-	-	-	-	-	L	L	-	Μ	-	Μ	-			
CO2	S	-	-	-	-	-	-	-	L	L	-	Μ	-	М	-			
CO3	S	-	-	-	-	-	_	-	L	L	-	Μ	M	M				
CO4	S	L	M	-	_	_	-	_	L	L	_	М	-					
	-	S	S	М	_	_		_	M	M	-	M	M					
CO5																		
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
		6												0				
UNIT-	L	OVERVIEW									9 Hours							

IoT-An Architectural Overview– Building an architecture, Main design principles and needed capabilities, An IoT architecture outline, standards considerations. M2M and IoT Technology Fundamentals- Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, Everything as a Service (XaaS), M2M and IoT Analytics, Knowledge Management

	DEFEDENCE A DOLLEFOTUDE	0.11.0
UNIT-II	REFERENCE ARCHITECTURE	9 Hours
IoT Archite	cture-State of the Art – Introduction, State of the art, Reference	e Model and
architecture,	IoT reference Model - IoT Reference Architecture Introduction	n, Functional
View, Inform	nation View, Deployment and Operational View, Other Relevant	architectural
views. Real-	World Design Constraints- Introduction, Technical Design constra	ints-hardware
is popular ag	ain, Data representation and visualization, Interaction and remote c	control.
UNIT-III	IOT DATA LINK LAYER & NETWORK LAYER	9 Hours
	PROTOCOLS	
PHY/MAC	Layer(3GPP MTC, IEEE 802.11, IEEE 802.15), Wireless HAI	RT, Z-Wave,
Bluetooth L	ow Energy, Zigbee Smart Energy, DASH7 - Network Layer	r-IPv4, IPv6,
6LoWPAN,	6TiSCH,ND, DHCP, ICMP, RPL, CORPL, CARP	
UNIT-IV	TRANSPORT & SESSION LAYER PROTOCOLS	9 Hours
Transport La	yer (TCP, MPTCP, UDP, DCCP, SCTP)-(TLS, DTLS) – Session I	Layer-HTTP,
CoAP, XMP	P, AMQP, MQTT.	
UNIT-V	SERVICE LAYER PROTOCOLS & SECURITY	9 Hours
Service Lay	er -oneM2M, ETSI M2M, OMA, BBF - Security in IoT Proto	ocols – MAC
802.15.4, 6L	oWPAN, RPL, Application Layer.	
	Total Hours	45 Hours

Text Book(s)

- 1. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Stefan Aves and, Stamatis Karnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.
- 2. Peter Waher, "Learning Internet of Things", PACKT publishing, Birmingham Mumbai.

Reference Book(s)

- Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3-642-19156-5, Springer.
- 2. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118- 47347-4, Willy Publications.

Course	e Code	e						L	Т	P	(2	IA	EA	TM						
Course	e Nam		5G W COM SYST	MUN	ESS ICAT	ION		3	0	0		3	40	60 100							
Course					ONAL	ELEC	TIVE		Sy	llabus	Revis	ion		V.	1.0						
Catego	ry		COUF	RSE -	VII				•												
Pre-ree	quisite	e	Wire	eless c	ommu	inicatio	n														
Course																					
The cou																					
						and Bey						c	50	1 1	1						
	-					ng of	the ke	ey teci	nnolog	gies, e	enabler	S OI	5G a	nd be	yond						
			tion sy adio A			nology.															
	•					n Wave		nunicat	ion.												
			6G Te																		
Course																					
$\frac{On con}{C}$	-	on of t	he cou	ırse, tl	ne stuc									TT.	1 4						
Cours Outcor	-					D	escrip	tion							hest om's						
es	11													-	nomy						
C01	D	escrib	e 5G a	archite	ectures	and m	illimete	er-wav	e com	munic	ation.				<u></u>						
CO2						es for tl						ems		K	2						
CO3	D	Describe various modulation and multiplexing techniques for 5G. K4																			
CO4		Discuss the machine learning algorithms for resource allocation in 5G K2																			
005			systen		1									T							
CO5	E	xplain	the 60	G tech	nolog	у.								ľ	3						
Correl	ation	betwe	en Co	ourse	Outco	mes (C	COs) ai	nd Pro	gram	Outc	omes (POs):									
COs		tion between Course Outcomes (COs) and Program Outcomes (POs): Program Outcomes (POs)												Program Specific Outcomes (PSOs)							
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS						
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03						
CO1	S	S	S	L	Μ	L						S	S	S	L						
CO2	S	S	М	L	S	L						S	S	М	S						
CO3	S	S	М	L	S	L						S	S	М	L						
CO4	S	S	М	L	L	S						S	S	S	M						
CO5	S	S	М	L	S	L						S	S	S	М						
		_																			
		DDI	TIDC	I EOF									on Activities - Use								
UNIT-			VERS			<u> </u>	10	D'11			n, 1	1									

Spectrum Challenges in 5G – Spectrum Landscape and Requirements – Spectrum Access Modes and Sharing Scenarios.

UNIT-II 5G ARCHITECTURE AND MILLIMETER WAVE COMMUNICATION

9 Hours

5G Architecture: Software Defined Networking – Network Function Virtualization – Basics about RAN Architecture –High-Level Requirements for 5G Architecture – Functional Architecture and 5G Flexibility – Physical Architecture and 5G Deployment Millimeter Wave Communication: Channel Propagation – Hardware Technologies for mmW Systems.

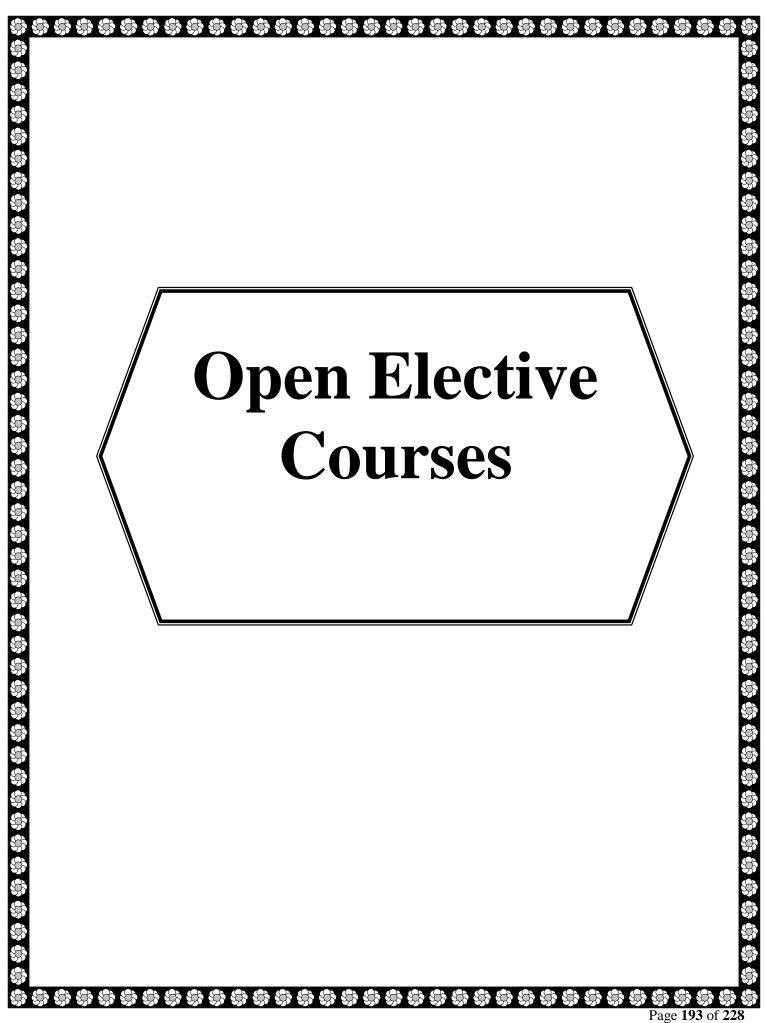
UNIT-III 5G RADIO ACCESS TECHNOLOGIES

9 Hours

9 Hours

Access Design Principles for Multi-user Communications – Multi-carrier with Filtering – Non - orthogonal Schemes for Efficient Multiple Access – Radio Access for Dense Deployments – Radio Access for V2X Communication.

UNIT-IVMASSIVE MULTIPLE-INPUT MULTIPLE-OUTPUT SYSTEMS9 HoursMIMO in LTE – Single-user MIMO – Multi-user MIMO – Capacity of Massive MIMO – PilotDesign of Massive MIMO – Resource Allocation and Transceiver Algorithms for Massive MIMO.


UNIT-V 6G OVERVIEW

Introduction to 6G Key Enablers: Wireless energy harvesting, machine learning, visible light communication - IRS.

Total Hours 45 Hours

Text Book(s)

	, D 0 0 m()	<i>s</i>)															
1.	Asif	Oseiran,	Jose	F.Monserrat	and	Patrick Ma	arsch,	"5G	Mobile								
	and W	and Wireless Communications Technology", Cambridge University Press, 2016.															
2	Jonath	Jonathan Rodriquez, "Fundamentals of 5G Mobile Networks", Wiley, 2015.															
Refe	Reference Book(s)																
3.	Patric	k Marsch,	Omer Bu	lakci, Olav Q	ueseth a	nd Mauro	Boldi, "	5G Syst	em Desig	;n –							
	Archit	ectural and	Functional	Consideration	Architectural and Functional Considerations and Long Term Research", Wiley, 2018.												

	CSVM							
Course Code	BECF1850EA	L	Т	Р	С	IA	EA	TM
Course Name	DISASTER MANAGEMENT	3	0	0	3	40	60	100
Course	OPEN ELECTIVE COURSE -I	Syllabus Revision V.1.0						
Category								
Pre-requisite	Basic Knowledge of Managemen	t						

Course Objectives:

The course should enable the students

- 1. To provide students an exposure to disasters, their significance and types.
- 2. To ensure begin to understand the relationship between vulnerability, Disasters, disaster prevention and risk reduction.
- 3. To gain a preliminary understanding of approaches of disaster risk reduction (drr).
- 4. To enhance awareness of institutional processes in the country.
- 5. To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcom		Bloom's
es		Taxonomy
CO1	Basic knowledge and understanding of the analysis and design of	K2
	complex systems.	
CO2	Ability to apply software engineering principles and techniques.	K2
CO3	Design and implement innovative features in a development process	K4
CO4	To study the concept of disaster risk management in India.	K2
CO5	Understand the concept of disaster management.	K2

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

COs		Program Outcomes (POs) Spec Outco											ogram oecific tcome PSOs)		
	PO	PO	PO	PO	PO	Р	PO	PO	PO	PO	PO	PO	PSO	PS	PS
	1	2	3	4	5	06	7	8	9	10	11	12	1	02	03
CO1	-	-	-	-	Μ	S	-	Μ	-	-	-	-	М	-	L
CO2	L	-	-	-	-	-	-	Μ	S	S	S	-	L	-	Μ
CO3	L	-	-	-	-	Μ	-	-	-	S	-	-	М	-	L
CO4	-	-	-	-	-	-	-	S	S	М	-	М	L	-	Μ
CO5	L	-	-	-	-	-	-	S	-	-	-	-	L	-	L
UNIT-	I	INT	ROD	UCT	ION 7	ro di	ISAS	ΓERS	5					9 Ho	ours
Definit	tion: I	Disast	er, Ha	zard,	Vulne	erabili	ity, Re	esilier	nce, Ri	isks – I	Disast	ers: T	ypes of	disast	ers –

Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability – Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT-II APPROACHES TO DISASTER RISK REDUCTION (DRR) 9 Hours

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- non structural measures, Roles and responsibilities of-community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processes and Framework at State and Central Level-State Disaster Management Authority(SDMA)– Early Warning System – Advisories from Appropriate Agencies.

UNIT-IIIINTER-RELATIONSHIP BETWEEN DISASTERS AND91DEVELOPMENT91

9 Hours

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT-IV DISASTER RISK MANAGEMENT IN INDIA

9 Hours

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT-V	DISASTER MANAGEMENT: APPLICATIONS AND	
	CASE STUDIES AND FIELDWORKS	

9 Hours

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field worksrelated to disaster management.

	Total Hours	45 Hou	rs
Text	Book(s)		
1.	Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-103	9380386	5427.
2.	Tushar Bhattacharya, "Disaster Science and Management", McGr	aw Hill	India
	EducationPvt. Ltd., 2012.		

	Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk								
3.	Management, NIDM,								
4	Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage								
	Publishers, New Delhi, 2010.								
Refe	Reference Book(s)								
1.	Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005.								
2.	Government of India, National Disaster Management Policy, 2009.								

	CSVM							
Course Code	BECF185OEB	L	Т	Р	С	IA	EA	TM
Course Name	CRYPTOGRAPHY &	3	0	0	3	40	60	100
	NETWORK SECURITY							
Course	OPEN ELECTIVE COURSE		Syllabus Revision V.1.0					
Category	-I							
Pre-requisite	Digital Communication							

Course Objectives:

The course should enable the students

- 1. To understand OSI security architecture and classical encryption techniques.
- 2. To acquire fundamental knowledge on the concepts of finite fields and number theory.
- 3. To understand various block cipher and stream cipher models.
- 4. To describe the principles of public key cryptosystems, hash functions and digital signature.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcom	Dutcom							•			
es CO1	Understand the basic concepts of classical encryption techniques.	K2									
CO2	Understand and apply principles and techniques of number theory relevant to cryptography.	К3									
CO3	Apply modern algebra and number theory to understand block cipher and public key cryptography algorithm.	К3									
CO4	Understand and analyze the authentication functions and digital signatures.	K4									
CO5	Design and implementation of security systems using firewalls and intrusion detection system.	К5									

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

				Program Specific Outcomes (PSOs)											
CO-	PO	PO	PO	PO	PO	Р	PO	PO	PO	PO	Р	PO	PSO	PSO	PSO3
COs	1	2	3	4	5	06	7	8	9	10	0	12	1	2	
											1				
											1				
CO1	S	Μ	L	-	-	-	-	-	-	-	-	L	М	-	-
CO2	S	S	L	-	-	-	-	-	-	-	-	L	М	-	-
CO3	S	S	L	-	М	-	-	-	-	-	-	S	-	М	-
CO4	S	S	М	-	М	-	-	-	-	-	-	Μ	-	Μ	-
CO5	S	S	S	S	S	S	-	-	L	-	L	S	-	-	S
UNIT-I INTRODUCTION & NUMBER THEORY									9 Hours						

Services, Mechanisms and attacks-the OSI security architecture-Network security model-Classical Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques, steganography).FINITE FIELDS AND NUMBER THEORY: Groups, Rings, Fields-Modular arithmetic- Euclid's algorithm-Finite fields- Polynomial Arithmetic – Prime numbers-Fermat's and Euler's theorem- Testing for primality -The Chinese remainder theorem- Discrete logarithms.

UNIT-II BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY 9 Hours

Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Triple DES-Blowfish-RC5 algorithm. Public key cryptography: Principles of public key cryptosystems-The RSA algorithm-Key management - Diffie Hellman Key exchange- Elliptic curve arithmetic-Elliptic curve cryptography.

UNIT-III HASH FUNCTIONS AND DIGITAL SIGNATURES

9 Hours

9 Hours

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC – MD5 - SHA - HMAC – CMAC - Digital signature and authentication protocols– DSS – EI Gamal – Schnorr.

UNIT-IV	SECURITY PRACTICE & SYSTEM SECURITY	9 Hours					
Authenticati	Authentication applications – Kerberos – X.509 Authentication services - Internet Firewalls for						
Trusted Sys	Trusted System: Roles of Firewalls - Firewall related terminology- Types of Firewalls -						
Firewall designs - SET for E-Commerce Transactions. Intruder – Intrusion detection system –							
Virus and re	lated threats – Countermeasures – Firewalls design principles – T	rusted systems –					

Practical implementation of cryptography and security.

UNIT-V E-MAIL, IP & WEB SECURITY

E-mail Security: Security Services for E-mail-attacks possible through E-mail - establishing keys privacy-authentication of the source-Message Integrity-Non-repudiation-Pretty Good Privacy- S/MIME. IP Security: Overview of IP sec-IP and IP v6 -Authentication Header-Encapsulation Security Payload (ESP)- Internet Key Exchange (Phases of IKE, ISAKMP/IKE Encoding). Web Security: SSL/TLS Basic Protocol computing the keys- client authentication-PKI as deployed by SSL Attacks fixed in v3- Exportability-Encoding-Secure Electronic Transaction (SET).

	Total Hours 45 Hours									
Text	Book(s)									
1.	William Stallings, Cryptography and Network Security, 6th Edition, Pearson									
	Education, March 2013.									
2.	Charlie Kaufman, Radia Perlman and Mike Speciner," Network Security", Prentice									
	Hall ofIndia, 2002.									
Refe	Reference Book(s)									
1.	Behrouz A. Ferouzan, "Cryptography & Network Security", Tata McGraw Hill, 2007.									

2.	Man Young Rhee, "Internet Security: Cryptographic Principles", "Algorithms and Protocols", Wiley Publications, 2003.
3.	Charles Pfleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006.
4.	Ulysses Black, "Internet Security Protocols", Pearson Education Asia, 2000.
5.	Charlie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Second Edition, Private Communication in Public World", PHI 2002.
6.	Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley Dreamtech India Pvt Ltd, 2003.
7.	Douglas R Simson "Cryptography – Theory and practice", First Edition, CRC Press, 1995.

		80	SVMV	×					-							
Course	Code	e .	BECF	1850	ED			L	Т	F		С	IA	EA]	ſМ
Course	Nam	e	NAN) SCI	ENC	E		3	0	0)	3	40	60	1	00
Course			OPEN	ELE	CTIV	E COI	URSE		Syll	abus	Revi	ision			V.1.0)
Catego	y		-I													
Pre-req	uisite	e :	Basic	know	ledge	of Ma	aterial	Scier	nce &	Elect	roni	cs				
Course	Obje	ectives	5:													
The cou	rse sł	nould	enable	the st	tudent	S										
1. 7	Го un	dersta	and ca	rbon	nano s	structi	ures.									
2.	Го un	dersta	and ca	rbon	nano t	ubes	for da	ta pro	cessir	ng.						
	-			-	•		Rando	m Ac	cess N	Memo	ory.					
			and m													
5.	To understand data transmission interfaces and displays.															
	0															
Course	Outo	comes	:													
	At	the er	nd of t	he cou	urse, t	he stu	ident s	hould	l be al	ble to	:					
Course		Description Highest														
Outcon	1	Bloom's														
es		Taxonomy														
CO1	U	Understand the basic structure and functioning of carbon nano K2														
	tu	lbe														
CO2	L	evera	ge cor	ncepts	of Su	iper c	onduc	tors ir	n digit	al ele	ctro	nics			K2	
CO3		Leverage concepts of Super conductors in digital electronicsK2Understand about Materials and material processing for DRAMsK2														
CO4	U	nders	tand 7	Techn	iques	for m	ass sto	orage	devic	es					K2	
CO5							interf				c				K2	
	0	nuers			ansm	155101		acesa	ina ai	spiay	3					
Correla	tion	hetwe	en Co	nirce	Outer	mes ((\mathbf{COs})	I hre	Progr	am ()	utco	mes	$(\mathbf{PO}_{\mathbf{S}})$	•		
Correla	uon	Detwe					. ,		0		uico	mes	· /		am Spe	cific
				Pr	ogran	n Out	comes	(POs	;)					U	mes (P	
GO	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	P	PO			PSO	PSO
COs	1	2	3	4	5	06	7	8	9	10	0	12	1	L	2	3
											1					
											1					
CO1	S	S	-	-	S	-	-	-	-	-	-	L	N	1	-	S
CO2	S	S	-	S	I	-	-	-	-	-	-	L	N	1	-	S
CO3	S	S	Μ	М	-	-	-	-	-	-	-	L	Ι	_	L	S
CO4	S	S	S	-	-	-	-	-	-	-	-	L	Ι	_	L	S
CO5	S	S	-	М	-	-	-	-	-	-	-	L	N	1	М	S
-					X 7 A			7010							0.11	
UNIT-I							NALY		D	•		1 1	-1 '		9 Hou	
Film D	-					•	•				0		0		•	-
Chemic	ai, N	hecha	mcal	Proce	essing	, sca	inning	Prot	e le	cnniq	ues,	Car	don 1	Nanc	o Struc	aures:

Carbon Clusters, Carbon Nano tubes, Fabrication, Electrical, Mechanical and Vibrational Properties, Applications of Carbon Nano Tubes.

UNIT-II LOGIC DEVICES

9 Hours

9 Hours

Silicon MOSFETS, Novel Materials and Alternative Concepts, Ferro Electric Filed Effect Transistors, Super Conductor Digital Electronics, Carbon Nano Tubes for Data Processing.

UNIT-III RANDOM ACCESS MEMORIES

High Permittivity Materials for DRAMs, Ferro Electric Random Access Memories, and Magneto- Resistive RAM.

UNIT-IV MASS STORAGE DEVICES

9 Hours

Hard Disk Drives, Magneto Optical Disks, Rewriteable DVDs based on Phase Change Materials, Holographic Data Storage.

UNIT-V DATA TRANSIMISSION, INTERFACES AND DISPLAYS 9 Hours

Photonic Networks, Microwave Communication Systems, Liquid Crystal Displays, Organic LightEmitting Diodes.

Total Hours 45 Hours

Text Book(s) 1. Rainer Waser, "Nano Electronics and Information Technology", Wiley VCH, April 2003. 2. Charles Poole, "Introduction to Nano Technology", Wiley Inter science, May 2003. Reference Book(s) 1. K.E. Drexler, Nano systems, Wiley, 1992. 2. I.H. Davies. The Physics of Low Dimensional Semiconductors. Cambridge University

2. J.H. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University Press, 1998.

			SVMV					-								
Course				1850				L	Т	I		С	IA	EA		TM
Course	Nam	-	-	AND I FROI		RIBU TEM	TED	3	0	()	3	40	60		100
Course			OPEN				URSE		Syll	labus	Rev	ision		U	V.1	.0
Catego			-I	1 [] 1												
Pre-rec	-			l Elec	tronic	S										
Course The cou				ha atu	danta	to										
							ges of	РГС								
		•					truction									
									liantic	n						
		•					specif				and					
						-	r contr	of in	autom	ation	and	SCAI	JA.			
5.	To stu	study the distributed control systems.														
Course				1			1 /	•11.1	1.1							
<u> </u>		ine er	ia of t	ne co	urse tl		dents v		e able	to					TT.	
Course Outcor		Description Highest Bloom's														
es	11	Bloom's														
CO1	U	Understand the fundamental of PLC.TaxonomyK2														
CO2	Pr	Program a PLC with different logical languages. K4														
CO3		Various industrial applications of PLCs are studied.K3														
CO4		Able to understand the need of computers in Automation and SCADA. K2														
CO5	U	Understand the basics of distributed control systems.K2														
Correla	ation	betwe	en Co	ourse	Outco	omes ((COs)	and l	Progra	m O	utco	mes ((POs):			
				Pr	ogran	n Out	comes	(POs	5)					ogran Itcom	_	
COs	РО	РО	PO	PO	PO	PO	PO	РО	PO	РО	Р	РО	PSO		· ·	PSO3
	1	2	3	4	5	6	7	8	9	10	0	12	150		-	1500
CO1	М	_	L	_	М	_	м	_	-	_	11 -	_	L			М
CO1				-			M L	_	-		_	_				
CO2	L	- -	М	-	L	L							M		-	L
CO3	S	L	-	- -	-	M	M	-	-	-	-	- T	L		-	M
CO4	M	M	S	L	-	-	S	-	-	-	M	L	M		-	L
CO5	L	S	L	-	S	-	S	-	-	-	L	Μ	L	-	-	М
UNIT-I	[BA	SICS	OF P	LC									9 H	Iou	rs
Definiti and Pro languag Program and Ma	grami ge, T <u>r</u> nming	mer/N ypes ; of G	Ionito of PL	rs-PL C, C	C inp reatin	out ar g Lad	nd out Ider di	put agrar	model ns, Pr	s – ograi	Arch nmin	itecti g -	ure, Pl On-Of	LC Pi f inpu	ogra ts/	amming outputs,

UNIT-I	II PLC PROGRAMMING	9 Hours
Program	nming of Timers - Introduction - ON delay, OFF delay, Retentive Timer	s – PLC Timer
function	ns – Examples of timer function Industrial application. Programming Count	ters – up/down
	- Combining counter - Examples of counter function Industrial a	
Arithme	etic Functions – PLC number Comparison function.	
UNIT-I	III PLC DATA HANDLING FUNCTIONS	9 Hours
PLC Pr	ogram Control Instructions: Master Control Reset - Skip - Jump and M	ove Instruction.
Sequen	cer instructions - Types of PLC Analog modules and systems, PLC analog si	gnal processing
– BCD	or multi bit data processing - Case study of Tank level control system, bottl	e filling system
and Seq	uential switching of Motors.	
UNIT-I	IV SCADA BASICS	9 Hours
Comput	ter Process interface for Data Acquisition and control – Computer control loc	ps. Supervisory
1	and Data Acquisition System (SCADA) - introduction and brief history	1 1 1
	A Hardware and software - Remote terminal units- Master station.	
UNIT-	V DISTRIBUTED CONTROL SYSTEM	9 Hours
Elemen	ts of DCS – Evolution of DCS - Building blocks- Detailed descriptions and fu	inctions of field
control	units-LCUs and Redundancy concepts.	
	Total Hours	45 Hours
Text Bo		
	etrezeulla, "Programmable Logic Controllers", McGraw Hill, 1989.	
	lichael P. Lukas, "Distributed Control Systems: Their Evaluation and	Design", Van
	ostrand Reinhold Co., 1986.	
	tuart A. Boyer, "SCADA supervisory control and data acquisition"	" ISA - The
	strumentation, Systems, and Automation Society, 2004.	
	nce Book(s)	
	B.Clayton," Data Converters", The Mac Millian Press Ltd., 1982.	
	ohn W.Webb & Ronald A.Reis., "Programmable logic controllers -	principles and
	oplications",5 th Edition – PHI Learning Pvt. Ltd, New Delhi 2010.	
	wahan T "Dua mananahla Lania Cantur Ilana" ISA Duana 1080	
3. H	ughes .T, "Programmable Logic Controllers", ISA Press, 1989.	
	urtis D. Johnson," Process Control Instrumentation Technology", 8th editio	n Prentice Hall

	C3VII.							
Course Code	BECF185OEE	L	Τ	Р	С	IA	EA	TM
Course Name	AUTOTRONICS	3	0	0	3	40	60	100
Course	OPEN ELECTIVE COURSE		Sylla	bus Re	visioi	1		V.1.0
Category	-I							
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To make the students understand the evolution of electronics in automobiles and basics of charging and starting system.
- 2. To provide student with knowledge on ignition and injection systems.
- 3. To make the students learn about various sensors and actuators for controlling engine parameters.
- 4. To acquaint students with various engine control systems.
- 5. To teach the students about various chassis and safety system operation and applications.

Course Outcomes:

At the end of the course, the student should be able:

Course Outcom	Description	Highest Bloom's
es		Taxonomy
CO1	Understand the evolution of automotive electronics and charging system	K2
CO2	Develop through basic knowledge about various ignition and injection systems.	K5
CO3	Analyze required sensors and actuators for an automotive application.	K4
CO4	Understand the automotive electronics for engine management system	K2
CO5	Acquire knowledge on the safety systems of the automobile.	K1

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

		Program Outcomes (POs) Program Outcome													
COs	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	P 0 11	PO 12	PSO 1	PSO2	PSO3
CO1	L	Μ	-	-	-	-	-	-	-	-	-	-	М	-	L
CO2	М	L	L	-	L	-	-	-	-	-	-	-	L	-	М
CO3	S	М	S	-	М	-	-	-	-	-	-	-	L	-	М
CO4	L	S	М	-	S	-	-	-	-	-	-	-	М	-	L
CO5	М	L	S	-	М	S	-	-	-	-	-	-	М	-	М

UNIT-I INTRODUCTION

Evolution of electronics in automobiles – emission laws – introduction to Euro I, Euro II, Euro III, Euro IV, Euro V standards – Equivalent Bharat Standards, Charging systems: Working and design of charging circuit diagram – Alternators – Requirements of starting system - Starter motors and starter circuits.

UNIT-II IGNITION AND INJECTION SYSTEMS

Ignition systems: Ignition fundamentals - Electronic ignition systems - Programmed Ignition – Distribution less ignition - Direct ignition – Spark Plugs. Electronic fuel Control: Basics of combustion – Engine fuelling and exhaust emissions – Electronic control of carburetion – Petrol fuelinjection – Diesel fuel injection.

UNIT-III SENSOR AND ACTUATORS

Working principle and characteristics of Airflow rate, Engine crankshaft angular position, Hall effect, Throttle angle, temperature, exhaust gas oxygen sensors – study of fuel injector, exhaust gas recirculation actuators, stepper motor actuator, vacuum operated actuator.

UNIT-IV ENGINE CONTROL SYSTEMS

Control modes for fuel control-engine control subsystems – ignition control methodologies – different ECU"s used in the engine management – block diagram of the engine management system. In vehicle networks: CAN standard, format of CAN standard – diagnostics systems in modern automobiles.

UNIT-V CHASSIS AND SAFETY SYSTEMS

3. 4.

Traction control system – Cruise control system – electronic control of automatic transmission – antilock braking system – electronic suspension system – working of airbag and role of MEMS in airbag systems – centralized door locking system – climate control of cars.

	Total Hours 45 Hours
Text	Book(s)
1.	Ribbens, "Understanding Automotive Electronics", 7th Edition, Elsevier, Indian
	Reprint, 2013.
Refe	rence Book(s)
1.	Tom Denton, "Automobile Electrical and Electronics Systems", Edward Arnold
	Publishers, 2000.
2.	Barry Hollembeak, "Automotive Electricity, Electronics & Computer Controls",

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

	CSVM							
Course Code	BECF186OEF	L	Т	Р	С	IA	EA	TM
Course Name	REMOTE SENSING & GIS	3	0	0	3	40	60	100
Course	OPEN ELECTIVE COURSE -	Syllabus Revision V.1.0					.1.0	
Category	II							
Pre-requisite	Basic Knowledge of Science & Engineering							

Course Objectives:

The course should enable the students

- 1. To make the students understand the concepts, components and source of remote sensing.
- 2. To gain knowledge about different types of remote sensing platforms and sensors To explain the concept of satellite image interpretation.
- 3. To understand the applications of remote sensing in Civil Engineering
- 4. To introduce the fundamentals and components of Geographic Information System.
- 5. To provide details of spatial data structures and management, input and output processes. To explain the various case studies on application of integration of GIS and Remote Sensing.

Course Outcomes:

At the end of the course, the student should be able to:

-	At the end of the course, the student should be able to:														
Course	e					Ι	Descri	ption						High	est
Outcor	n													Bloo	m's
es														Taxon	omy
C01		nderst ensing		ne con	cepts,	platfo	orms a	nd laws	related	d to re	mote	e		K	2
CO2					interac th mat		of e	lectroma	agnetio	c rad	iatio	on wit	h	K	2
CO3		Acquire knowledge about satellite orbits, different types of satellites and the different types of remote sensors.K1													
CO4		Understand the fundamentals of GIS, maps, data structures K4													
CO5				-			-	f interpi g applica						K.	3
Correla	Correlation between Course Outcomes (COs) and Program Outcomes (POs):														
		Program Outcomes (POs) Program													
COs												Outcomes (PSOs)			
	PO	PO	PO	PO	PO	Р	PO	PO8	PO	PO	Ρ	PO	PSO	PSO	PS

		-	SVIII												
	1	2	3	4	5	06	7		9	10	0	12	1	2	03
											1				
											1				
CO1	S	-	-	-	S	М	-	-	-	L	-	М	L	-	М
CO2	S	М	-	М	S	М	-	-	-	М	-	М	М	-	L
CO3	S	М	М	М	S	М	-	-	-	М	-	М	L	-	M
CO4	S	М	М	L	М	М	-	-	-	L	-	L	М	-	М
CO5	S	М	М	М	L	М	L	-	-	L	-	L	L	-	L
	•	•	•	•	•	•	•	•		•	•		•	•	•

UNIT-I REMOTE SENSING

9 Hours

Definition – Components of Remote Sensing – Energy, Sensor, Interacting Body - Active and Passive Remote Sensing – Platforms – Aerial and Space Platforms – Balloons, Helicopters, Aircraft and Satellites – Synoptivity and Repetivity – Electro Magnetic Radiation (EMR) – EMR spectrum – Visible, Infra Red (IR), Near IR, Middle IR, Thermal IR and Microwave – Black Body Radiation - Planck's law – Stefan-Boltzman law.

UNIT-II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIALS

9 Hours

Atmospheric characteristics – Scattering of EMR – Raleigh, Mie, Non-selective and Raman Scattering – EMR Interaction with Water vapour and ozone – Atmospheric Windows Significance of Atmospheric windows – EMR interaction with Earth Surface Materials – Radiance, Irradiance, Incident, Reflected, Absorbed and Transmitted Energy – Reflectance – Specular and Diffuse Reflection Surfaces- Spectral Signature – Spectral Signature curves – EMR interaction with water, soil and Earth Surface.

UNIT-III OPTICAL AND MICROWAVE REMOTE SENSING

9 Hours

Satellites - Classification – Based on Orbits – Sun Synchronous and Geo Synchronous – Based on Purpose – Earth Resources Satellites, Communication Satellites, Weather Satellites, Spy Satellites – Satellite Sensors - Resolution – Spectral, Spatial, Radiometric and Temporal Resolution – Description of Multi Spectral Scanning – Along and Across Track Scanners – Description of Sensors in Landsat, SPOT, IRS series – Current Satellites - Radar – Speckle – Back Scattering – Side Looking Airborne Radar – Synthetic Aperture Radar – Radiometer – Geometrical characteristics.

GIS – Components of GIS – Hardware, Software and Organizational Context – Data – Spatial and Non-Spatial – Maps – Types of Maps – Projection – Types of Projection - Data Input – Digitizer, Scanner – Editing – Raster and Vector data structures – Comparison of Raster and Vector data structure – Analysis using Raster and Vector data – Retrieval,

Reclassification, Overlaying, Buffering–Data Output – Printers and Plotters.

UNIT-V	MISCELLANEOUS TOPICS

9 Hours

Visual Interpretation of Satellite Images – Elements of Interpretation - Interpretation Keys Characteristics of Digital Satellite Image – Image enhancement – Filtering – Classification -Integration of GIS and Remote Sensing – Application of Remote Sensing and GIS – Urban Applications - Integration of GIS and Remote Sensing – Application of Remote Sensing and GIS – Water resources – Urban Analysis – Watershed Management – Resources Information Systems.

Total Hours 45 Hours

Text	Book(s)
1.	Anji Reddy, Remote Sensing and Geographical Information Systems, BS Publications
	2001.
2.	M.G. Srinivas, Remote Sensing Applications, Narosa Publishing House, 2001.
Refe	rence Book(s)
1.	Lillesand T.M. and Kiefer R.W. Remote Sensing and Image Interpretation, John
	Wiley and Sons, Inc, New York.
2.	Janza.F.J., Blue, H.M., and Johnston, J.E., "Manual of Remote Sensing Vol.I,
	AmericanSociety of Photogrammetry", Virginia, U.S.A, 1975.

	CSVM												
Course Code	BECF186OEG	L	Т	Р	С	IA	EA	TM					
Course Name	BIG DATA ANALYTICS	100											
Course	OPEN ELECTIVE COURSESyllabus RevisionV.1.0												
Category	-II												
Pre-requisite	knowledge of one Programming Language (Java preferably) Practice of SQL												
	(queries and sub queries) Expo	osure t	o Lin	ux Envi	ironn	nent							

Course Objectives:

The course should enable the students

- 1. To understand Big Data models and structure.
- 2. Introduction to Analytic Tool –R.
- 3. Mining Data streams for Analytics.
- 4. Understanding Map Reduce Framework.
- 5. Applications of big data from the technology perspective.

Course Outcomes:

At the end of the course, the student should be able to:

Course Outcom	Description	Highest Bloom's Taxonomy			
es					
CO1	Have Strong Foundations on Data Analytics Models and structure	K2			
CO2	Understand the Role of Big Data Analytical Tool	K2			
CO3	Understand Data modeling and Link stream Analysis	K2			
CO4	Able to setup Map reduce framework	K3			
CO5	Understand the concept of big data from the technology perspective	K2			

Correlation between Course Outcomes (COs) and Program Outcomes (POs):
Program Outcomes (POs)	Program Specific

	Ou													tcomes (PSOs)			
COs	PO 1	PO	PO	PO	PO	P O	PO 7	PO	PO	PO 10	P	PO 12	PS	P c	PSO3		
	1	2	3	4	5	06	/	8	9	10	0 1	12	01	S O			
											1			2			
CO1	М	-	-	Μ	-	-	-	-	L	S	-	-	Μ	-	S		
CO2	-	Μ	L	S	-	-	S	-	-	-	-	-	М	-	S		
CO3	-	S	М	-	S	-	-	-	-	-	-	-	L	-	S		
CO4	-	-	-	М	S	-	-	-	М	L	-	-	L	-	S		
CO5	-	-	-	Μ	S	-	-	-	S		-	-	М	Μ	S		

UNIT-I

OVERVIEW OF DATA ANALYTICS

9 Hours

Introduction to Big Data Analytics -definition -overview of big data - Characteristics– Importance of Big Data - data preparation -model planning,-Use cases-critical activities in each Phase of the lifecycle

Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

UNIT-II INTRODUCTION TO ANALYTIC TOOL 9 Hours

R Using R for Initial Analysis of the Data -Introduction to R programming, initial exploration analysis of the data using R - basic visualization using R – Basic Scripting-Data Set Analysis.

UNIT-III MINING DATA STREAMS

The Stream Data Model .- Sampling Data in a Stream -Filtering Streams - Counting Distinct Elementsin a Stream -Estimating Moments .- Counting Ones in a Window Link Analysis : Page Rank -Topic-Sensitive Page Rank -Link Spam -Hubs and Authorities.

UNIT-IV MAP REDUCE AND THE NEW SOFTWARE STACK 9 Hours

Distributed File Systems-Map Reduce Algorithms Using Map Reduce-Extensions to Map Reduce the Communication Cost Model-Complexity Theory for Map Reduce.

UNIT-V BIG DATA FROM THE TECHNOLOGY PERSPECTIVE 9 Hours

Introduction to Hadoop –Components of Hadoop –Application Development in Hadoop –Pig Hive- Jaql, Getting Data in Hadoop-copy Data-Flume, Other Hadoop Components-Zoo Keeper HBase- Oozie.

Total Hours 45 Hours

Text Book(s)

Jure Leskovec ,Anand Rajaraman, Jeffrey D.Ullman, "Mining of Massive Datasets" 1. ,SecondEdition, Cambridge University Press, 2014.

2. Paul Zikopoulos, "Understanding Big Data", First Edition, McGraw Hill Corporations-2012.

Reference Book(s)

Garrett Grolemund," Introduction to Data Science with R ",O'Reilly media, 2014. 1.

2. Garrett Grolemund,"Hands-On Programming with R: Write Your Own Functions and Simulations Paperback", O'Reilly media, 2014.

9 Hours

Course CodeBECF186OEJLTPCIAEATMCourse Name3D PRINTERS &30034060100															
									_						
Course N	ame							3	0	0		3	40	60	100
				ICAT											
Course		C	OPEN	ELE	CTIV	E COI	URSE		Syll	abus	Revi	sion			V.1.0
Category		-	II												
Pre-requi	isite	E	Basic	know	ledge	of Co	ontrol	& Ins	trume	ntatio	n				
Course O	•														
The course															
		-				-	inting.								
	-		-				d gene								
4. To select a 3D printing process for an application.5. To produce a product using 3D printing or Additive Manufacturing (AM).															
5. To	produ	uce	a proc	duct u	sing 3	D prir	nting o	r Add	itive	Manuf	actu	ring (AM).		
Course O															
Upon com	npleti	on o	of the	cours	e, the				e able	to:					
Course	Description Highest Bloom's														
Outcom	Тахопоту														
es															
CO1	Develop CAD models for 3D printing. K2														
CO2	Import and Export CAD data and generate STL file.K2														
CO3	Select a specific material for the given application.K3														K3
CO4	Sele	ct a	3D pi	rinting	proc	ess for	r an ap	plicat	ion.						K4
CO5										Manu	faat	mina			
	(AM		a pro	duct t	ising :	D Pri	nting	or Au	unive	Manu	lacu	iring			K6
		.).													
			0		0 1					0					
Correlation	on be	twee	en Co	urse	Outco	omes (CUs)	and I	rogra	am O	itcol	mes (.	,		C 10
				Pr	ogran	n Out	comes	(POs	5)					0	n Specific
			DO	DO	DO	D	DO	DO	DO	DO	р	DO			es (PSOs)
COs		0	PO 2	PO 4	PO 5	P Of	PO 7	PO o	PO	PO 10	P O	PO	PS	P S	PSO3
	1	2	3	4	5	06	7	8	9	10	0	12	01		
											1			0	
		2			C						1	т	N 1	2	G
		S	-	-	S	-	-	-	-	-	-	L	M	-	S
		S	-	S	-	-	-	-	-	-	-	L	M	-	S
		S	-	Μ	-	-	-	-	-	-	-	L	L	-	S
		S	S	-	-	-	-	-	-	-	-	L	L	-	S
CO5 S	S S	S	-	Μ	-	-	-	-	-	-	-	L	Μ	Μ	S
						_									
UNIT-I					```		ΓΙΥΕ						·		lours
Introduction	on, P	roce	ess, (Classif	ficatio	n, Ao	dvanta	ges,	Addit	ive V	/s (Conve	entiona	al Ma	inufacturing

processes, Applications.

UNIT-II CAD FOR ADDITIVE MANUFACTURING

9 Hours

CAD Data formats, Data translation, Data loss, STL format.

UNIT-III ADDITIVE MANUFACTURING TECHNIQUES 9 Hours

Stereo- Lithography, LOM, FDM, SLS, SLM, Binder Jet technology. Process, Process parameter, Process election for various applications. Additive Manufacturing Application Domains: Aerospace, Electronics, HealthCare, Defence, Automotive, Construction, Food Processing, Machine Tools.

UNIT-IV MATERIALS

Polymers, Metals, Non-Metals, Ceramics. Various forms of raw material – Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties. Support Materials.

UNIT-V ADDITIVE MANUFACTURING EQUIPMENT 9 AND POST PROCESSING

9 Hours

9 Hours

Process equipment- design and process parameters Governing bonding mechanism Common faults and troubleshooting Process design Post processing: requirement and techniques Product quality, Inspection and testing Defects and their causes.

Total Hours 45 Hours

Text Book(s)

- Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-582-1.
- Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United States, 2015, ISBN-13: 978-1493921126.

Reference Book(s)

- 1. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.
- 2. CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017.
- 3. J.D. Majumdar and I. Manna, "Laser-Assisted Fabrication of Materials", Springer Series in Material Science, 2013.
- 4. L. Lu, J. Fuh and Y.S. Wong, "Laser-Induced Materials and Processes for Rapid Prototyping", Kulwer Academic Press, 2001.
- 5. Zhiqiang Fan And Frank Liou, "Numerical Modeling of the Additive Manufacturing (AM)Processes of Titanium Alloy", InTech, 2012.

Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

	CSVM		1		1	1	1	1				
Course Code		L	Т	Р	С	IA	EA	TM				
Course Name	GLOBAL POSITIONING	3	0	0	3	40	60	100				
	SYSTEMS											
Course	OPEN ELECTIVE COURSESyllabus RevisionV.1.0											
Category	-II		-									
Pre-requisite Communication Systems												
Course Objectiv	ves:											

The course should enable the students

- 1. To understand the basics of GPS.
- 2. To know the concepts of different coordinate system and its services.
- 3. To learn various codes and range models.
- 4. To understand the concepts of GPS propagation.
- 5. To study the various applications of GPS.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcom	Description	Highest Bloom's Taxonomy
es		
CO1	Analyze the basics of GPS.	K4
CO2	Demonstrate the impact of various coordinate system and its services.	К3
CO3	Analyze the various codes and range models.	K4
CO4	Describe the concepts of GPS propagation.	K2
CO5	Analyze the various applications of GPS.	K4

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

			Program Specific Outcomes (PSOs)												
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PSO2	PSO3
CO1	Μ	S	-	-	-	-	L	-	-	L	-	L	L	L	-
CO2	Μ	Μ	-	-	-	-	L	-	-	Μ	-	-	L	L	М
CO3	S	L	-	-	-	-	Μ	-	-	Μ	-	-	-	-	L
CO4	Μ	L	-	-	-	-	S	-	-	L	-	L	-	L	М
CO5	L	L	-	-	-	-	S	-	-	S	-	L	L	L	S

UNIT-I INTRODUCTION TO GPS

9 Hours

History of GPS – BC-4 System – HIRAN – NNSS – NAVSTAR GLONASS and GNSS Systems –GPS Constellation – Space Segment – Control Segment – User Segment – Single and Dual Frequency– Point – Relative – Differential GPS – Static and Kinematic Positioning – 2D and 3D – reporting Anti Spoofing (AS); Selective Availability (SA) – DOP Factors.

UNIT-II COORDINATE SYSTEMS AND SERVICES

9 Hours

Coordinate Systems - Geo Centric Coordinate System - Conventional Terrestrial Reference

System – Orbit Description – Keplerian Orbit – Kepler Elements – Satellite Visibility – Topocentric Motion – Disturbed Satellite Motion – Perturbed Motion – Disturbing Accelerations - Perturbed Orbit – Time Systems – Astronomical Time System – Atomic Time – GPS Time – Need for Coordination – Link to Earth Rotation – Time and Earth Motion Services.

UNIT-III CODES AND MODELS

C/A code; P-code; Y-code; L1, L2 Carrier frequencies – Code Pseudo Ranges – Carries Phases – Pseudo Ranges – Satellite Signal Signature – Navigation Messages and Formats – Undifferenced and Differenced Range Models – Delta Ranges – Signal Processing and Processing Techniques – Tracking Networks – Ephemerides – Data Combination: Narrow Lane; Wide Lane – OTF Ambiguity.

UNIT-IV PROPAGATION CONCEPTS

Propagation Media – Multipath – Antenna Phase Centre – Atmosphere in brief – Elements of Wave Propagation – Ionospheric Effects on GPS Observations – Code Delay – Phase Advances – Integer Bias – Clock Error – Cycle Slip – Noise-Bias – Blunders – Tropospheric Effects on GPS Observables– Multipath Effect – Antenna Phase Centre Problems and Correction.

UNIT-V GPS APPLICATIONS

Inter Disciplinary Applications – Crystal Dynamics – Gravity Field Mapping – Atmospheric Occulation– Surveying – Geophysics – Air borne GPS – Ground Transportation – Space borne GPS – Metrological and Climate Research using GPS.

	Total Hours 45 Hours
Text	Book(s)
1.	B.Hoffman - Wellenhof, H.Lichtenegger and J.Collins, "GPS: Theory and Practice",
	4threvised edition, Springer, Wein, New york, 1997
2.	A.Leick, "GPS Satellites Surveying", 2nd edition, John Wiley & Sons, NewYork, 1995
Refe	rence Book(s)
1.	B.Parkinson, J.Spilker, Jr. (Eds), "GPS: Theory and Applications", Vol.I & Vol.II,
	AIAA, Enfant Promenade SW, Washington, DC 20024, 1996.
2.	A.Kleusberg and P.Teunisen (Eds), "GPS for Geodesy", Springer-Verlag, Berlin, 1996

9 Hours

9 Hours

9 Hours

Course (Code							L	Т	P	•	C	IA	EA	TM
Course I			MAC	HINE	LEA	RNIN	IG	3	0	0		3	40	60	100
Course		(OPEN	ELE	CTIVI				Syll	abus	Revi	sion		V.	1.0
Categor			COUR	RSES	-II										
Pre-requ	uisite		Basic	know	ledge	of Co	ommu	nicatio	on						
Course (•														
The cour	rse sh	nould	enable	the st	tudent	S									
		-	theore			-		-	• •		-	-		-	
					achine	e lear	ning	techni	ques	for c	lata	hand	ling a	and to	o gain
k	now	ledge	from	it.											
3. T	lo ev	aluat	e the	perfo	rman	ce of	algor	rithms	and	to pr	ovid	e sol	ution	for v	arious
re	eal- v	world	appli	catior	ns.										
	<u> </u>														
Course (At the en				the a	tudon	t xyi11	heah	e to							
Course			ourse,	, the s	luuell									Hig	hest
Outcom		Description Highest Bloom's													
es		Taxonomy													
CO1	R	Descenize the characteristics of Machine Learning techniques that													
		enable to solve realworld problems. K2													
CO2	R	Recognize the characteristics of machine learning strategies. K2													
CO3	A	Apply various supervised learning methods to appropriate problems. K4													
CO4	Id	Appry various supervised learning methods to appropriate problems. Identify and integrate more than one techniques to enhance the K6													
		•	nance of	-							•		•	ſ	20
CO5	C	reate	probał	oilistic	and a	unsup	ervise	d learı	ning r	nodels	s for	hand	ling	L	K 2
		-	n patt			ans ap					, 101			ſ	12
Correlat	tion	betwe	en Co	ourse	Outco	omes ((COs)	and F	Progra	am O	utco	mes (POs):		
														Progr	
				Pr	ogran	n Out	comes	s (POs)					Speci Jutco	
~~~														(PSO	
COs	PO	PO	PO	PO	PO	Р	PO	PO	PO	PO	Р	PO	PS	P	PSO
	1	2	3	4	5	06	7	8	9	10	0	12	01	S	3
											1			0	
											1	3.5	M	2	S
CO1	S	-	-	-	S	М	-	-	-	L	-	Μ			
CO2	S	М	-	М	S	L	-	-	-	М	-	Μ	M	-	S
CO3	S	М		М	S	М	-	-	-	М	-	Μ	L	-	S
CO4	S	М	М	L	М	М	-	-	-	L	-	L	L	-	S
CO5	S	L	М	М		М	L	-	-	L	-	L	М	Μ	S

Spaces, Finite and Infinite Hypothesis Spaces, PAC Learning, VC Dimension.         UNIT-II       SUPERVISED LEARNING       9 Hours         Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression, Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear, Kernel Functions, K- Nearest Neighbours.       9 Hours         UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.       9 Hours         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.       9 Hours         UNIT-V       PROBABILISTIC LEARNING       9 Hours				
Spaces, Finite and Infinite Hypothesis Spaces, PAC Learning, VC Dimension.         UNIT-II       SUPERVISED LEARNING       9 Hours         Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression, Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction, Perceptron, Multiayer Perceptron, Support vector machines: Linear and Non-Linear, Kernel Functions, K- Nearest Neighbours.       9 Hours         UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Narve Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         Reference Book(s)       1.       Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.       2.         4.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.       3.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.       4.         4.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.       6.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.	UNIT-I	INTRODUCTION TO MACHINE LEARNING	9 Hours	
UNIT-II       SUPERVISED LEARNING       9 Hours         Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression, Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear, Kernel Functions, K- Nearest Neighbours.       9 Hours         UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.       9 Hours         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         1       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India,Third Edition2014.       1         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press,2012.       3         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.       4         4.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.       5         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applica	Introduction, Examples of Various Learning Paradigms, Perspectives and Issues, Version			
Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression, Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear, Kernel Functions, K- Nearest Neighbours.         UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.       9 Hours         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.       9 Hours         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       7 total Hours         1.       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.       9 Hours         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.       3.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.       4.         4.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.       5.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.       6.         6.<	Spaces, Finite and Infinite Hypothesis Spaces, PAC Learning, VC Dimension.			
Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression, Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear, Kernel Functions, K- Nearest Neighbours.         UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.       9 Hours         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.       9 Hours         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       7 total Hours         1.       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.       9 Hours         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.       3.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.       4.         4.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.       5.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.       6.         6.<				
Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction,         Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear,         Kernel Functions, K- Nearest Neighbours.         UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random       Forest Trees, Boosting: Adaboost, Stacking.         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means       clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief       Networks, Mining Frequent Patterns.         Total Hours         Reference Book(s)       1         1.       Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2012.       7.         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Co	UNIT-I	I SUPERVISED LEARNING	9 Hours	
Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear, Kernel Functions, K- Nearest Neighbours.       9 Hours         UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.       9 Hours         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.       9 Hours         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Narve Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         1       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.       9 Hours         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.       1         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.       4         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.       5         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2012.       7         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	Decisio	n Trees: ID3, Classification and Regression Trees, Regression: Linear	Regression,	
Kernel Functions, K- Nearest Neighbours.         UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.       9 Hours         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.       9 Hours         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Narve Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         I       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.       1         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.       3         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.       4         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.       6         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2012.       7.         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction,			
UNIT-III       ENSEMBLE LEARNING       9 Hours         Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking.       9 Hours         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.       9 Hours         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Narve Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         Reference Book(s)       1.       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2012.         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear,			
Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random         Forest Trees, Boosting: Adaboost, Stacking.         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means         clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief       Networks, Mining Frequent Patterns.         Total Hours       45 Hours         Reference Book(s)       1.       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press,2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.         4.       Charu C. Aggarwal, "DaTA CLUSTERING Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         6.       Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	Kernel Functions, K- Nearest Neighbours.			
Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random         Forest Trees, Boosting: Adaboost, Stacking.         UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means         clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief       Networks, Mining Frequent Patterns.         Total Hours       45 Hours         Reference Book(s)       1.       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press,2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.         4.       Charu C. Aggarwal, "DaTA CLUSTERING Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         6.       Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and				
Forest Trees, Boosting: Adaboost, Stacking.         UNIT-IV UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.         UNIT-V PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         Total Hours       45 Hours         Reference Book(s)         1.       Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         6.       Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012.         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	UNIT-I	II ENSEMBLE LEARNING	9 Hours	
UNIT-IV       UNSUPERVISED LEARNING       9 Hours         Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         Reference Book(s)       1.       Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         6.       Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random			
Introduction       to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian       Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         Reference Book(s)       1.       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         6.       Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	Forest Trees, Boosting: Adaboost, Stacking.			
Introduction       to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.         UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian       Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.       9 Hours         Reference Book(s)       1.       Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         6.       Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and				
<ul> <li>clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.</li> <li>UNIT-V PROBABILISTIC LEARNING 9 Hours</li> <li>Bayesian Learning, Bayes Optimal Classifier, Narve Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.</li> <li>Total Hours 45 Hours</li> <li>Reference Book(s)         <ol> <li>Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.</li> <li>Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.</li> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol> </li> </ul>	UNIT-I	V UNSUPERVISED LEARNING	9 Hours	
<ul> <li>clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.</li> <li>UNIT-V PROBABILISTIC LEARNING 9 Hours</li> <li>Bayesian Learning, Bayes Optimal Classifier, Narve Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.</li> <li>Total Hours 45 Hours</li> <li>Reference Book(s)         <ol> <li>Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.</li> <li>Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.</li> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol> </li> </ul>	Introduction to clustering, Hierarchical: AGNES, DIANA, Partitional: K-means			
UNIT-V       PROBABILISTIC LEARNING       9 Hours         Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief       Networks, Mining Frequent Patterns.       Total Hours       45 Hours         Total Hours       45 Hours         Reference Book(s)         1.       Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         6.       Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and				
<ul> <li>Bayesian Learning, Bayes Optimal Classifier, Naive Bayes Classifier, Bayesian Belief Networks, Mining Frequent Patterns.</li> <li>Total Hours 45 Hours</li> <li>Reference Book(s) <ol> <li>Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.</li> <li>Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.</li> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.</li> </ol> </li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ul>				
<ul> <li>Networks, Mining Frequent Patterns.</li> <li>Total Hours 45 Hours</li> <li>Reference Book(s) <ol> <li>Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.</li> <li>Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.</li> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.</li> </ol> </li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ul>	UNIT-V	PROBABILISTIC LEARNING	9 Hours	
Total Hours       45 Hours         Reference Book(s)       1.       Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.         2.       Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.         3.       Tom Mitchell, "Machine Learning", McGraw Hill, 3 rd Edition, 1997.         4.       Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.         5.       Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.         6.       Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012         7.       Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	Bayesian Learning, Bayes Optimal Classifier, Naıve Bayes Classifier, Bayesian Belief			
<ol> <li>Reference Book(s)         <ol> <li>Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.</li> <li>Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.</li> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.</li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol> </li> </ol>	Networks, Mining Frequent Patterns.			
<ol> <li>Ethem Alpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition2014.</li> <li>Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press,2012.</li> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.</li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol>			45 Hours	
<ol> <li>Etheni Alpaydin, Infoduction to Machine Learning , WHT Hess, Heinee Han of India, Third Edition2014.</li> <li>Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press, 2012.</li> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.</li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol>				
<ol> <li>Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, "Foundations of Machine Learning", MIT Press,2012.</li> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.</li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol>				
<ol> <li>Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.</li> <li>Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.</li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol>				
<ol> <li>Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Press, 2014.</li> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol>	L	arning", MIT Press,2012.		
<ul> <li>2014.</li> <li>5. Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>6. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>7. Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ul>	3. T			
<ol> <li>Charu C. Aggarwal, "DATA CLUSTERING Algorithms and Applications", CRC Press, 2014.</li> <li>Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ol>	-			
<ul> <li>2014.</li> <li>6. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>7. Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ul>				
<ul> <li>6. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012</li> <li>7. Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and</li> </ul>				
7. Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and	6. K			
Techniques", 3rd edition, Morgan Kaufman Publications, 2012.	7. Ji	awei Hanand Micheline Kambers and Jian Pei, "Data Mining Co	oncepts and	
	Т	chniques", 3rd edition, Morgan Kaufman Publications, 2012.		



			SVMV												1
Course			BECF					L	Т	P				EA	ТМ
Course							TORS		0	0		3	40	60	100
Course				IELE	CTIV	E COI	URSE	-	Syll	abus	Revi	sion		V	.1.0
Catego	-		III												
Pre-ree	quisi	te	Basic	know	ledge	of Ba	sic El	ectroni	cs						
Course	e Obj	jective	s:												
The co	urse s	should	enable	e the s	tudent	s:									
1.		-		U		-	-	les and	-			sors.			
2.	1 1														
3.															
5.	To s	elect s	ensor	mater	ials fo	or fabr	icatio	n for di	fferer	nt app	licat	ions.			
~	~														
Course					_										
At the		of the c	course	, the s	tuden										<b>.</b>
Cours						De	escript	tion						-	ghest
Outco	m														
es		A 1	.1 1	•	1		.1	· .·							onomy
CO1		Analyze the basics and design the resistive sensors.K4											ζ4		
CO2	]	dentif	y the	mater	ials a	nd de	esignir	ng of i	nduct	ive ar	nd c	apaci	tive	I	Χ5
		sensors													
CO3		Analyz													<b>K4</b>
CO4		_						uators						ł	X6
CO5								d tech	nolog	gies a	ind	comp	pare	I	<b>X</b> 5
<u> </u>		various								0		()			
Correl	ation	betwo	een Co	ourse	Outco	omes (	(COs)	and P	rogra	m Out	tcom	ies (P	1		
														Progr	
				P	rogra	m Ou	tcome	s (POs	)					Speci	
														)utco (PSC	
COs	PO	PO	PO	PO	PO	Р	PO	PO8	PO	PO	Р	PO	PS	(FSC P	PSO
	1	2	3	<b>4</b>	FU 5	г Об	7	1 00	РО 9	10	г О	12	01	r S	3
		-		-	5		<b>'</b>			10	1	14		0	
											1			2	
CO1	S	S	_	_	S	_	_	_	_	_	-	L	M	-	S
CO1	S	S	-	S	-	_	_	_	_	_	-	L	M		S
CO2 CO3	S	S	_	M	_	_	_		_	_	_	L	L		S
CO3	S	S	S	-	_	_	_		_	_	_	L			S
C04	S	S	-	М	_	_	-	_	_	_	_	L	M	M	S
			1										1.11	1,1	
UNIT-	I	SEN	SOR	S										9 F	Iours
					transr	nitter	and	transdu	icer -	Prim	arv	meas	suring		
	Difference between sensor, transmitter and transducer - Primary measuring elements -														



selection and characteristics: Range; resolution, Sensitivity, error, repeatability, linearity and accuracy, impedance, backlash, Response time, Dead band. Signal transmission -Types of signal: Pneumatic signal; Hydraulic signal; Electronic Signal. Principle of operation, construction details, characteristics and applications of potentiometer, Proving Rings, Strain Gauges, Resistance thermometer, Thermistor, Hot-wire anemometer, Resistance Hygrometer, Photo-resistive sensor.

#### UNIT-II INDUCTIVE AND CAPACITIVE TRANSDUCERS

9 Hours

Inductive transducers: - Principle of operation, construction details, characteristics and applications of LVDT, Induction potentiometer, variable reluctance transducer, synchros, microsyn. Capacitive transducers: - Principle of operation, construction details, characteristics of Capacitive transducers– different types & signal conditioning-Applications:- capacitor microphone, capacitive pressure sensor, proximity sensor.

#### UNIT-III ACTUATORS

9 Hours

9 Hours

Definition, types and selection of Actuators; linear; rotary; Logical and Continuous Actuators, Pneumatic actuator- Electro-Pneumatic actuator; cylinder, rotary actuators, Mechanical actuating system: Hydraulic actuator - Control valves; Construction, Characteristics and Types, Selection criteria. Electrical actuating systems: Solid-state switches, Solenoids, Electric Motors- Principle of operation and its application: D.C motors - AC motors - Single phase & 3 Phase Induction Motor; Synchronous Motor; Stepper motors - Piezoelectric Actuator.

#### UNIT-IV MICRO SENSORS AND MICRO ACTUATORS

**Micro Sensors**: Principles and examples, Force and pressure micro sensors, position and speed micro sensors, acceleration micro sensors, chemical sensors, biosensors, temperature micro sensors and flow micro sensors.

**Micro Actuators:** Actuation principle, shape memory effects-one way, two way and pseudo elasticity. Types of micro actuators- Electrostatic, Magnetic, Fluidic, Inverse piezo effect, other principles.

# UNIT-V SENSOR MATERIALS AND PROCESSING TECHNIQUES 9 Hours

Materials for sensors: Silicon, Plastics, metals, ceramics, glasses, nano materials. Processing techniques: Vacuum deposition, sputtering, chemical vapour deposition, electro plating, photolithography, silicon micro machining: Bulk silicon micromachining, Surface silicon micromachining, LIGA process.

	Total Hours 45 Hours
Text	t Book(s)
1.	Patranabis.D, Sensors and Transducers, Wheeler publisher, 1994.
2.	Sergej Fatikow and Ulrich Rembold, Microsystem Technology and Microbotics First
	edition,Springer –Verlag Newyork, Inc, 1997.



3.	Jacob Fraden, "Hand Book of Modern Sensors: Physics, Designs and
	Application" Fourthedition, Springer, 2010.
Refe	rence Book(s)
1.	Robert H Bishop, "The Mechatronics Hand Book", CRC Press, 2002.
2.	Thomas. G. Bekwith and Lewis Buck.N, Mechanical Measurements, Oxford and
	IBHpublishing Co. Pvt. Ltd.,
3.	Massood Tabib and Azar, Micro actuators Electrical, Magnetic, thermal, optical,
	mechanical, chemical and smart structures, First edition, Kluwer academic
	publishers, Springer, 1997.
4.	Manfred Kohl, Shape Memory Actuators, first edition, Springer.



Course C	ode	BECF187	OEM		L	Т	P	C	IA	EA	TM
Course Na	ame .	ARTIFIC	CIAL		3	0	0	3	40	60	100
	]	INTELL	IGENCE								
Course	(	OPEN EL	ECTIVE CO	OURSE		Sylla	bus Re	visio	n		V.1.0
Category		III									
Pre-requi	site	Basic kno	wledge of C	Computer	r Arch	itectu	re				
Course O	bjectives	:									
The course	e should	enable the	e students:								
1. To	understa	nd the ba	sic building	blocks of	Intell	igent S	System	s.			
2. To	gain kno	wledge in	n problem fo	rmulation	n and l	buildir	ng intel	ligent	t agent	s.	
3. To	understa	nd some	of the search	ing appro	haches	to bu	ild Inte	lliger	nt Syste	ems.	
<ol> <li>To understand some of the searching approaches to build Intelligent Systems.</li> <li>To understand the types of logic and knowledge representation schemes.</li> </ol>											
4. To	understa	nd the typ		0 11				n sch	emes.		
		• •		and know	ledge	repres	sentatio	n sch	emes.		
		• •	bes of logic a	and know	ledge	repres	sentatio	n sch	emes.		
5. To Course O	acquire description of the second sec	cnowledg	bes of logic a e in planning	and know g and lear	eledge rning a	repres	sentatio	n sch	emes.		
5. To Course O	acquire description of the second sec	cnowledg	bes of logic a	and know g and lear	eledge rning a	repres	sentatio	n sch	emes.		
5. To Course O At the end Course	acquire description of the second sec	cnowledg	bes of logic a e in planning dents should	and know g and lear	rledge	repres	sentatio	n sch	emes.		lighest
5. To Course O At the end Course	acquire description of the second sec	cnowledg	bes of logic a e in planning dents should	and know g and lear d able to:	rledge	repres	sentatio	n sch	emes.	E	Bloom's
5. To Course O At the end Course Outcom es	acquire utcomes l of the c	cnowledg	bes of logic a e in planning dents should D	and know g and lean d able to: Descriptio	rledge rning a	repres algorit	sentatio			E	Bloom's
5. To Course O At the end Course Outcom	acquire defined of the contract of the contrac	cnowledg	bes of logic a e in planning dents should D	and know g and lear d able to:	rledge rning a	repres algorit	sentatio			E	Bloom's
5. To Course O At the end Course Outcom es CO1	acquire description of the contract of the con	and the	bes of logic a e in planning dents should D basic con	and know g and lear d able to: Description	nd ter	repres algorit	entatio hms.	Art	ificial	E	Bloom's ixonomy K2
5. To Course O At the end Course Outcom es	acquire d utcomes of the c Underst Intellige Acquire	and the ence.	bes of logic a e in planning dents should D	and know g and lean d able to: Description cepts an lligent ag	nd ter	repres algorit	entatio hms.	Art	ificial	E	Bloom's axonomy
5. To Course O At the end Course Outcom es CO1	acquire d utcomes l of the c Underst Intellige Acquire using va	and the ence. Knowledg	bes of logic a e in planning dents should D basic con dge on intel	and know g and lear d able to: Description cepts ar ligent ag s.	on on ents a	repres algorit chniqu	entatio hms.	Art	ificial	E	Bloom's ixonomy K2
5. To Course O At the end Course Outcom es CO1 CO2	acquire d utcomes of the c Underst Intellige Acquire using va Apply A	and the ence. Knowled Knowled trious sea	bes of logic a e in planning dents should D basic con dge on intel rch strategie	and know g and lean d able to: Description cepts an lligent ag s. ing practi	on technologies and tec	repres algorit chniqu und pro-	entatio hms. les of oblem s.	Art	ificial ng by	E	Bloom's axonomy K2 K2
5. To Course O At the end Course Outcom es CO1 CO2 CO3	acquire I utcomes I of the c Underst Intellige Acquire using va Apply A Design	and the ence. Knowledg	bes of logic a e in planning dents should D basic con dge on intel rch strategie	and know g and lear d able to: Description cepts ar ligent ag s. ing praction ample usi	on on on cents a ceal pro- ng Kn	repres algorit chniqu und pro oblem owled	sentatio hms. ies of oblem s. ge repr	Art	ificial ng by ation.	E	Bloom's Exonomy K2 K2 K3

				Program Specific Outcomes (PSOs)											
CO	PO	PO	PO	PO	PO	Р	PO	PO	PO	PO	Р	PO	PS	Р	PSO3
COs	1	2	3	4	5	06	7	8	9	10	0	12	01	S	
											1			0	
											1			2	
CO1	S	Μ	S	М	-	-	-	-	-	-	-	-	-	-	-
CO2	L	S	S	S	L	-	-	-	-	-	-	Μ	Μ	Μ	М
CO3	L	S	S	S	L	-	-	-	-	-	-	S	Μ	Μ	S
<b>CO4</b>	L	S	S	S	L	-	-	-	-	-	-	М	-	-	М
CO5	L	S	S	М	-	-	-	-	-	-	-	М	-	-	М
	1	1	1	1	1			1		1	•	1			
UNIT-I INTRODUCTION TO AI-AI TECHNIQUES								9 Hours							



Introduction – Foundations of AI, the History of AI –Intelligent Agent – Agent and Environment, Good Behavior: The Concept of Rationality, Nature of Environments, Structure of Agents- ProblemSolving Agents -Example Problems.

## UNIT-II SEARCHING TECHNIQUES- UNIFORMED SEARCH ALGORITHM

9 Hours

Uninformed Searching strategies-Breadth First Search, Depth First search, Depth limited search, Iterative deepening search, Bidirectional Search - Avoiding repeated States - Searching with Partial information –Informed search strategies – Greedy Best First Search-A* Search-Heuristic Functions- Local Search Algorithms for Optimization Problems-Local search in Continuous Spaces.

#### UNIT-III SEARCHING TECHNIQUES- ONLINE SEARCH ALGORITHM

9 Hours

9 Hours

9 Hours

Online Search Agents and Unknown Environments-Online Search Problems, Online Search Agents- Online Local search, learning in Online Search – Constraint Satisfaction Problems-Backtracking CSP, The Structure of Problems-Adversarial Search-Games, Optimal Decisions in Games, Alpha- Beta Pruning.

## UNIT-IV KNOWLEDGE AND REASONING

Logical agents – Knowledge Based Agents, The Wumpus World, Propositional Logic-A very simple Logic –First Order logic– inferences in first order logic – forward chaining – backward chaining – Unification – Resolution.

## UNIT-V PLANNING

Planning with state space search – Partial-order planning – Planning graphs – Planning and acting in the real world.

Total Hours 45 Hours

## Text Book(s)

1. S. Russel and P. Norvig, "Artificial Intelligence –A Modern Approach", Second Edition, Pearson Education 2003.

#### **Reference Book(s)**

- 1. David Poole, Alan Mackworth, Randy Goebel, "Computational Intelligence: a Logical Approach", Oxford University Press, 2004.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for Complex Problem Solving", Fourth Edition, Pearson Education, 2002.



Course (	Code	2	BECF	1880	EP			L	Т	P		С	IA	EA	TM
Course N	Nam			OTIC		D		3	0	0	)	3	40	60	100
				DMA											
Course				ELE	CTIV	E COI	URSE		Syll	abus	Revi	sion			V.1.0
Category			-III												
Pre-requ	iisite	e s	ensor	s and '	Trans	ducer	S								
Course (	•														
The cour															
				e stud				•							
	-	-	-				-		-			l in ro	bot v	ision	system.
				ledge											
4. U	Inde	rstand	l the v	arious	s kine	matic	s and	invers	e kine	emati	cs of	robo	ts.		
5. T	o eq	uip st	udent	s with	latest	t robo	t lang	uages	imple	ement	ed in	indu	strial	manip	oulators.
Course (				_	_		_	_							
At the en	d of	the c	ourse	the st	udent										
Course						De	script	ion							lighest
Outcom															loom's xonomy
es CO1	_													Ia	K2
	Demonstrate the mechanical structures of industrial fobots.														
CO2	Understand the importance of robot vision. K2														
CO3	Apply knowledge and choose the best end effectors for specific K3														
CO4		olicati													V.
CO4	Fo	rward	l and i	nverse	e kine	matic	s of R	oboti	cs is le	earneo	1.				K2
CO5		ogran guage		indust	rial ro	obot tl	nrougl	h diffe	erent 1	netho	ds aı	nd			K6
	μαπ	guage													
Correlat	ion	betwe	en Co	ourse	Outco	omes (	(COs)	and I	Progr	am O	utco	mes (	POs):		
															1 Specific
				P	rogra	m Ou	tcome	s (PU	is)		-		Ou	tcom	es (PSOs)
COs	Р	PO	PO	PO	PO	Р	PO	PO	PO	PO	Р	PO	PS	Р	PSO3
205	0	2	3	4	5	06	7	8	9	10	0	12	01		
	1										1			0	
CO1	М	-	_	_			_		_	_	1	_	L	2	M
					- T	- M		-							-
CO2	L	-	- T	-	L	M	S	-	-	-	-	-	M	-	M
CO3	S	- T	L	- -	M	L	L	-	-	-	-	-	M	-	L
CO4	M	L	S	L	Μ		M	-	-	-	-	-	M	-	L
CO5	S	L	Μ	-	L	М	S	-	-	-	-	-	L	-	Μ
UNIT-I		INT	ROD	UCTI	[ <b>ON</b> ]	ΓO R	OBO'	FICS						<b>9</b> H	lours
Need f	or	Robo	ots	Asimo	ov's	laws	of	robo	tics.	Basi	c d	comp	onent	s-Clas	ssification,

Characteristics-Work volume, spatial resolution and repeatability, Precision and accuracy. Coordinate system- Drives & Control systems, Actuators, Applications of Robots.

## UNIT-II SENSORS IN ROBOTICS

Position sensors (Piezo Electric sensor, LVDT, Optical Encoders)-Proximity (Inductive, Capacitive, Hall Effect & Ultrasonic), Range sensors (Laser Meters, Lighting Approach & Time of Flight Range Finder)-Image Processing & Analysis:-Image Data reduction-Feature extraction-Object Recognition.

## UNIT-III END EFFECTORS

Wrist configuration, Pitch, Yaw, Roll – Types of Grippers -Mechanical Grippers- Pneumatic and Hydraulic Grippers-Vacuum Cups-Magnetic Grippers –Two Fingered and Three fingered Grippers- Robot/End effectors Interface-Selection and Design Considerations.

## UNIT-IV ROBOT KINEMATICS

Forward Kinematics, Inverse Kinematics and the difference, Forward Kinematics and Inverse Kinematics of manipulators with two, three degrees or freedom (in two dimensional), four degrees of freedom (in three dimensional) – derivations. Homogenous transformation matrix, translational and rotational matrix, Denavit & Hartenberg representation.

#### UNIT-V ROBOT PROGRAMMING

Teach pendant programming, Lead through programming, Robot languages: VAL Programming, Motion command, Sensor command, End Effectors command. RGV, AGV, Implementation of robots in industries, various steps, Safety considerations for robot operations. Economic analysis of robots: Pay back methods, EUAC method and Rate of return method.

	Total Hours 45 Hours										
Text	Text Book(s)										
1.	. Ganesh. S. Hedge, "A Textbook of Industrial Robotics", Lakshmi Publications, 2008.										
2.	Mikell.P.Groover," Industrial Robotics-Technology, Programming and Applications",										
	McGraw Hill, second edition 2012.										
Refe	erence Book(s)										
1.	Oran Koren, "Robotics for Engineers", McGraw Hill, 1985.										
2.	Fu K.S.Gonalz R.C. and ice C.S.G."Robotics, Control, Sensing, Vision and										
	Intelligence"McGraw Hill Ltd., 2007.										
3.	Deb.S.R."Robotics Technology and Flexible Automation", Tata McGraw Hill, 2010.										

9 Hours

9 Hours

9 Hours

9 Hours





							- <u>r</u>		-				1	-11	
Course Code		BECF					L	Т	]		С	IA	EA		ſM
Course Nam					UTIN		3	0	(		3	40	60		00
Course		OPEN	ELE	CTIV	E COU	JRSE		Syl	labus	Revi	ision			V.1.(	)
Category		-III													
Pre-requisit	e _E	Basic k	nowle	dge o	f Com	puter	Netwo	orks							
Course Obje	ectives	5:													
The course v	vill en	able t	he stu	dents	to:										
1. To understand the concept of cloud computing.															
2. To understand the cloud services.															
3. To know the concept of VDC															
4. To know the application of VDC															
5. To ur	ndersta	and the	e conc	ept of	cloud	infra	struct	ure ar	nd ma	nage	ment	•			
Course Outo						_	_								
At the end of $\alpha$	f the c	ourse	the st	udent											
Course					D	escrip	tion							Highe	
Outcomes														Bloom	
														<b>Faxono</b>	my
CO1	To understand basic concepts, types, characteristics of cloud <b>K2</b> computing and service models														
	-						· -		<u> </u>	1	•				
CO2		•		-	cance	of Cla	ISSIC L	Data C	Center	and	its ty	pe´s		K4	
		oud co	-	-	.:			1			1!	4		V	
CO3			-	e sigr	nifican	ce of	imp	leme	nting	VIII	Janza	tion		K6	
CO4		niques		0 200	dofso	ourity	in Cl	oud a	ompu	ting				K6	
C04 C05					d of se				-	-				K0 K6	
0.05	10 u	nderst		1000 1	masu	uctur		Cloud	i wiig	atioi	1.			N0	
Correlation	hetwe	en Co	nirse	Outer	mes ()	COs	and I	Progr	am ()	utco	mes (	POs)	•		
	Deting							0		uico	ines (	· · ·		am Spe	cific
			Pr	ogran	n Outo	comes	(POs	3)					0	mes (P	
PO PO	PO	PO	PO	PO	P	PO	РО	PO	PO	P	PO	_	50	PSO	PSO
$\begin{array}{ c c } COs & 10 \\ 1 \end{array}$	2	3	4	5	06	7	8	9	10	0	12		1	2	3
									-	1					
										1					
CO1 S	М	М	_	L	L	L	_	L	_	-	-	1		М	М
	M	М	_	L	L	L	_	L	_	_	_	-		М	S
CO3 S	M	M	-	L	L	L	-	L	-	- T	-	-		M	S
CO4 -	S	М	-	-	-	-	-	-	L	L	S		M	M	M
CO5 -	-	-	-	-	L	-	L	L	Μ	Μ	S	N	Λ	Μ	S



#### Syllabus (2023-24)

B.E. (Electronics and Communication Engineering)

UNIT-I	CLOUD COMPUTING PRIMER	9 Hours						
Cloud computing characteristics, cloud definition -cloud deployment models – private, public,								
hybrid and Community cloud, cloud services - SaaS, PaaS, and IaaS, Drivers for cloud								
computing, l	ouilding cloud infrastructure – a phased approach- virtualization and	its benefits-						
cloud econor	mics and challenges.							

#### UNIT-II

#### CLASSIC DATA CENTER (CDC)

9 Hours

Key elements of data center - application, DBMS, compute, storage and network, server clustering, RAID technology, intelligent storage system, DAS, FC-SAN – components, port type, addressing, and zoning, IP- SAN – iSCSI and FCIP, converged network - FCoE, NAS, object based and unified storage, business continuity terminologies, backup-recovery and duplication, local and remote replication, CDC monitoring and management, Information lifecycle strategy.

## UNIT-III VIRTUALIZED DATA CENTER (VDC)

9 Hours

Compute: Compute virtualization benefits, hypervisor types, virtual machine (VM) - resources, V M resource management, physical to virtual conversion – process, benefits. Storage: Storage virtualization benefits, storage for VMs, block and file level storage virtualization, virtual Provisioning – benefits and best practices, storage tiering. Networking: Network virtualization benefits, VDC network infrastructure components, VLANs, and Network traffic management techniques.

## UNIT-IV VIRTUALIZED DATA CENTER – DESKTOP AND APPLICATION

9 Hours

Desktop, application, and user state virtualization – benefits, tools, and deployment methods, Business Continuity in VDC:-Eliminating single points of failure, clustering, fault tolerance, and NIC teaming, backup and replication in VDC, VM templates and VM migration. Cloud Security:-Basic information security concepts, cloud security concerns and threats, security mechanisms in cloud at compute, storage, and network layer, Governance, Risk and compliance in Cloud.

#### UNIT-V CLOUD INFRASTRUCTURE AND MANAGEMENT 9 Hours

Cloud infrastructure framework -components, infrastructure management and service creation tools- processes – asset - configuration management, service catalog management, financial management, capacity, performance availability management, incident, problem and compliance management. Cloud Migration Considerations:- Considerations for choosing right application and cloud model, service provider specific considerations, cloud adoption phases, Financial and technical feasibility assessment, migration and optimization considerations.

Total Hours 45 Hours

Text Book(s)

1. Cloud Infrastructure and Services Student Guide - EMC Education Services- 2011.



Refe	rence Book(s)
1.	EMC IT's Journey to the Private Cloud: A Practitioner's Guide -2011.
2.	EMC IT'S "ON-RAMP" TO THE JOURNEY TO THE PRIVATE CLOUD Replat form to an Open Scalable Infrastructure-2011.
3.	EMC IT's Journey to the Private Cloud: Applications & Cloud Experience.
4.	EMC IT's Journey to the Private Cloud: Server virtualization.
5.	EMC IT's Journey to the Private Cloud: Backup & Recovery Systems.
6.	EMC IT's Journey to the Private Cloud: Virtual Desktop-2011. (Incl.Ref.no: 3, 4, 5, 6).



**Course Code** L Т Р С IA EA TM **Course Name BLOCK CHAIN** 3 0 40 100 0 3 60 TECHNOLOGY Course **OPEN ELECTIVE COURSE Syllabus Revision** V.1.0 Category -III **Pre-requisite** Basic knowledge of Data Communication **Course Objectives:** The course should enable the students 1. To understand the technology behind block chain. 2. To comprehend the issues related to block chain. 3. To study the real-world applications of block chain. **Course Outcomes:** At the end of the course the students will be able to Description Highest Course Bloom's Outcom Taxonomy es **K2** Understand the requirements of the basic design of block chain. **CO1** Identify the need of block chains to find the solution to the real-K2 **CO2** world problems. Summarize the working of block chain. K2 **CO3** Recognize the underlying technology of transactions, blocks, proof-K2 **CO4** of-work, and consensusbuilding. Design and implement new ways of using block chain for **K2 CO5** applications. **Correlation between Course Outcomes (COs) and Program Outcomes (POs):** 

					Program Specific Outcomes (PSOs)										
COs	PO 1	PO 2	PO 3	<b>PO</b> 4	PO 5	P 06	<b>PO</b> 7	PO 8	PO 9	PO 10	P 0 1 1	PO 12	PS O 1	PSO 2	PSO 3
CO1	S	-	-	-	-	-	-	-	L	L	-	Μ	-	М	-
CO2	S	-	-	-	-	-	-	-	L	L	-	Μ	-	М	-
CO3	S	-	-	-	-	-	-	-	L	L	-	М	М	М	-
CO4	S	L	Μ	-	-	-	-	-	L	L	-	Μ	-	М	-
CO5	-	S	S	М	-	-	-	-	М	Μ	-	М	М	М	-
UNIT-	I INTRODUCTION 9 Hours												rs		
Blockchain concepts, evolution, structure, characteristics, a sample blockchain application, the blockchain stack, benefits and challenges.															

UNIT-II	<b>BLOCKCHAIN: HOW DO THEY WORK?</b>	9 Ho
---------	--------------------------------------	------



What is a Blockchain? Public Ledgers, Blocks in a Blockchain, Blockchain as public ledgers, Transactions, Distributed consensus. Building a block: Elements of Cryptography-Cryptographic Hash functions, Merkle Tree, Elements of Game Theory.

#### UNIT-III BLOCKCHAIN ARCHITECTURE AND USE CASES

9 Hours

Design methodology for Blockchain applications, Blockchain application templates, Blockchain application development, Ethereum, Solidity, Sample use cases from Industries, Business problems.

#### UNIT-IV SMART CONTRACTS

9 Hours

Smart contract, structure of a contract, interacting with smart contracts using Geth client and Mist wallet, smart contract examples, smart contract patterns.

#### UNIT-V DECENTRALIZED AND REAL WORLD APPLICATIONS 9 Hours

Dapps, implementing Dapps, Ethereum Dapps, case studies related to Dapps, Internet of things, healthcare.

Total Hours 45 Hours

Text Book(s)

1. Blockchain applications: a hands-on approach, Bahga A., Madisetti V., VPT, 2017. **Reference Book(s)** 

- 1. Beginning Blockchain, A Beginner's Guide to Building Blockchain Solutions, Bikramadity Singhal, Gautam Dhameja, Priyansu Sekhar Panda, Apress, 2018.
- 2. Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions, Joseph J. Bambara and Paul R. Allen, McGraw Hill, 2018.
- 3. Blockchain enabled Applications Vikram Dhillon, David Metcalf and Max Hooper, Apress, 2017.
- 4. The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology, William Mougayar, Wiley, 2016.
- 5. Blockchain Science: Distributed Ledger Technology, Roger Wattenhofer, Inverted Forest Publishing; 3rd edition, 2019.