
Sri Chandrasekharendra Saraswathi Viswa MahaVidyalaya

Enathur, Kanchipuram – 631 561.

Department of Computer Science and Engineering

Machine Learning

Prepared

Dr. C Sunitha Ram

Dr N Kumaran

1

OBJECTIVES:

1. To introduce students to the basic concepts and techniques of Machine Learning.
2. To have a thorough understanding of the Supervised and Unsupervised learning

techniques
3. To study the various probabilities-based learning techniques
4. To understand graphical models of machine learning algorithms

 PROGRAMME OUTCOME:

1. Apply basic principles and practices of computing grounded in mathematics and

science to successfully complete software related projects to meet customer business

Objective(s) and/or productively engage in research.

2. Apply their knowledge and skills to succeed in a computer science career and/or

obtain an advanced degree.

3. Demonstrate an ability to use techniques, skills, and modern computing tools to

implement and organize computing works under given constraints.

4. Demonstrate problem solving and design skills including the ability to formulate

problems and their solutions, think creatively and communicate effectively.

5. Develop software as per the appropriate software life cycle model.

6. Organize and maintain the information of an organization.

7. Exhibit teamwork, communication, and interpersonal skills which enable them to

work effectively with interdisciplinary teams.

8. Provide an excellent education experience through the incorporation of current

pedagogical techniques, understanding of contemporary trends in research and

technology, and hands-on laboratory experiences that enhance the educational

experience.

9. Demonstrate an ability to engage in life-long learning.

10. Function ethically and responsibly, and to remain informed and involved as full

participants in our profession and our society.

COURSE OUTCOMES:

Upon completion of the course, the students will be able to: Distinguish between,

supervised, unsupervised and semi-supervised learning
1. Apply the apt machine learning strategy for any given problem

2. Suggest supervised, unsupervised or semi-supervised learning algorithms for any

given problem

3. Design systems that uses the appropriate Trees in Probabilities Models of machine

learning

4. Modify existing machine learning algorithms to improve classification efficiency

5. Design systems that uses the appropriate graph models of machine learning

2

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10

CO1 L M M

CO2 M M H
CO3 L M M H H
CO4 L M H
CO5 L M M H H

UNIT – I INTRODUCTION

Learning – Types of Machine Learning – Supervised Learning – The Brain and the Neuron

– Design a Learning System – Perspectives and Issues in Machine Learning – Concept

Learning Task – Concept Learning as Search – Finding a Maximally Specific Hypothesis –

Version Spaces and the Candidate Elimination Algorithm – Linear Discriminates –

Perceptron – Linear Separability – Linear Regression.

UNIT – I LINEAR MODELS

Multi-layer Perceptron – Going Forwards – Going Backwards: Back Propagation Error –

Multi-layer Perceptron in Practice – Examples of using the MLP – Overview – Deriving

Back-Propagation – Radial Basis Functions and Splines – Concepts – RBF Network – Curse

of Dimensionality – Interpolations and Basis Functions – Support Vector Machines

UNIT – III TREE AND PROBABILISTIC MODELS

Learning with Trees – Decision Trees – Constructing Decision Trees – Classification and

Regression Trees – Ensemble Learning – Boosting – Bagging – Different ways to Combine

Classifiers – Probability and Learning – Data into Probabilities – Basic Statistics –

Gaussian Mixture Models – Nearest Neighbor Methods – Unsupervised Learning – K

means Algorithms – Vector Quantization – Self Organizing Feature Map.

UNIT – IV DIMENSIONALITY REDUCTION AND EVOLUTIONARY MODELS

Dimensionality Reduction – Linear Discriminant Analysis – Principal Component

Analysis – Factor Analysis – Independent Component Analysis – Locally Linear

Embedding – Isomap – Least Squares Optimization – Evolutionary Learning – Genetic

algorithms – Genetic Offspring: - Genetic Operators – Using Genetic Algorithms –

Reinforcement Learning – Overview – Getting Lost Example – Markov Decision Process

UNIT - V GRAPHICAL MODELS

Markov Chain Monte Carlo Methods – Sampling – Proposal Distribution – Markov Chain

Monte Carlo – Graphical Models – Bayesian Networks – Markov Random Fields – Hidden

Markov Models – Tracking Methods.

3

TEXT BOOKS:

1. Stephen Marsland, ―Machine Learning – An Algorithmic Perspective‖, Second

Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series,

2014.

2. Tom M Mitchell, ―Machine Learning‖, First Edition, McGraw Hill Education, 2013.

REFERENCES:

1. Peter Flach, ―Machine Learning: The Art and Science of Algorithms that Make Sense

of Data‖, First Edition, Cambridge University Press, 2012.

2. Jason Bell, ―Machine learning – Hands on for Developers and Technical

Professionals‖, First Edition, Wiley, 2014

3. Ethem Alpaydin, ―Introduction to Machine Learning 3e (Adaptive Computation and
Machine Learning Series)‖, Third Edition, MIT Press, 2014

4

Introduction:-Data science is an inter-disciplinary is an inter-disciplinary field that uses scientific

methods, processes, algorithms and systems to extract knowledge is an inter-disciplinary field that
uses scientific methods, processes, algorithms and systems to extract knowledge and insights from

many structural and unstructured data is an inter-disciplinary field that uses scientific methods,

processes, algorithms and systems to extract knowledge and insights from many structural and
unstructured data. Data science is related to data mining(Data mining is a process of discovering

patterns in large data sets is a process of discovering patterns in large data sets), machine learning
is a process of discovering patterns in large data sets), machine learning and big data.

Unstructured data (or unstructured information) is information that either does not have a
pre-defined data model) is information that either does not have a pre-defined data model or is
not organized in a pre-defined manner. Unstructured information is typically text) is
information that either does not have a pre-defined data model or is not organized
in a 3

What is Data?

➢ Data is often viewed as the lowest level of abstraction from which information

and knowledge are derived.

➢ Data can be numbers, words, measurements, observations or even
 just descriptions of things. Also, data is a representation of a fact, figure and idea.

➢ Data on its own carries no meaning. If data to be an information, it must
be interpreted and take on a meaning.

An example of raw data table. It is just a collection of random info and data.

Machine learning (ML) is the study of computer algorithms that improve automatically through

experience. It is seen as a subset of artificial intelligence)is the study of computer

algorithms that improve automatically through experience .It is seen as a subset of
artificial intelligence. Machine learning algorithms build a mathematical model) is the study

of computer algorithms that improve automatically through experience. It is seen as a subset

of artificial intelligence. Machine learning algorithms build a mathematical model based on
sample data, known as training data)is the study of computer algorithms that improve

automatically through experience. It is seen as a subset of artificial

intelligence. Machine learning algorithms build a mathematical model based on sample data

known as "training data" in order to make predictions or decisions without being explicitly programmed

to do so. Machine learning algorithms are used in a wide variety of applications, such
as email filtering) is the study of computer algorithms that improve automatically through

experience. It is seen as a subset of artificial 6

https://en.wikipedia.org/wiki/Inter-disciplinary
https://en.wikipedia.org/wiki/Knowledge
https://en.wikipedia.org/wiki/Unstructured_data
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Plain_text
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Training_data
https://en.wikipedia.org/wiki/Email_filtering

5

Key Elements of Data Science

6

7

8

9

10

11

12

Types of Machine

Learning

 C. Optimization

C. Optimization

D. Recommender System

E. Feature Analysis

F. Sentiment Analysis

13

Supervised learning

It is very similar to teaching a child with the use of flash cards

14

15

16

Application of supervised learning

• Advertisement Popularity: Selecting
advertisements - Many of the ads - internet are
placed because a learning algorithm.

• Spam Classification: If you use a modern email
system, chances are you’ve encountered a spam
filter. That spam filter is a supervised learning system.
Fed email examples and labels (spam/not spam),
these systems learn how to preemptively filter out
malicious emails so that their user is not harassed by
them. Many of these also behave in such a way that
a user can provide new labels to the system and it can
learn user preference.

• Face Recognition: Do you use Facebook? Most
likely your face has been used in a supervised learning
algorithm that is trained to recognize your face.
Having a system that takes a photo, finds faces,
and guesses who that is in the photo (suggesting a
tag) is a supervised process. It has multiple layers to
it, finding faces and then identifying them, but is still
supervised nonetheless.

▪ Unsupervised learning is very much the opposite of supervised learning. It features no labels.
Instead, our algorithm would be fed a lot of data and given the tools to understand the properties
of the data. From there, it can learn to group, cluster, and/or organize the data in a way such that
a human (or other intelligent algorithm) can come in and make sense of the newly organized data.

unsupervised learning

17

18

Application of unsupervised learning

o Recommender Systems: If you’ve ever used YouTube or Netflix, you’ve most likely encountered a
video recommendation system. These systems are often times placed in the unsupervised domain.
We know things about videos, maybe their length, their genre, etc. We also know the watch history
of many users. Considering users that have watched similar videos as you and then enjoyed other
videos that you have yet to see, a recommender system can see this relationship in the data and
prompt you with such a suggestion.

o Buying Habits-Market based analysis: Buying habits -contained in a database somewhere and that
data is being bought and sold actively at this time. These buying habits can be used in unsupervised
learning algorithms to group customers into similar purchasing segments. This helps companies’
market to these grouped segments and can even resemble recommender systems.

o Grouping User Logs-semantic clustering: Less user facing, but still very relevant, we can use
unsupervised learning to group user logs and issues. This can help companies identify central themes
to issues their customers face and rectify these issues, through improving a product or designing an
FAQ to handle common issues.

19

Reinforcement of learning

• Reinforcement learning as learning from mistakes. Place a reinforcement learning algorithm

into any environment and it will make a lot of mistakes in the beginning.

20

Application of Reinforcement learning

▪ Video Games: Google’s reinforcement learning application, AlphaZero and AlphaGo which

learned to play the game Go. Our Mario example is also a common example

▪ Industrial Simulation: For many robotic applications (think assembly lines), it is useful to have

our machines learn to complete their tasks without having to hardcode their processes.
• Resource Management: Reinforcement learning is good for navigating complex environments.

It can handle the need to balance certain requirements. For example, Google’s data centers.
•

21

Steps to solve a Machine Learning Problem

22

23

24

DESIGNING A LEARNING SYSTEM

Basic design issues and approaches to machine learning, let us consider designing a program to
learn to play checkers, with the goal of entering it in the world checkers tournament.

Performance measure: the percent of games it wins in this world tournament.

1.2.1 Choosing the Training Experience

The first design choice is to choose the type of training experience from which our system will

learn. The type of training experience available can have a significant impact on success or failure

of the learner. (driving class to drive a car)

Three are three attributes which impact on success or failure of the learner

Whether the training experience provides direct or indirect feedback regarding the choices made
by the performance system.

The degree to which the learner controls the sequence of training examples

How well it represents the distributing of examples over which the final system performance P

must be measured.

Example : Chess problem

1. Whether the training experience provides direct or indirect feedback regarding the choices

made by the performance system.

 For example in checkers game

• In learning to play checkers, the system might learn from direct training examples consisting of
individual checkers board states and the correct move for each.

• Indirect training examples consisting of the move sequences and final outcomes of various

games played.

• The information about the correctness of specific moves early in the game must be inferred
indirectly from the fact that the game was eventually won or lost.

• Here the learner faces an additional problem of credit assignment, or determining the degree to
which each move in the sequence deserves credit or blame for the final outcome.

• Credit assignment can be a particularly difficult problem because the game can be lost even
when early moves are optimal, if these are followed later by poor moves

• Hence learning from direct training feedback is typically easier than learning from indirect

feedback

25

A checkers learning problem:

Task T: playing checkers

Performance measure P: percent of games won in the world tournament

Training experience E: games played against itself

In order to complete the design of the learning system, we must now choose

26

1. the exact type of knowledge to be, learned

2. a representation for this target knowledge

3. a learning mechanism

Choosing the Target Function

• The next design choice is to determine exactly what type of knowledge will be learned

and how this will be used by the performance program. Let us begin with a checkers-

playing program that can generate the legal moves from any board state.

▪ The program needs only to learn how to choose the best move from among these legal
moves. This learning task is representative of a large class of tasks for which the legal
moves that define some large search space are known a priori, but for which the best
search strategy is not known.

▪ Many optimization problems fall into this class, such as the problems of scheduling

and controlling manufacturing processes where the available manufacturing steps are

well understood, but the best strategy for sequencing them is not.

Let us therefore define the target value V(b) for an arbitrary board state b in

B, as follows:

27

1. if b is a final board state that is won, then V(b) = 100

2. if b is a final board state that is lost, then V(b) = -100

3. if b is a final board state that is drawn, then V(b) = 0

4. if b is a not a final state in the game, then V(b) = V(b’), where b' is the best final

board state that can be achieved starting from b and playing optimally until the

end of the game

1.2.2 Choosing a Representation for the Target Function

let us choose a simple representation: for any given board state, the

function c will be calculated as a linear combination of the following board

features:

• xl: the number of black pieces on the board

• x2: the number of red pieces on the board

• x3: the number of black kings on the board

• x4: the number of red kings on the board

• x5: the number of black pieces threatened by red (i.e., which can be captured on red's

next turn)

• X6: the number of red pieces threatened by black

Thus, our learning program will represent v(b) as a linear function of the form

where wo through w6 are numerical coefficients, or weights, to be chosen by the learning

algorithm. Learned values for the weights wl through W6 will determine the relative

importance of the various board features in determining the value of the board, whereas

the weight wo will provide an additive constant to the board value

1.2.3 Choosing a Function Approximation Algorithm

• In order to learn the target function v we require a set of training
examples, each describing a specific board state b and the training
value Vtrain(b) for b.

• In other words, each training example is an ordered pair of the form (b, V',,,i,(b)).

• For instance, the following training example describes a board state b in which black

• Function Approximation Procedure

1 Derive training examples from the indirect training experience available to the learner

2 Adjust the weights w
i
to best fit these training examples- reduce error

28

1.2.4.1 ESTIMATING TRAINING VALUES

□ assign the training value of Vtrain(b) for any intermediate board state b to be

V(successor(b), where v is the learner's current approximation to V and where

Successor(b) denotes the next board state following b

(what will be opponent move)

1.2.4.2 ADJUSTING THE WEIGHTS

❖ All that remains is to specify the learning algorithm for choosing the weights wi to
best fit the set of training examples {(b, Vtrain(b))}.

❖ As a first step we must define what we mean by the best fit to the training data.

❖ One common approach is to define the best hypothesis, or set of weights, as that which

minimizes the squared error E between the training values and the values predicted by the

hypothesis V. If error =0.2 then squared 0.04.it reduces error

29

• One such algorithm is called the least mean squares, or LMS training rule. For each

observed training example, it adjusts the weights a small amount in the direction that reduces

the error on this training example.

30

1.2.4 The Final Design

o The final design of our checkers learning system can be naturally described

by four distinct program modules that represent the central components in

many learning systems.

o These four modules, summarized in Figure 1.1, are as follows:

o The Performance System is the module that must solve the given performance task,

in this case playing checkers, by using the learned target function(s). It takes an instance

of a new problem (new game) as input and produces a trace of its solution (game

history) as output

o The Critic takes as input the history or trace of the game and produces as output a set

of training examples of the target function

o The Generalizer takes as input the training examples and produces an output

hypothesis that is its estimate of the target function. It generalizes from the specific

training examples, hypothesizing a general function that covers these examples and

other cases beyond the training examples. In our example, the Generalizer

corresponds to the LMS algorithm, and the output hypothesis is the function f

described by the learned weights wo, . . . , W6.

o The Experiment Generator takes as input the current hypothesis (currently

learned function) and outputs a new problem (i.e., initial board state) for the

Performance System to explore. Its role is to pick new practice problems that will

maximize the learning rate of the overall system. In our example, the Experiment

Generator follows a very simple strategy: It always proposes the same initial

game board to begin a new game

31

Perspective &Issues in Machine Learning Perspective:

It involves searching a very large space of possible hypothesis to determine the one that best fits the

observed data.

Issues:

o Which algorithm performs best for which types of problems & representation?

o How much training data is sufficient?

o Can prior knowledge be helpful even when it is only approximately correct?

o The best strategy for choosing a useful next training experience.

o What specific function should the system attempt to learn?

o How can learner automatically alter it’s representation to improve it’s ability to represent and

learn the target function?

Concept Learning

• Inducing general functions from specific training examples is a main issue of machine

learning.

• Concept Learning: Acquiring the definition of a general category from given sample

positive and negative training examples of the category.

• Concept Learning can see as a problem of searching through a predefined space of

potential hypotheses for the hypothesis that best fits the training examples.

• The hypothesis space has a general-to-specific ordering of hypotheses, and the search

can be efficiently organized by taking advantage of a naturally occurring structure over the

hypothesis space.

• A Formal Definition for Concept Learning:

Inferring a Boolean-valued function from training examples of its input and output.

32

• An example for concept-learning is the learning of bird-concept from the given

examples of birds (positive examples) and non-birds (negative examples).

• We are trying to learn the definition of a concept from given examples.

• A set of example days, and each is described by six attributes.

• The task is to learn to predict the value of Enjoy-Sport for arbitrary day, based on the

values of its attribute values.

Enjoy-Sport – Hypothesis Representation

• Each hypothesis consists of a conjunction of constraints on the instance attributes.

• Each hypothesis will be a vector of six constraints, specifying the values of the six

attributes

(Sky, Air-Temp, Humidity, Wind, Water, and Forecast).

• Each attribute will be:

? - indicating any value is acceptable for the attribute (don’t care) single value – specifying a

single required value (ex. Warm) (specific)

0 - indicating no value is acceptable for the attribute (no value)

Hypothesis Representation

• A hypothesis:

Sky AirTemp Humidity Wind Water Forecast

< Sunny, ? , ? , Strong , ? , Same >

• The most general hypothesis – that every day is a positive example

<?, ?, ?, ?, ?, ?>

• The most specific hypothesis – that no day is a positive example

<0, 0, 0, 0, 0, 0>

• EnjoySport concept learning task requires learning the sets of days for which

EnjoySport=yes, describing this set by a conjunction of constraints over the instance

attributes.

EnjoySport Concept Learning Task
Given

Instances X : set of all possible days, each described by the attributes

• Sky – (values: Sunny, Cloudy, Rainy)

A Concept Learning Task – Enjoy Sport Training Examples

Example Sky AirTemp Humidity Wind Water Forecast E

nj

oy

Sp

or

t

1 Sun

ny

Warm Normal Strong Warm Same Y

E

S

2 Sun

ny

Warm High Strong Warm Same Y

E

S

3 Rai

ny

Cold High Strong Warm Change N

O

4 Sun

ny

Warm High Strong Warm Change Y

E

S

ATTRIBUTES CONCEPT

33

• Air-Temp – (values: Warm, Cold)

• Humidity – (values: Normal, High)

• Wind – (values: Strong, Weak)

• Water – (values: Warm, Cold)

• Forecast – (values: Same, Change)

Target Concept (Function) c : Enjoy-Sport : X {0,1}

Hypotheses H : Each hypothesis is described by a conjunction of constraints on the attributes.

Training Examples D : positive and negative examples of the target function

Determine

A hypothesis h in H such that h(x) = c(x) for all x in D.

The Inductive Learning Hypothesis

•Although the learning task is to determine a hypothesis h identical to the target concept cover the entire

set of instances X, the only information available about c is its value over the training examples.

Inductive learning algorithms can at best guarantee that the output hypothesis fits the target concept over

the training data.

Lacking any further information, our assumption is that the best hypothesis regarding unseen instances

is the hypothesis that best fits the observed training data. This is the fundamental assumption of inductive

learning.

•The Inductive Learning Hypothesis - Any hypothesis found to approximate the target function well

over a sufficiently large set of training examples will also approximate the target function well over

other unobserved examples.

•Concept learning can be viewed as the task of searching through a large space of hypotheses implicitly

defined by the hypothesis representation.

•The goal of this search is to find the hypothesis that best fits the training examples.

•By selecting a hypothesis representation, the designer of the learning algorithm implicitly defines the

space of all hypotheses that the program can ever represent and therefore can ever learn.

•Sky has 3 possible values, and other 5 attributes have 2 possible values.

•There are 96 (= 3.2.2.2.2.2) distinct instances in X.

•There are 5120 (=5.4.4.4.4.4) syntactically distinct hypotheses in H.

Two more values for attributes: ? and 0

•Every hypothesis containing one or more 0 symbols represents the empty set of instances; that is, it

classifies every instance as negative.

•There are 973 (= 1 + 4.3.3.3.3.3) semantically distinct hypotheses in H.

Only one more value for attributes: ?, and one hypothesis representing empty set of instances.

34

•Although Enjoy-Sport has small, finite hypothesis space, most learning tasks have much larger (even

infinite) hypothesis spaces.

We need efficient search algorithms on the hypothesis spaces.

General-to-Specific Ordering of Hypotheses

Many algorithms for concept learning organize the search through the hypothesis space by relying on a

general-to-specific ordering of hypotheses.

By taking advantage of this naturally occurring structure over the hypothesis space, we can design

learning algorithms that exhaustively search even infinite hypothesis spaces without explicitly

enumerating every hypothesis. Consider two hypotheses

h1 = (Sunny, ?, ?, Strong, ?, ?)

h2 = (Sunny, ?, ?, ?, ?, ?)

Now consider the sets of instances that are classified positive by hl and by h2. Because h2 imposes fewer

constraints on the instance, it classifies more instances as positive. In fact, any instance classified

positive by hl will also be classified positive by h2. Therefore, we say that h2 is more general than hl.

More-General-Than Relation

For any instance x in X and hypothesis h in H, we say that x satisfies h if and only if h(x) = 1.

More-General-Than-Or-Equal Relation: Let h1 and h2 be two Boolean-valued functions defined over

X. Then h1 is more-general-than-or-equal-to h2 (written h1 ≥ h2) if and only if any instance that satisfies

h2 also satisfies h1. h1 is more-general-than h2 (h1 > h2) if and only if h1≥h2 is true and h2≥h1 is false.

We also say h2 is more-specific-than h1.

•

h2 > h1 and h2 > h3

But there is no more-general relation between h1 and h3

FIND-S Algorithm

FIND-S Algorithm starts from the most specific hypothesis and generalize it by considering

only positive examples. FIND-S algorithm ignores negative examples. As long as the hypothesis space

contains a hypothesis that describes the true target concept, and the training data contains no errors,

ignoring negative examples does not cause to any problem. FIND-S algorithm finds the most specific

hypothesis within H that is consistent with the positive training examples. The final hypothesis will also

35

be consistent with negative examples if the correct target concept is in H, and the training examples are

correct.

1.Initialize h to the most specific hypothesis in H

2.For each positive training instance x for each attribute constraint a, in h

3.If the constraint a, is satisfied by x Then do nothing

Else replace a, in h by the next more general constraint that is satisfied by x

4. Output hypothesis h

 Unanswered Questions by FIND-S Algorithm

Has FIND-S converged to the correct target concept?

Although FIND-S will find a hypothesis consistent with the training data, it has no way to determine

whether it has found the only hypothesis in H consistent with the data (i.e., the correct target

concept), or whether there are many other consistent hypotheses as well.

We would prefer a learning algorithm that could determine whether it had converged and, if not, at

least characterize its uncertainty regarding the true identity of the target concept.

Why prefer the most specific hypothesis?

In case there are multiple hypotheses consistent with the training examples, FIND-S will find the

most specific.

It is unclear whether we should prefer this hypothesis over, say, the most general, or some other

hypothesis of intermediate generality.

 •Are the training examples consistent?

In most practical learning problems there is some chance that the training examples will contain at

least some errors or noise.

36

Such inconsistent sets of training examples can severely mislead FIND-S, given the fact that it ignores

negative examples.

We would prefer an algorithm that could at least detect when the training data is inconsistent and,

preferably, accommodate such errors.

•What if there are several maximally specific consistent hypotheses?

In the hypothesis language H for the Enjoy-Sport task, there is always a unique, most specific

hypothesis consistent with any set of positive examples.

However, for other hypothesis spaces there can be several maximally specific hypotheses consistent

with the data.

In this case, FIND-S must be extended to allow it to backtrack on its choices of how to generalize the

hypothesis, to accommodate the possibility that the target concept lies along a different branch of

the partial ordering than the branch it has selected.

Candidate-Elimination Algorithm

•FIND-S outputs a hypothesis from H, that is consistent with the training examples, this is just one of

many hypotheses from H that might fit the training data equally well.

•The key idea in the Candidate-Elimination algorithm is to output a description of the set of all

hypotheses consistent with the training examples.

Candidate-Elimination algorithm computes the description of this set without explicitly enumerating

all of its members.

This is accomplished by using the more-general-than partial ordering and maintaining a compact

representation of the set of consistent hypotheses.

Consistent hypothesis:

•The key difference between this definition of consistent and satisfies.

•An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is a positive or

negative example of the target concept.

37

•However, whether such an example is consistent with h depends on the target concept, and in

particular, whether h(x) = c(x).

Version Spaces:

• The Candidate-Elimination algorithm represents the set of

all hypotheses consistent with the observed training examples.

• This subset of all hypotheses is called the version space with respect to the hypothesis space

H and the training examples D, because it contains all plausible versions of the target concept.

List-Then-Eliminate Algorithm

•List-Then-Eliminate algorithm initializes the version space to contain all hypotheses in H, then

eliminates any hypothesis found inconsistent with any training example.

•The version space of candidate hypotheses thus shrinks as more examples are observed, until

ideally just one hypothesis remains that is consistent with all the observed examples.

38

Presumably, this is the desired target concept.

If insufficient data is available to narrow the version space to a single hypothesis, then the algorithm

can output the entire set of hypotheses consistent with the observed data.

•List-Then-Eliminate algorithm can be applied whenever the hypothesis space H is finite.

It has many advantages, including the fact that it is guaranteed to output all hypotheses consistent

with the training data.

Unfortunately, it requires exhaustively enumerating all hypotheses in H - an unrealistic requirement

for all but the most trivial hypothesis spaces.

Compact Representation of Version Spaces

•A version space can be represented with its general and specific boundary sets.

•The Candidate-Elimination algorithm represents the version space by storing only its most general

members G and its most specific members S.

•Given only these two sets S and G, it is possible to enumerate all members of a version space by

generating hypotheses that lie between these two sets in general-to-specific partial ordering over

hypotheses.

•Every member of the version space lies between these boundaries

where x ≥y means x is more general or equal to y.

39

• A version space with its general and specific boundary sets.

• The version space includes all six hypotheses shown here, but can be represented more

simply by S and G.

Candidate-Elimination Algorithm

• The Candidate-Elimination algorithm computes the version space containing all hypotheses

from H that are consistent with an observed sequence of training examples.

• It begins by initializing the version space to the set of all hypotheses in H; that is, by

initializing the G boundary set to contain the most general hypothesis in H

G0 { <?, ?, ?, ?, ?, ?> }

and initializing the S boundary set to contain the most specific hypothesis S0 { <0, 0, 0, 0, 0, 0> }

• These two boundary sets delimit the entire hypothesis space, because every other

hypothesis in H is both more general than S0 and more specific than G0.

• As each training example is considered, the S and G boundary sets are generalized and

specialized, respectively, to eliminate from the version space any hypotheses found inconsistent

with the new training example.

• After all examples have been processed, the computed version space contains all the

hypotheses consistent with these examples and only these hypotheses.

• Initialize G to the set of maximally general hypotheses in H

• Initialize S to the set of maximally specific hypotheses in H

• For each training example d, do

– If d is a positive example

• Remove from G any hypothesis inconsistent with d ,

• For each hypothesis s in S that is not consistent with d ,-

Remove s from S

Add to S all minimal generalizations h of s such that

40

h is consistent with d, and some member of G is more general than h

Remove from S any hypothesis that is more general than another hypothesis in S

If d is a negative example

• Remove from S any hypothesis inconsistent with d

• For each hypothesis g in G that is not consistent with d

Remove g from G

Add to G all minimal specializations h of g such that

 h is consistent with d, and some member of S is more specific than h

Remove from G any hypothesis that is less general than another hypothesis in G

41

•Given that there are six attributes that could be specified to specialize G2, why are there only three

new hypotheses in G3?

•For example, the hypothesis h = <?, ?, Normal, ?, ?, ?> is a minimal specialization of G2 that correctly

labels the new example as a negative example, but it is not included in G3. The reason this hypothesis

is excluded is that it is inconsistent with S2. The algorithm determines this simply by noting that h is

not more general than the current specific boundary, S2. In fact, the S boundary of the version space

forms a summary of the previously encountered positive examples that can be used to determine

whether any given hypothesis is consistent with these examples. The G boundary summarizes the

information from previously encountered negative examples. Any hypothesis more specific than G is

assured to be consistent with past negative examples

•The fourth training example further generalizes the S boundary of the version space. It also results

in removing one member of the G boundary, because this member fails to cover the new positive

example. To understand the rationale for this step, it is useful to consider why the offending

hypothesis must be removed from G. Notice it cannot be specialized, because specializing it would not

make it cover the new example. It also cannot be generalized, because by the definition of G, any

more general hypothesis will cover at least one negative training example. Therefore, the hypothesis

must be dropped from the G boundary, thereby removing an entire branch of the partial ordering

from the version space of hypotheses remaining under consideration

42

• After processing these four examples, the boundary sets S4 and G4 delimit the version space

of all hypotheses consistent with the set of incrementally observed training examples.

• This learned version space is independent of the sequence in which the training examples are

presented (because in the end it contains all hypotheses consistent with the set of examples).

• As further training data is encountered, the S and G boundaries will move monotonically closer

to each other, delimiting a smaller and smaller version space of candidate hypotheses.

Will Candidate-Elimination Algorithm Converge to Correct Hypothesis?

•The version space learned by the Candidate-Elimination Algorithm will converge toward the

hypothesis that correctly describes the target concept, provided There are no errors in the training

examples, and there is some hypothesis in H that correctly describes the target concept.

•What will happen if the training data contains errors?

The algorithm removes the correct target concept from the version space. S and G boundary sets

eventually converge to an empty version space if sufficient additional training data is available. Such

an empty version space indicates that there is no hypothesis in H consistent with all observed training

examples. A similar symptom will appear when the training examples are correct, but the target

concept cannot be described in the hypothesis representation. e.g., if the target concept is a

disjunction of feature attributes and the hypothesis space supports only conjunctive descriptions

•We have assumed that training examples are provided to the learner by some external teacher.

•Suppose instead that the learner is allowed to conduct experiments in which it chooses the next

instance, then obtains the correct classification for this instance from an external oracle (e.g., nature

or a teacher).

43

This scenario covers situations in which the learner may conduct experiments in nature or in which a

teacher is available to provide the correct classification. We use the term query to refer to such

instances constructed by the learner, which are then classified by an external oracle. Considering the

version space learned from the four training examples of the Enjoy-Sport concept.

What would be a good query for the learner to pose at this point?

What is a good query strategy in general?

 The learner should attempt to discriminate among the alternative competing hypotheses in its

current version space.

Therefore, it should choose an instance that would be classified positive by some of these hypotheses,

but negative by others.

One such instance is <Sunny, Warm, Normal, Light, Warm, Same>

This instance satisfies three of the six hypotheses in the current version space.

If the trainer classifies this instance as a positive example, the S boundary of the version space can

then be generalized.

Alternatively, if the trainer indicates that this is a negative example, the G boundary can then be

specialized.

In general, the optimal query strategy for a concept learner is to generate instances that satisfy exactly

half the hypotheses in the current version space.

When this is possible, the size of the version space is reduced by half with each new example, and the

correct target concept can therefore be found with only log2 |VS| experiments.

How Can Partially Learned Concepts Be Used?

•The version space learned by the Candidate-Elimination Algorithm will converge toward the

hypothesis that correctly describes the target concept provided. There are no errors in the training

examples, and there is some hypothesis in H that correctly describes the target concept.

•What will happen if the training data contains errors?

The algorithm removes the correct target concept from the version space. S and G boundary sets

eventually converge to an empty version space if sufficient additional training data is available. Such

an empty version space indicates that there is no hypothesis in H consistent with all observed training

examples.

•A similar symptom will appear when the training examples are correct, but the target concept cannot

be described in the hypothesis representation. e.g., if the target concept is a disjunction of feature

attributes and the hypothesis space supports only conjunctive descriptions

 We have assumed that training examples are provided to the learner by some external teacher.

Suppose instead that the learner is allowed to conduct experiments in which it chooses the next

instance, then obtains the correct classification for this instance from an external oracle (e.g., nature

or a teacher).

This scenario covers situations in which the learner may conduct experiments in nature or in which a

teacher is available to provide the correct classification.

44

We use the term query to refer to such instances constructed by the learner, which are then

classified by an external oracle.

•Considering the version space learned from the four training examples of the Enjoy-Sport concept.

What would be a good query for the learner to pose at this point?

What is a good query strategy in general?

•The learner should attempt to discriminate among the alternative competing hypotheses in its

current version space. Therefore, it should choose an instance that would be classified positive by

some of these hypotheses, but negative by others.

One such instance is <Sunny, Warm, Normal, Light, Warm, Same>

This instance satisfies three of the six hypotheses in the current version space. If the trainer classifies

this instance as a positive example, the S boundary of the version space can then be generalized.

Alternatively, if the trainer indicates that this is a negative example, the G boundary can then be

specialized. In general, the optimal query strategy for a concept learner is to generate instances that

satisfy exactly half the hypotheses in the current version space. When this is possible, the size of the

version space is reduced by half with each new example, and the correct target concept can therefore

be found with only log2 |VS| experiments.

How Can Partially Learned Concepts Be Used?

•Even though the learned version space still contains multiple hypotheses, indicating that the target

concept has not yet been fully learned, it is possible to classify certain examples with the same degree

of confidence as if the target concept had been uniquely identified.

•Let us assume that the followings are new instances to be classified:

Instance A was is classified as a positive instance by every hypothesis in the current version space.

Because the hypotheses in the version space unanimously agree that this is a positive instance, the

learner can classify instance A as positive with the same confidence it would have if it had already

converged to the single, correct target concept. Regardless of which hypothesis in the version space

is eventually found to be the correct target concept, it is already clear that it will classify instance A as

45

a positive example. Notice furthermore that we need not enumerate every hypothesis in the version

space in order to test whether each classifies the instance as positive.

This condition will be met if and only if the instance satisfies every member of S. The reason is that

every other hypothesis in the version space is at least as general as some member of S. By our

definition of more-general-than, if the new instance satisfies all members of S it must also satisfy each

of these more general hypotheses.

 Instance B is classified as a negative instance by every hypothesis in the version space. This instance

can therefore be safely classified as negative, given the partially learned concept. An efficient test for

this condition is that the instance satisfies none of the members of G. Half of the version space

hypotheses classify instance C as positive and half classify it as negative. Thus, the learner cannot

classify this example with confidence until further training examples are available. Instance D is

classified as positive by two of the version space hypotheses and negative by the other four

hypotheses. In this case we have less confidence in the classification than in the unambiguous cases

of instances A and B.

Still, the vote is in favour of a negative classification, and one approach we could take would be to

output the majority vote, perhaps with a confidence rating indicating how close the vote was.

•The Candidate-Elimination Algorithm will converge toward the true target concept provided it is

given accurate training examples and provided its initial hypothesis space contains the target concept.

•What if the target concept is not contained in the hypothesis space?

•Can we avoid this difficulty by using a hypothesis space that includes every possible hypothesis?

•How does the size of this hypothesis space influence the ability of the algorithm to generalize to

unobserved instances?

•How does the size of the hypothesis space influence the number of training examples that must be

observed?

Inductive Bias - A Biased Hypothesis Space

In Enjoy-Sport example, we restricted the hypothesis space to include only conjunctions of attribute

values. Because of this restriction, the hypothesis space is unable to represent even simple disjunctive

target concepts such as "Sky = Sunny or Sky = Cloudy."

• From first two examples S2 : <?, Warm, Normal, Strong, Cool, Change>

46

• This is inconsistent with third examples, and there are no hypotheses consistent with these

three examples

PROBLEM: We have biased the learner to consider only conjunctive hypotheses.

 We require a more expressive hypothesis space.

 Inductive Bias - An Unbiased Learner

The obvious solution to the problem of assuring that the target concept is in the hypothesis space H

is to provide a hypothesis space capable of representing every teachable concept.

Every possible subset of the instances X the power set of X.

What is the size of the hypothesis space H (the power set of X) ?

In EnjoySport, the size of the instance space X is 96.

The size of the power set of X is 2|X| The size of H is 296

Our conjunctive hypothesis space is able to represent only 973of these hypotheses. A very biased

hypothesis space

 Inductive Bias - An Unbiased Learner : Problem

•Let the hypothesis space H to be the power set of X. A hypothesis can be represented with

disjunctions, conjunctions, and negations of our earlier hypotheses.

The target concept "Sky = Sunny or Sky = Cloudy" could then be described as

<Sunny, ?, ?, ?, ?, ?> <Cloudy, ?, ?, ?, ?, ?>

NEW PROBLEM: our concept learning algorithm is now completely unable to generalize beyond the

observed examples.

three positive examples (xl,x2,x3) and two negative examples (x4,x5) to the learner.

S : { x1 x2 x3 } and G : { (x4 x5) } NO GENERALIZATION

Therefore, the only examples that will be unambiguously classified by S and G are the observed

training examples themselves.

Inductive Bias –

Fundamental Property of Inductive Inference

•A learner that makes no a priori assumptions regarding the identity of the target concept has no

rational basis for classifying any unseen instances.

•Inductive Leap: A learner should be able to generalize training data using prior assumptions in order

to classify unseen instances.

47

•The generalization is known as inductive leap and our prior assumptions are the inductive bias of the

learner.

•Inductive Bias (prior assumptions) of Candidate-Elimination Algorithm is that the target concept can

be represented by a conjunction of attribute values, the target concept is contained in the hypothesis

space and training examples are correct.

Inductive Bias – Formal Definition

Inductive Bias:

Consider a concept learning algorithm L for the set of instances X.

Let c be an arbitrary concept defined over X, and

let Dc = {<x , c(x)>} be an arbitrary set of training examples of c.

Let L(xi, Dc) denote the classification assigned to the instance xi by L

after training on the data Dc.

The inductive bias of L is any minimal set of assertions B such that for any target concept c and

corresponding training examples Dc the following formula holds.

Inductive Bias – Three Learning Algorithms

ROTE-LEARNER: Learning corresponds simply to storing each observed training example in memory.

Subsequent instances are classified by looking them up in memory. If the instance is found in memory,

the stored classification is returned. Otherwise, the system refuses to classify the new instance.

Inductive Bias: No inductive bias

CANDIDATE-ELIMINATION: New instances are classified only in the case where all members of the

current version space agree on the classification. Otherwise, the system refuses to classify the new

instance.

Inductive Bias: the target concept can be represented in its hypothesis space.

FIND-S: This algorithm, described earlier, finds the most specific hypothesis consistent with the

training examples. It then uses this hypothesis to classify all subsequent instances.

Inductive Bias: the target concept can be represented in its hypothesis space, and all instances are

negative instances unless the opposite is entailed by its other know1edge.

Concept Learning – Summary

•Concept learning can be seen as a problem of searching through a large predefined space of potential

hypotheses.

48

•The general-to-specific partial ordering of hypotheses provides a useful structure for organizing the

search through the hypothesis space.

•The FIND-S algorithm utilizes this general-to-specific ordering, performing a specific-to-general

search through the hypothesis space along one branch of the partial ordering, to find the most specific

hypothesis consistent with the training examples.

•The CANDIDATE-ELIMINATION algorithm utilizes this general-to- specific ordering to compute the

version space (the set of all hypotheses consistent with the training data) by incrementally computing

the sets of maximally specific (S) and maximally general (G) hypotheses.

 • Because the S and G sets delimit the entire set of hypotheses consistent with the data, they

provide the learner with a description of its uncertainty regarding the exact identity of the target

concept. This version space of alternative hypotheses can be examined

To determine whether the learner has converged to the target concept,

To determine when the training data are inconsistent,

To generate informative queries to further refine the version space, and

To determine which unseen instances can be unambiguously classified based on the partially learned

concept.

The CANDIDATE-ELIMINATION algorithm is not robust to noisy data or to situations in which the

unknown target concept is not expressible in the provided hypothesis space.

 Inductive learning algorithms are able to classify unseen examples only because of their implicit

inductive bias for selecting one consistent hypothesis over another.

If the hypothesis space is enriched to the point where there is a hypothesis corresponding to every

possible subset of instances (the power set of the instances), this will remove any inductive bias from

the CANDIDATE-ELIMINATION algorithm .

Unfortunately, this also removes the ability to classify any instance beyond the observed training

examples. An unbiased learner cannot make inductive leaps to classify unseen examples.

49

Linear Discriminant analysis

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Linear Regression Analysis

• Linear regression that attempts to show the relationship between two variables with the

linear equation.

• The simples form of a simple linear regression equation with one dependent and one

independent variable is represented by

68

69

• Product price- Sale

• Height-Weight

• Temperature-Ice Cream sales

• Process- RAM

Linear Regression formula: y=mx+b

70

71

72

73

74

75

76

77

78

1. Why was Machine Learning Introduced? ...

2. What are Different Types of Machine Learning algorithms? ...

3. What is Supervised Learning? ...

4. What is Unsupervised Learning? ...

5. How is neuroscience related to machine learning?

6. How does machine learning work similar to a brain?

7. What is the main difference between human brain and a computer?

8. What is concept learning task in machine learning?

9. What is hypothesis concept learning?

10. What are the objectives of machine learning?

11. What is the goal of concept learning Search task?

12. Solved Numerical Example (Candidate Elimination Algorithm):

1. What is linear discriminant analysis in machine learning?

2. What is the purpose of linear discriminant analysis?

3. How do you do linear discriminant analysis? What is a Linear Regression?

4. Can you list out the critical assumptions of linear regression?

5. What is Heteroscedasticity?

6. What is the primary difference between R square and adjusted R square?

7. Can you list out the formulas to find RMSE and MSE?

Example Citations Size InLibrary Price Editions Buy

1 Some Small No Affordable One No

2 Many Big No Expensive Many Yes

3 Many Medium No Expensive Few Yes

4 Many Small No Affordable Many Yes

1

UNIT – II LINEAR MODELS

2

Multi – Layer Perceptron in Practice

To solve real problems, MLP find solutions to four different types of problem: regression, classification, time-

series prediction, and data compression.

2.1 Amount of Training Data

2. 2Number of Hidden Layers

2.3 When to Stop Learning

2.1 Amount of Training Data

• For the MLP - (L+1)×M +(M +1)×N weights, where L,M,N are the number of nodes in the input, hidden,

and output layers, respectively.

• +1s -> bias nod es, which is adjustable weights. Huge number of adjustable parameters that we need

to set during the training phase.

• Setting the values of adjustable weights is the job of the back-propagation algorithm, which is driven

by the errors coming from the training data.

• More training data is the better for learning, algorithm takes to learn increases.

• Minimum amount of data required is, it depends on the problem.

• Use a number of training examples is 10 times the number of weights.

• If MLP has large number of examples, so neural network training has expensive operation

• Two hidden layers is the need for normal MLP learning. This result can be strengthened by showing

mathematically that one hidden layer with lots of hidden nodes is sufficient. This is known as the

Universal Approximation Theorem

• Training networks with different numbers of hidden nodes and then choosing the one that gives the

best results.

• Using back-propagation algorithm for a network with as many layers, it harder to keep track of which

weights are being update.

• The basic idea is that by combining sigmoid functions we can generate ridge-like functions, and by

combining ridge-like functions, generate functions with a unique maximum.

• By combining these and transforming them using another layer of neurons, we obtain localized

3

response (a ‘bump’ function), and any functional mapping can be approximated to arbitrary accuracy

using a linear combination of such bumps.

• Two hidden layers are sufficient to compute these bump functions for different inputs, and so if the

function learns (approximate) is continuous, the network can compute it.

2.3 When to Stop Learning

• The training of the MLP requires that the algorithm runs over the entire data set many times, with the

weights changing as the network makes errors in each iteration.

• Set predefined N number of iteration, the network has overfitted (Overfitting (overtraining): when the NN

learns too many I/O examples it may end up memorizing the training data) or learn sufficiently and when

it stops, some predefined minimum error is reached that means algorithm never terminates. Sum of squares

errors during training

• At some stage the error on the validation set will start increasing again, because the network has stopped

learning about the function that generated the data, and started to learn about the noise. At this stage we

stop the training. This technique is called early stopping

4

5

A Regression Problem: Find the values of any inputs and train the data Function –sin wave

6

Train an MLP on the data. There is one input value, x and one output value t, so the neural network will

have one input and one output. Before getting started, we need to normalise the data, and then

separate the data into training, testing, and validation sets. In given example there are only 40

datapoints and use half of them as the training set Split the data in the ratio 50:25:25 by using the odd-

numbered elements as training data, the even-numbered ones that do not divide by 4 for testing, and

the rest for validation Construct a network with three nodes in the hidden layer, and run it for 101

iterations with a learning rate of 0.25. The output: Iteration: 0 Error: 12.3704163654

Iteration: 100 Error: 8.2075961385 so that the network is learning, since the error is decreasing.

 To do two things: how many hidden nodes we need, and decide how long to train the network for.

In order to solve the first problem, need to test out different networks and see which get lower errors,

but to do that properly need to know when to stop training. Solve the second problem first, which is to

implement early stopping. keep track of the validation error and stop when it starts to increase.

Figure gives an example of the output of running the function.

 It plots the training and validation errors.

• The point at which early stopping makes the learning finish is the point where there is a missing

validation datapoint.

7

• The validation error did not improve after that, and so early stopping found the correct point .

o Problem of finding the right size of network.

o Each network size is run 10 times, and the average is monitored.

o The following table shows the results of doing this, reporting the sum-of-squares validation error, for a few

different sizes of network:

Couple of choices for the outputs.

• First-use a single linear node for the output, y, and put some thresholds on the activation value of that node.

For example, for a four-class problem,

• Close to a boundary, say y = 0.5? It belongs to class C3, close to the boundary in the output.

• A more suitable output encoding is called 1-of-N encoding. e.g., (0,0,1,0) means that the correct result is the

3rd class out of 4 Element yk of the output vector that is the largest element of y(in mathematical notation,

pick the yk for which yk > yj Aj ≠ k;A means for all.

Two output neurons will have identical largest output values.

➢ This is known as the hard-max activation function (since the neuron with the highest activation is

chosen to fire and the rest are ignored).

➢ Two-class classification, 90% of our data belongs to class 1. (This scan happens: for example, in

medical data, most tests are negativein general.)

➢ There is an alternative solution, known as novelty detection, which is to train the data on the data in

the negative class only, and to assume that anything that looks different to that is a positive example.

8

2.3.3 A Classification Example: The Iris Dataset

• Three types of iris (flower) by the length and width of the sepals and petals and is called iris.

• stext1 = ’Iris-setosa’ ,stext2 = ’Iris-versicolor’ ,stext3 = ’Iris-virginica’ .

• Need to separate the data into training, testing, and validationsets.

• There are 150 examples in the dataset, and they are split evenly amongst the three classes, so the three

classes are the same size.

• Split them into ½ training, and ¼ each testing and validation.50 are class1, 50class 2, etc.,

2.3.4 Time – Series Prediction

• Stock market, disease pattern, seasonal variation

9

10

simplest form of a neural network used for the classification of

patterns said to be linearly separable.

Basically, it consists of a single neuron with adjustable synaptic weights and bias.

11

If there is a solution to be found then the single layer perceptron learning algorithm will find it.

• It can separate classes that lie either side of a straight line easily.

• But in reality, division between classes are much more complex.

• Take for example the classical exclusive-or (XOR) problem.

• XOR logic function has two inputs and one output.

• It has limited set of functions Decision boundaries must be hyperplanes

• It can only perfectly separate linearly separable data

• We consider this as a problem in which we want the perceptron to learn to solve:

• Output 1 if x1 is on and x2 is off, or is x2 is on and x1 is off, otherwise output a 0.

• This appears a simple problem but there is no linear solution and this problem is linearly inseparable.

12

13

14

15

16

Multi-Layer Perceptron(MLP)

✓ MLP have been applied to solve some difficult problems.

✓ This consist of input layer, one or more hidden layer and an output layer.

✓ The training of the network is done by the highly popular algorithm known as error back propagation

algorithm

✓ This algorithm is based on the error correcting learning rule. Basically, there are two passes through

the different layers of the network: forward pass and backward pass.

✓ The Perceptron, training the MLP consists of two parts:

✓ working out what the outputs are for the given inputs and current weights

✓ Update the weight according to the error, which is a function of the difference between the outputs

and the targets.

17

✓ These are generally known as going forwards and backwards through the network

18

19

Properties of architecture

• No connections within a layer

• No direct connections between input and output layers

• Fully connected between layers

• Often more than 3 layers

• Number of output units need not equal number of input units

• Number of hidden units per layer can be more or less than input or output units

20

1st layer draws linear boundaries 2nd layer combines the boundaries 3rd layer can generate arbitrarily complex

boundaries

21

2.1 Going Forward

• Start at the left by filling in the values for the inputs.

• Use these inputs and the first level of weights to calculate the activations of the hidden layer

• Use those activations and the next set of weights to calculate the activations of the output layer.

• Then got the outputs of the network, we can compare them to the targets and compute the error.

Biases

• Include a bias input to each neuron as such in Perceptron. by having an extra input that is

• permanently set to -1, and adjusting the weights to each neuron as part of the training.

• Thus, each neuron in the network (whether it is a hidden layer or the output) has 1 extra input, with

• fixed value.

2 .2 GOINGBACKWARDS: BACK-PROPAGATION OF ERROR

• Computing the errors at the output is no more difficult in Perceptron, but working out what to do

with those errors is more difficult.

• The method is called back-propagation of error, that the errors are sent backwards through the

network.

• The best way to describe back-propagation properly is mathematically, by choose an error function

• k: Ek = yk −tk for each neuron and tried to make it as small as possible.

• If it has only one set of weights in the network, it was sufficient to train the network.

• But, with the addition of extra layers of weights, this is harder to arrange.

• The problem is that try to adapt the weights of the Multi-layer Perceptron, it has to work out which

weights caused the error. This could be the weights connecting the inputs to the hidden layer, or the

weights connecting the hidden layer to the output layer.

• The error function that used for the Perceptron was where N is the number of output nodes.

If MLP has two errors,

1.The target is bigger than the output

2.The output is bigger than the target.

If these two errors are the same size, then add them up to get 0, which means there was no error.

• To get no errors make all errors have the same sign.

• It will be done in a few different ways, but the one that will turn out to be best is the sum-of-squares

error function, which calculates the difference between y and t for each node, squares them, and adds them

all together: ½ makes it easier when differentiate the function.

22

If differentiate a function, then it is called gradient of function, which is the direction along which it increases

and decreases the most.

If differentiate an error function, it gets the gradient of the error. Since the purpose of learning is to minimize

the error, following the error function downhill (in other words, in the direction of the negative gradient) .

Imagine a ball rolling around on a surface that looks like the line in Figure 4.3. Gravity will make the ball

roll downhill (follow the downhill gradient) until it ends up in the bottom of one of the hollows.

The places where the error is small, that algorithm is called gradient descent.

Differentiate with respect to three things in the network that change:

The inputs

The activation function that decides whether or not the node fires

The weights.

• It saturates(reaches its constant values) at ± 1 instead of 0 and1.

• It also has a relatively simple derivative: d/dx tanh x = (1−tanh2(x)).

• It can convert between the two easily, because if the saturation points are (±1), then it can convert

 to (0,1) by using 0.5×(x+1).

New form of error computation and new activation function decided whether or not a neuron should fire.

If change the weights means improving the error function of the network.

Fed inputs forward through the network and worked out which nodes are firing.

At the output, computed the errors as the sum squared difference between the outputs and the target.

When the output is computing the gradient of these errors and to decide how much update each weight in

the network. Inputs connected to the output layer and after updated means, it will work backwards through

the network until get back to the inputs again.

It raises two problems

For the output neurons, don’t know which input.

For the hidden neurons, don’t know the target.

23

The Multi-layer Perceptron Algorithm

Assume

L input nodes, plus the bias

M hidden nodes, plus a bias

N output nodes

(L+1)×M weights between the input and the hidden layer

(M+1)×N between the hidden layer and the output.

x0 =−1 is the bias input

a0 = −1 is the bias hidden node.

i,j,k to index the nodes in each layer in the sums, and the corresponding Greek letters (ι,ζ,κ) for

fixed indices

.

24

The Multi-layer Perceptron Algorithm

MLP training algorithm using back-propagation of error is described.

1.An input vector is put into the input nodes 2. the inputs are fed forward through the network (Figure 4.6)

2.The inputs and the first-layer weights (here labelled as v) are used to decide whether the hidden nodes

fire or not. The activation function g(·) is the sigmoid function given in Equation (4.2)above. The outputs

of these neurons and the second-layer weights (labelled as w)are used to decide if the output neurons fire

or not

3.Error is computed as the sum-of-squares difference between the network outputs and the targets

4.This error is fed backwards through the network in order to

• first update the second-layer weights

• and then afterwards, the first-layer weights

25

Initialising method:

weights are initialized to small random numbers, both positive and negative.

If the initial weights values are close to 1 or -1 then the inputs to the sigmoid are also likely to be close to

±1 and so the output of the neuron is either 0 or 1 (the sigmoid has saturated, reached its maximum or

minimum value).

If the weights are very small (close to zero) then the input is still close to 0 and so the output of the neuron

is just linear, so gets a linear model.

Input to the neuron will be w√n, where w is the initialization value of the weights.

Set the weights in the range −1/√n < w < 1/√n, where n is the number of nodes in the input layer.

β in the logistic function (say β =3.0 or less) are more effective.

26

3 Different Output Activation Functions

Sigmoid neurons in hidden and output layer- 0 and 1 ,Regression problem- continuous range

Soft-max activation – 1 of N output encoding. The soft-max function rescales the outputs by calculating

the exponential of the inputs to that neuron and dividing by the total sum of the inputs to all of the neurons,

so that the activations sum to 1 and lie between 0 and 1.

27

2.2.4 Sequential and Batch Training

The MLP is designed to be a batch algorithm.

All of the training examples are presented to the neural network, the average sum-of-squares error is then

computed, and this is used to update the weights.

Thus there is only one set of weight updates for each epoch (pass through all the training examples).

This means that only update the weights once for each iteration of the algorithm, which means that the

weights are moved in the direction that most of the inputs want them to move, rather than being pulled

around by each input individually.

The batch method performs a more accurate estimate of the error gradient, and will thus converge to the

local minimum more quickly

2.2.5 Local minima

The learning rule is the minimisation of the network error by gradient descent (using the derivative of the

error function to make the error smaller).

Perform an optimisation-adapting the values of the weights in order to minimise the error function.

2.2.6 Picking Up Momentum

A local minimum of a function is a point where the function value is smaller than at nearby points, but

possibly

 • Neural network learning by adding in some contribution from the previous weight change that made to

the current one

•Benefit to momentum: Use a smaller learning rate, which means that the learning is more stable.

• Weight decay- reduces the size of the weights as the number of iterations increases. This gives better

result to lead a network

ie., small weights are closer to linear greater than at a distant point.

A global minimum is a point where the function value is smaller than at all other feasible points.

28

29

Minibatches and Stochastic Gradient Descent

Batch algorithm converges to a local minimum faster than the sequential algorithm, which computes the

error for each input individually and then does a weight update, but latter stuck in local minima. The idea

of a minibatch method is by splitting the training set into random batches, estimating the gradient based on

one of the subsets of the training set, performing a weight update, and then using the next subset to estimate

a new gradient and using that for the weight update, until all of the training set has been used. The training

set are then randomly shuffled into new batches and the next iteration takes place. A more extreme version

of the minibatch idea is to use just one piece of data to estimate the gradient at each iteration of the

algorithm, and to pick that piece of data uniformly at random from the training set. So a single input vector

is chosen from the training set, and the output and hence the error for that one vector computed, and this is

used to estimate the gradient and so update the weights. A new random input vector (which could be the

same as the previous one) is then chosen and the process repeated. This is known as stochastic gradient

descent. t It is often used if the training set is very large, since it would be very expensive to use the whole

dataset to estimate the gradient in that case.

30

Other Improvements

One is to reduce the learning rate as the algorithm progresses. The network making large-scale changes to

the weights at the beginning, when the weights are random. Results gives larger performance gains the

second derivatives of the error with respect to the weights. In the back-propagation algorithm - use the first

derivatives to drive the learning. Knowledge of the second derivatives , it helps to improve the network

A Step by Step Backpropagation Example

Background

Backpropagation is a common method for training a neural network.

Overview

For this tutorial, we’re going to use a neural network with two inputs, two hidden neurons, two

output neurons. Additionally, the hidden and output neurons will include a bias.

Here’s the basic structure:

31

The goal of backpropagation is to optimize the weights so that the neural network can learn

how to correctly map arbitrary inputs to outputs.

Single training set:

• Inputs 0.05 and 0.10

• Expected output 0.01 and 0.99.

The Forward Pass

• To begin, let’s see what the neural network currently predicts given the weights

and biases above and inputs of 0.05 and 0.10.

• To do this we’ll feed those inputs forward though the network.

32

We figure out the total net input to each hidden layer neuron, squash the total net input using

an activation function (here we use the logistic function), then repeat the process with the

output layer neurons.

Here’s how we calculate the total net input for :

We repeat this process for the output layer neurons, using the output from the hidden layer

neurons as inputs.

Here’s the output for :

And carrying out the same process for we get:

33

Calculating the Total Error

Calculate the error for each output neuron using the squared error function and sum them to get

the total error:

For example, the target output for is 0.01 but the neural network output

0.75136507, therefore its error is:

Repeating this process for (remembering that the target is 0.99) we get:

The total error for the neural network is the sum of these errors:

Some sources refer to the target as the ideal and the output as the actual.

The is included so that exponent is cancelled when we differentiate later on. The

result is eventually multiplied by a learning rate anyway so it doesn’t matter that we

introduce a constant here [1].

http://en.wikipedia.org/wiki/Backpropagation#Derivation
http://www.amazon.com/Introduction-Math-Neural-Networks-Heaton-ebook/dp/B00845UQL6/ref%3Dsr_1_1?ie=UTF8&qid=1426296804&sr=8-1&keywords=neural%2Bnetwork
http://en.wikipedia.org/wiki/Backpropagation#Derivation

34

The Backwards Pass

Our goal with backpropagation is to update each of the weights in the network so that they

cause the actual output to be closer the target output, thereby minimizing the error for each

output neuron and the network as a whole.

Output Layer

Consider . We want to know how much a change in affects the total error,

.

By applying the chain rule we know that:

Visually, here’s what we’re doing:

is read as “the partial derivative of with respect to “. You

can also say “the gradient with respect to “.

http://en.wikipedia.org/wiki/Chain_rule

35

The Backwards Pass

Our goal with backpropagation is to update each of the weights in the network so that they

cause the actual output to be closer the target output, thereby minimizing the error for each

output neuron and the network as a whole.

Output Layer

Consider . We want to know how much a change in affects the total error,

.

By applying the chain rule we know that:

Visually, here’s what we’re doing:

is read as “the partial derivative of with respect to “. You

can also say “the gradient with respect to “.

http://en.wikipedia.org/wiki/Chain_rule

36

Putting it all together:

To decrease the error, we then subtract this value from the current weight(optionally multiplied

by some learning rate, eta, which we’ll set to 0.5):

You’ll often see this calculation combined in the form of the delta rule:

Alternatively, we have and which can be written as

aka (the Greek letter delta) aka the node delta. We can use this to rewrite

Therefore:

Some sources extract the negative sign from so it would be written as:

http://en.wikipedia.org/wiki/Delta_rule

37

We can repeat this process to get the new weights , , and :

We perform the actual updates in the neural network after we have the new weights leading into

the hidden layer neurons (ie, we use the original weights, not the updated weights, when we

continue the backpropagation algorithm below).

Hidden Layer

Next, we’ll continue the backwards pass by calculating new values for ,

, and

Big picture, here’s what we need to figure out:

Visually:

Some sources use (alpha) to represent the learning rate, others use (eta),
and others even use (epsilon).

, .

http://en.wikipedia.org/wiki/Delta_rule
http://en.wikipedia.org/wiki/Delta_rule
https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf
http://web.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf

38

We’re going to use a similar process as we did for the output layer, but slightly different to

account for the fact that the output of each hidden layer neuron contributes to the output (and

therefore error) of multiple output neurons. We know that affects both and

therefore

the needs to take into consideration its effect on the both output neurons:

Starting with :

We can calculate using values we calculated earlier:

39

And is equal to :

Plugging them in:

Following the same process for , we get:

Therefore:

Now that we have , we need to figure out and then for

each weight:

40

We calculate the partial derivative of the total net input to with respect to the same as we

did for the output neuron:

Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1

inputs originally, the error on the network was 0.298371109. After this first round

You might also see this written as:

We can now update

41

of backpropagation, the total error is now down to 0.291027924. It might not seem

like much, but after repeating this process 10,000 times, for example, the error

plummets to 0.0000351085. At this point, when we feed forward 0.05 and 0.1, the

two outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs

0.99 target).

1 Introduction

Conceptually, a network forward propagates activation to produce an output and

it backward propagates error to determine weight changes (as shown in Figure

1). The weights on the connections between neurons mediate the passed values

in both directions.

The Backpropagation algorithm is used to learn the weights of a multilayer neural

network with a fixed architecture. It performs gradient descent to try to minimize

the sum squared error between the network’s output values and the given target

values. Figure 2 depicts the network components which affect a particular weight

change. Notice that all the necessary components are locally related to the weight

being updated. This is one feature of backpropagation that seems biologically

plausible. However, brain connections appear to be unidirectional and not

bidirectional as would be required to implement backpropagation.

1 Notation

For the purpose of this derivation, we will use the following notation:

• The subscript k denotes the output layer.

• The subscript j denotes the hidden layer.

• The subscript i denotes the input layer.

42

Linear models

■ Radial Basis Functions and Splines – Concepts

■ RBF Network

■ Curse of Dimensionality

■ Interpolations and Basis

Radial Basis Functions and Splines – Concepts

An RBFN performs classification by measuring the input’s similarity to examples from the

training set. Each RBFN neuron stores a prototype, which is just one of the examples from the

training set.

When we want to classify a new input, each neuron computes the Euclidean distance between

the input and its prototype. Ie., If the input more closely resembles the Class A prototypes

than the Class B prototypes, it is classified as Class A.

Classification:

Purpose: assign previously unseen patterns to their respective classes.

Training: Previous examples of each class. Output: A class out of a discrete set of classes.

Classification problems can be made to look like nonparametric regression.

RBF would be separate class distributions by localizing radial basis functions.

Types of separating surfaces are

43

Hyperplane- linearly separable

Spherically separable- Hypersphere

Quadratically separable- Quadrics

■ Input layer should mapping with hidden layer , there they provide a set of functions

which forms a based for mapping into the hidden layer space.

■ To do mapping from input space to the hidden layer , it is need some basis functions

providing the neurons in the hidden layer. Hidden neurons in hidden layer providing the basis

functions and this kind of architecture is called Radial Basis function networks.

■ Approximate function with linear combination of Radial basis functions

◦ F(x) = ∑ wi h(x)

◦ h(x) is mostly Gaussian function

■ Three layers

44

◦ Input layer – Source nodes that connect to the network to its environment /

hidden layer. (Non linear mapping)

◦ Hidden layer – Hidden units provide a set of basis function– Nonlinear

transformation

◦ Ie Input space -> Hidden space(High dimensionality)

◦ Output layer – Linear combination of hidden functions

■ Cover’s Theorem : A pattern classification problem cast in high dimensional space is

more likely to be linearly separable than in a low dimension space.

45

46

47

48

49

What happens in Hidden layer?

The patterns in the input space form clusters. If the centres of these clusters are known then

the distance from the cluster centre can be measured. The most commonly used radial basis

function is a Gaussian function. The other function are multi quadrics function and

inverse multi quadric function. In an RBF network r is the distance from the cluster

centre.

50

51

52

53

54

55

Curse of Dimensionality

As the Number of features or dimension grows. The amount of data we need to generate

accurately grows exponentially. Feature selection and feature engineering. The dimension also

called features. The features independent features or target output features. Features basically

attributes

56

57

Model learn more features exponentially get confusion. Once it reach threshold value, The

accuracy not changed. If feature is increasing exponentially from 100 to 200 or 1000. The

accuracy is decreased is called curse of dimensionality,

Support Vector Machine

Support vector machines (SVMs) are powerful yet flexible supervised machine learning

algorithms which are used both for classification and regression.

58

 But generally, they are used in classification problems. In 1960s, SVMs were first introduced

but later they got refined in 1990. SVMs have their unique way of implementation as

compared to other machine learning algorithms. Lately, they are extremely popular because

of their ability to handle multiple continuous and categorical variables.

Working of SVM

 An SVM model is basically a representation of different classes in a hyperplane in

multidimensional space. The hyperplane will be generated in an iterative manner by SVM so

that the error can be minimized.

The goal of SVM is to divide the datasets into classes to find a maximum marginal hyperplane

(MMH).

59

•Support Vectors − Datapoints that are closest to the hyperplane is called support vectors.

Separating line will be defined with the help of these data points.

•Hyperplane − As we can see in the above diagram, it is a decision plane or space which is

divided between a set of objects having different classes.

•Margin − It may be defined as the gap between two lines on the closet data points of different

classes. It can be calculated as the perpendicular distance from the line to the support vectors.

Large margin is considered as a good margin and small margin is considered as a bad margin.

Support Vector Machine is a supervised learning method , it is a discriminative classifier that

is formally designed by a separative hyperplane.

It is a representation of examples as points in space that are mapped so that the points of

different categories are separated by a gap as SVM is the extreme points in the dataset

Hyperplane is the maximum distance to the support vectors of any class.

60

61

62

• From the distance margin – it get the optimal hyperplane.

• Based on the hyperplane , it can say the new data point belongs to male gender.

63

• If select a hyperplane having low margin then there is high chance of misclassification

64

65

66

w x +
 b<0

67

Support Vectors with the maximum are those margin. datapoints that the margin This is the

pushes up simplest kind of against SVM (Called an LSVM)Linear SVM

Linear SVM Mathematically

■ Goal: 1) Correctly classify all training data

2) Maximize the Margin same as minimize

■ We can formulate a Quadratic Optimization Problem and solve for w and b What if

the training set is noisy? - Solution 1: use very powerful kernels

OVERFITTI NG!

Soft Margin Classification

Slack variables ξi can be added to allow misclassification of difficult or noisy examples

denotes +1

denotes - 1

68

Hard Margin v.s. Soft Margin

■ The old formulation: Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)} yi (wTxi + b) ≥ 1

■ The new formulation incorporating slack variables: Find w and b such that

Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)} yi (wTxi + b) ≥ 1- ξi and ξi ≥

0 for all i

■ Parameter C can be viewed as a way to control

overfitting.

Non-linear SVMs

■ Datasets that are linearly separable with some

noise work out great:

x

0

69

■ But what are we going to do if the dataset is just

too hard?

 0 x

■ How about… mapping data to a higher-dimensional

Non-linear SVMs: Feature spaces

■ General idea: the original input space can always be mapped to some higher-dimensional

feature space where the training set is separable: Nonlinear SVM - Overview

■ SVM locates a separating hyperplane in the feature space and classify points in that space

■ It does not need to represent the space explicitly, simply by defining a kernel function

■ The kernel function plays the role of the dot product in the feature space.

SVM Applications

 SVM has been used successfully in many real-world problems

Weakness of SVM

 It is sensitive to noise

A relatively small number of mis labelled examples can dramatically decrease the

performance. It only considers two classes, how to do multi-class classification with SVM?

space:

0 x

x
2

70

Answer:

1) with output parity m, learn m SVM’s

◦ SVM 1 learns “Output==1” vs “Output != 1”

◦ SVM 2 learns “Output==2” vs “Output != 2” ◦ :

◦ SVM m learns “Output==m” vs “Output != m”

2)To predict the output for a new input, just predict with each SVM and find out which one

puts the prediction the furthest into the positive region.

Application 2: Text Categorization

Task: The classification of natural text (or hypertext) documents into a fixed number of

predefined categories based on their content. email filtering, web searching, sorting

documents by topic, etc. A document can be assigned to more than one category, so this can

be viewed as a series of binary classification problems, one for each category

Representation of Text

IR’s vector space model (aka bag-of-words representation) ■ A doc is represented by a vector

indexed by a pre-fixed set or dictionary of terms

 ■ Values of an entry can be binary or weights

 ■ Normalization, stop words, word stems

 ■ Doc x => φ(x)

Text Categorization using SVM

The distance between two documents is φ(x)·φ(z) K(x,z) = 〈φ(x)·φ(z) is a valid kernel,

SVM can be used with K(x,z) for discrimination.

Why SVM?

High dimensional input space

Few irrelevant features (dense concept)

Sparse document vectors (sparse instances)

Text categorization problems are linearly separable, Some Issues

71

 Choice of kernel

Gaussian or polynomial kernel is default if ineffective, more elaborate kernels are needed

domain experts can give assistance in formulating appropriate similarity measures Choice of

kernel parameters. e.g. σ in Gaussian kernel, σ is the distance between closest points with

different classifications . In the absence of reliable criteria, applications rely on the use of a

validation set or cross-validation to set such parameters.

 Pros and Cons of SVM Classifiers

Pros of SVM classifiers

SVM classifiers offers great accuracy and work well with high dimensional space.
SVM classifiers basically use a subset of training points hence in result uses very less
memory.

Cons of SVM classifiers

They have high training time hence in practice not suitable for large datasets. Another
disadvantage is that SVM classifiers do not work well with overlapping classes.

Key terms include:

• Epoch — an arbitrary cut off, generally defined as “one pass over the entire dataset”, used

to separate training into distinct phases, which is useful for logging and periodic

evaluation. In layman’s term, a number of epochs means how many times you go through

your training set.

• Learning Rate — “a scalar used to train a model via gradient descent. During each

iteration, the gradientdescent algorithm multiplies the learning rate by the gradient. The

resulting product is called the gradient step. Learning rate is a key hyperparameter.”

Specifying the learning rate is equivalent to determining how fast weights change for each

iteration. In Tensorflow playground, the learning rate ranges from 0.00001 to 10.

• Activation Function — the output of that node, or “neuron,” given an input or set of

inputs. This output is then used as input for the next node and so on until a desired solution

to the original problem is found. Available activation functions in Tensorflow playground

are ReLU, Tanh, Sigmoid, and Linear.

• Regularization — a hyperparameter to prevent overfitting. Available values are L1 and

L2. L1 computes the sum of the weights, whereas L2 takes the sum of the square of

the weights.

https://stackoverflow.com/questions/44907377/what-is-epoch-in-keras-models-model-fit
https://developers.google.com/machine-learning/glossary/#gradient_descent
https://developers.google.com/machine-learning/glossary/#hyperparameter

72

• Regularization Rate — a scalar used to specify the rate at which the model applies the

regularization, ranging from 0 to 10.

• Problem Type — classification (categorical output) vs. regression (numerical output)

• Ratio of the Training and Testing Sets — the proportion of a subset to train a model and

a subset to test a model. I usually set it to 80/20

• Noise — a distortion in data that is construed to be extraneous to the original data.

• Batch Size — “a small, randomly selected subset of the entire batch of examples run

together in a single iteration of training or inference. The batch size of a mini-batch is

usually between 10 and 1,000.”

• Features — represents an input layer to feed in.

• Hidden Layer — a layer in between input layers and output layers, where artificial

neurons take in a set of weighted inputs and produce an output through an activation

function. In this context, you can specify as many as you want, but bear in mind that the

more hidden layer you add, the more complex the model becomes.

• Output — an output layer in the neural network, often involving the loss evaluation. Loss

function (or a cost function) is a method of evaluating how well the neural network

performs in the given data. If predictions deviates too much from actual results, loss

function will be high. We often evaluate the losses both on training and testing sets.

Figure 2: represents an artificial neural network (ANN) with multiple layers between the

input and output layers. For example, given input data of image pixels from MNIST dataset,

we can specify 2 hidden layers, each of which has 4 hidden neurons. Ultimately, we have the

predicted probabilities of the possible number for the given image. Image Source: Deep

learning — Convolutional neural networks and feature extraction with Python, Perone (2015)

https://developers.google.com/machine-learning/glossary/#example
https://developers.google.com/machine-learning/glossary/#batch_size
http://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extraction-with-python/
http://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extraction-with-python/

UNIT – III TREE AND PROBABILISTIC MODELS

Learning with Trees – Decision Trees – Constructing Decision Trees – Classification and

Regression Trees – Ensemble Learning – Boosting – Bagging – Different ways to Combine

Classifiers – Probability and Learning – Data into Probabilities – Basic Statistics – Gaussian

Mixture Models – Nearest Neighbor Methods – Unsupervised Learning – K means Algorithms

– Vector Quantization – Self Organizing Feature Map.

A tree has many analogies in real life, and turns out that it has influenced a wide area of machine

learning, covering both classification and regression. In decision analysis, a decision tree can be

used to visually and explicitly represent decisions and decision making. As the name goes, it uses

a tree-like model of decisions. Though a commonly used tool in data mining for deriving a strategy

to reach a particular goal, its also widely used in machine learning.

Problems in Machine learning

Classification:

Problems with categorical solutions like ‘yes’ or ‘No’ ,’True’ or ‘False’,’1’ or ‘0’.

Regression:

Problems wherein continuous value needs to be predicted like ‘Product Prices’, ’Profit’.

Clustering:

Problems wherein the data needs to be organized to find specific patterns like in the case of

‘Product’ Recommendation

 Classification is the process of dividing the datasets into different categories or groups by

adding label. Ie., It adds the data point to a particular labelled group on the basis of some

condition.

 Types of Classification

◦ Decision Tree

◦ Random Forest

◦ Naïve Bayes

◦ K Nearest Neighbour

◦ Logistic Regression

A classification tree will determine a set of logical if then conditions to classify problems. For

example, discriminating between three types of flowers based on certain features.

 A decision tree is a graphical representation of all possible solutions to a decision based on

certain conditions.

 It is a tree shaped diagram used to determine a course of action. Each branch of the tree

represents a possible decision, occurrence or relation.

Advantages of Decision Tree

 Simple to understand, interpret and visualize

 Little effort for data preparation and less requirement of data cleaning

 Can handle both numerical and categorical data

 Useful for solving decision related problems.

 Non linear parameters don’t effect its performance

Disadvantages

 Over fitting occurs when the algorithm captures noise in the data

 High variance- The model can get unstable due to small variation in data

 Low biased tree- A highly complication DT tends to have a low bias which makes it

difficult for the model to work with new data

Motivation for tree based models

 Handling of categorical variables

 Handling of missing values and unknown levels

 Detection of nonlinear relationships

 Visualization and interpretation in decision trees.

3.1 Decision Tree- Terminology

 Root Node: Root node is from where the decision tree starts. It represents the entire

dataset, which further gets divided into two or more homogeneous sets.

 Leaf Node: Leaf nodes are the final output node, and the tree cannot be segregated further

after getting a leaf node.

 Splitting: Splitting is the process of dividing the decision node/root node into sub-nodes

according to the given conditions.

 Branch/Sub Tree: A tree formed by splitting the tree.

 Pruning: Pruning is the process of removing the unwanted branches from the tree.

 Parent/Child node: The root node of the tree is called the parent node, and other nodes

are called the child nodes.

Building a Decision tree

There are several algorithms to build a decision tree.

 CART-Classification And Regression Trees –Gini Index

 ID3-Iterative Dichotomiser 3

 Entropy function

 Information Gain

 C4.5

 CHAID-Chi-squared Automatic Interaction Detection

Only CART and ID3 algorithms as they are the ones majorly used.

A Decision tree is tree which each node represents a Feature(Attribute) , each link (branch)

represents a Decision (Rule) and each leaf represents an outcome.

How can an algorithm be represented as a tree?

For this let’s consider a very basic example that uses titanic data set for predicting whether a

passenger will survive or not. Below model uses 3 features/attributes/columns from the data set,

namely sex, age and sibsp (number of spouses or children along).

A possible decision tree for the data:

• Each internal node: test on attribute Xi

• Each branch from a node: selects one value for Xi

• Each leaf node: Predict Y

How does the Decision Tree algorithm Work?

 In a decision tree, for predicting the class of the given dataset, the algorithm starts from the

root node of the tree. This algorithm compares the values of root attribute with the record

(real dataset) attribute and, based on the comparison, follows the branch and jumps to the

next node.

 For the next node, the algorithm again compares the attribute value with the other sub-

nodes and move further. It continues the process until it reaches the leaf node of the tree.

The complete process can be better understood using the below algorithm:

 Step-1: Begin the tree with the root node, says S, which contains the complete dataset.

 Step-2: Find the best attribute in the dataset using Attribute Selection Measure (ASM).

 Step-3: Divide the S into subsets that contains possible values for the best attributes.

 Step-4: Generate the decision tree node, which contains the best attribute.

 Step-5: Recursively make new decision trees using the subsets of the dataset created in

step -3. Continue this process until a stage is reached where you cannot further classify the

nodes and called the final node as a leaf node.

Attribute Selection Measures

 While implementing a Decision tree, the main issue arises that how to select the best

attribute for the root node and for sub-nodes. So, to solve such problems there is a technique

which is called as Attribute selection measure or ASM.

 By this measurement, it can easily select the best attribute for the nodes of the tree.

These are popular techniques for ASM:

 Information Gain-ID3

 Gini Index-CART

 Entropy-ID3

 Gain Ratio-C4.5

 Reduction in Variance-C4.5

 Chi-Square-CHAID

Information Gain:

 Information gain is the measurement of changes in entropy after the segmentation of a

dataset based on an attribute.

 It calculates how much information a feature provides us about a class.

 According to the value of information gain, split the node and build the decision tree.

 ie., decide which attribute should be selected as the decision node

 A decision tree algorithm always tries to maximize the value of information gain, and a

node/attribute having the highest information gain is split first. It can be calculated using

the below formula:

 Information Gain= Entropy(S)-[{Weighted avg)* Entropy(Each feature)]

For example

IG(T,X)=Entropy(T)-Entropy(T,X)

IG(PlayGolf,Outlook)=E(PlayGolf)-E(PlayGolf,Outlook)

 = 0.940-0.693=0.247

Entropy: Entropy is a metric to measure the impurity in a given attribute. It specifies

randomness in data.

Entropy can be calculated as:

 Entropy(s)= P(yes)log2 P(yes)- P(no) log2 P(no)

Where,

S= Total number of samples

P(yes)= probability of yes

P(no)= probability of no

Gini Index:

Gini index is a measure of impurity or purity used while creating a decision tree in the

CART(Classification and Regression Tree) algorithm.

An attribute with the low Gini index should be preferred as compared to the high Gini index.

It only creates binary splits, and the CART algorithm uses the Gini index to create binary splits.

Gini index can be calculated using the below formula:

 Gini Index= 1- ∑jPj
2

Steps to Calculate Gini index for a split

• Calculate Gini for sub-nodes, using the above formula for success(p) and failure(q) (p²+q²).

• Calculate the Gini index for split using the weighted Gini score of each node of that split.

CART (Classification and Regression Tree) uses the Gini index method to create split

points.

Pruning: Getting an Optimal Decision tree

 Pruning is a process of deleting the unnecessary nodes from a tree in order to get the

optimal decision tree.

 A too-large tree increases the risk of overfitting, and a small tree may not capture all the

important features of the dataset. Therefore, a technique that decreases the size of the

learning tree without reducing accuracy is known as Pruning.

There are mainly two types of tree pruning technology used:

 Cost Complexity Pruning

 Reduced Error Pruning.

What is a CART in Machine Learning?

 A Classification and Regression Tree(CART) is a predictive algorithm used in machine

learning. It explains how a target variable’s values can be predicted based on other values.

 It is a decision tree where each fork is a split in a predictor variable and each node at the

end has a prediction for the target variable.

 The CART algorithm is an important decision tree algorithm that lies at the foundation of

machine learning.

 Moreover, it is also the basis for other powerful machine learning algorithms like bagged

decision trees, random forest and boosted decision trees.

The Classification and regression tree(CART) methodology is one of the oldest and most

fundamental algorithms. It is used to predict outcomes based on certain predictor variables.

Sample Dataset(was Tennis Played?)

• Columns denote features Xi

• Rows denote labeled instances xi,yi

• Class label denotes whether a tennis game was played

https://www.digitalvidya.com/blog/introduction-to-machine-learning/
https://www.digitalvidya.com/blog/introduction-to-machine-learning/
https://www.digitalvidya.com/blog/decision-tree-algorithm/

 Decision Trees (DTs) are a non-parametric supervised learning method used for

classification and regression. The goal is to create a model that predicts the value of a target

variable by learning simple decision rules inferred from the data features. Decision trees

are commonly used in operations research, specifically in decision analysis, to help identify

a strategy most likely to reach a goal, but are also a popular tool in machine learning.

Example 2: Decision tree is based on numeric data. If a person is driving above 80kmph, we can

consider it as over-speeding, else not.

Example 3: If a person is driving above 80kmph, we can consider it as over-speeding, else not.Here

is one more simple decision tree. This decision tree is based on ranked data, where 1 means the

speed is too high, 2 corresponds to a much lesser speed. If a person is speeding above rank 1 then

he/she is highly over-speeding. If the person is above speed rank 2 but below speed rank 1 then

he/she is over-speeding but not that much. If the person is below speed rank 2 then he/she is driving

well within speed limits.

The classification in a decision tree can be both categorical or numeric which is used in

Bioinformatics

 The tree is called the root node . The nodes in between are called internal nodes. Internal

nodes have arrows pointing to them and arrows pointing away from them. The end nodes

are called the leaf nodes or just leaves. Leaf nodes have arrows pointing to them but no

arrows pointing away from them.

 In the above diagrams, root nodes are represented by rectangles, internal nodes by circles,

and leaf nodes by inverted-triangles.

Classification and Regression Trees

CART is a DT algorithm that produces binary Classification or Regression Trees, depending

on whether the dependent (or target) variable is categorical or numeric, respectively. It handles

data in its raw form (no preprocessing needed) and can use the same variables more than once

in different parts of the same DT, which may uncover complex interdependencies between sets

of variables.

 In the example given, build a decision tree that uses chest pain, good blood circulation, and

the status of blocked arteries to predict if a person has heart disease or not.

There are two leaf nodes, one each for the two outcomes of chest pain. Each of the leaves

contains the no. of patients having heart disease and not having heart disease for the corresponding

entry of chest pain

Chest pain as the root node

There are two leaf nodes, one each for the two outcomes of chest pain. Each of the leaves

contains the no. of patients having heart disease and not having heart disease for the corresponding

entry of chest pain.

 The same thing for good blood circulation and blocked arteries.

Good blood circulation as the root node Blocked arteries as the root node

 The 3 features separates the patients having heart disease from the patients not having heart

disease perfectly. It is to be noted that the total no. of patients having heart disease is

different in all three cases. This is done to simulate the missing values present in real-world

datasets.

 Because none of the leaf nodes is either 100% ‘yes heart disease’ or 100% ‘no heart

disease’, they are all considered impure. To decide on which separation is the best, we need

a method to measure and compare impurity.

 The metric used in the CART algorithm to measure impurity is the Gini impurity score.

Gini impurity = 1 - (probability of ‘yes’)² - (probability of ‘no’)²

Chest Pain

Calculating the Gini impurity for chest pain for the left leaf,

 Gini impurity = 1 - (probability of ‘yes’)² - (probability of ‘no’)²

= 1 - (105/105+39)² - (39/105+39)²

Gini impurity = 0.395

Similarly, calculate the Gini impurity for the right leaf node.

 Gini impurity = 1 - (probability of ‘yes’)² - (probability of ‘no’)²

= 1 - (34/34+125)² - (125/34+125)²

Gini impurity = 0.336

 Calculate the total Gini impurity for using chest pain to separate patients with and without

heart disease.

 The leaf nodes do not represent the same no. of patients as the left leaf represents 144

patients and the right leaf represents 159 patients. Thus the total Gini impurity will be the

weighted average of the leaf node Gini impurities.

 Gini impurity = (144/144+159)*0.395 + (159/144+159)*0.336

= 0.364

 Similarly the total Gini impurity for ‘good blood circulation’ and ‘blocked arteries’ is

calculated as

 Gini impurity for ‘good blood circulation’ = 0.360

Gini impurity for ‘blocked arteries’ = 0.381

‘Good blood circulation’ has the lowest impurity score among the tree which symbolizes that it

best separates the patients having and not having heart disease, so we will use it at the root node.

Steps to be repeated on the left side

• Calculate the Gini impurity scores.

• If the node itself has the lowest score, then there is no point in separating the patients

anymore and it becomes a leaf node.

• If separating the data results in improvement then pick the separation with the lowest

impurity value.

Complete Decision tree

Some examples

Classification And Regression Trees (CART) for Machine Learning

Classification Trees Regression Tress

It is used when dependent variables

is categorical

It is used when dependent variable is continuous

Use Mode/Class(Mode- happens

most often)

Use Mean/ Average

A classification tree is an algorithm

where the target variable is fixed or

categorical.

A regression tree refers to an algorithm where the

target variable is and the algorithm is used to predict it’s

value.

Classification trees are used when

the dataset needs to be split into classes

which belong to the response variable. In

many cases, the classes Yes or No.

Regression trees, on the other hand, are used when

the response variable is continuous. For instance, if the

response variable is something like the price of a property

or the temperature of the day, a regression tree is used.

classification trees are used for

classification-type problems.

Regression trees are used for prediction-type

problems

A classification tree splits the dataset

based on the homogeneity of data.

In a regression tree, a regression model is fit to the

target variable using each of the independent variables.

Measures of impurity like entropy or

Gini index are used to quantify the

homogeneity of the data when it comes to

classification trees.

The error between the predicted values and actual

values is squared to get “A Sum of Squared Errors”(SSE).

The SSE is compared across the variables and the variable

or point which has the lowest SSE is chosen as the split

point. This process is continued recursively.

3.2 Ensemble Learning –Boosting-Bagging -Different ways to Combine Classifiers

 First level of Machine Learning

◦ Linear Regression

◦ Logistics Regression

◦ Support Vector Machine

◦ Naive Bayes

◦ Decision Tree

 Ensemble Learning(2nd level)

◦ Weak Learner to Strong Learners

◦ Group/ collection of Models/Predictors

◦ Wisdom of Crowd

◦ Voting

◦ Combining different models

What is Classification

“Classification is the process of grouping things according to similar features they share”

 Ensemble Learning is a technique combines individual models together to improve the

stability and predictive power of the model.

 This technique permits higher predictive performance

 It combines multiple machine learning models into one predictive model.

 Certain models do well in modelling one aspect of the data, while others do well in

modelling another.

 Learn several simple models and combine their output to produce the final decision.

 The combined strength of the models offsets individual model variances and biases.

 This provides a composite prediction where the final accuracy is better than the accuracy

of individual models.

Significance

 This model is the application of multiple models to obtain better performance than from a

single model

 Robustness- Ensemble models incorporate the predictions from all the base learners

 Accuracy-Ensemble models deliver accurate predictions and have improved performances

 Consider a set of classifiers h1 , …., h L

Construct a classifier H(x) that combines the individual decisions of h1 , …., h L

 Successful ensembles requires diversity

◦ Classifiers should make different mistakes

◦ Can have different types of base learners

Manipulating the training data

• Bootstrap replication:

o Given n training examples, construct a new training set by sampling n instances

with replacement

o Excludes 30% of the training instances

• Bagging:

o Create bootstrap replicates of training set

o Train a classifier(e.g., a decision tree) for each replicate

o Estimate classifier performance using out-of-bootstrap data

o Average output of all classifiers

 Labelled images of Hot DOGS and other objects

◦ Images of hot dogs labelled 1

◦ Images of other objects labelled 0

 Why use Ensemble models?

◦ Better Accuracy(Low Error)

◦ Higher Consistency(Avoids Over fitting)

◦ Reduces bias and Variance errors

 When and Where to use Ensemble models

◦ Single model overfits

◦ Results worth the extra trining.

◦ Can be used for Classification as well as Regression

 Ensemble Learning Methods

◦ Combine all weak learners to form an ensemble (or) Create an ensemble of well

chosen strong and diverse models

◦ This models gain more accuracy and robustness by combining data from numerous

modelling approaches

Bagging

• The idea behind bagging is combining the results of multiple models (for instance, all

decision trees) to get a generalized result.

• If create all the models on the same set of data and combine it, Whether these models will

give the same result ,since they are getting the same input. One of the techniques is

bootstrapping.

• Bootstrapping is a sampling technique in which create subsets of observations from the

original dataset, with replacement. The size of the subsets is the same as the size of the

original set.

• Bagging (or Bootstrap Aggregating) technique uses these subsets (bags) to get a fair idea

of the distribution (complete set). The size of subsets created for bagging may be less than

the original set.

• Multiple subsets are created from the original dataset, selecting observations with

replacement.

• A base model (weak model) is created on each of these subsets.

• The models run in parallel and are independent of each other.

• The final predictions are determined by combining the predictions from all the models.

What is Random forest?

Random forest or Random decision forest is a method that operates by constructing

multiple decision trees during training phase. The decision of the majority of the tree is chosen by

the random forest as the final decision.

Random Forest is a popular machine learning algorithm that belongs to the supervised learning

technique. It can be used for both Classification and Regression problems in ML. It is based on

the concept of ensemble learning, which is a process of combining multiple classifiers to solve a

complex problem and to improve the performance of the model.

 "Random Forest is a classifier that contains a number of decision trees on various subsets of the

given dataset and takes the average to improve the predictive accuracy of that dataset." Instead of

relying on one decision tree, the random forest takes the prediction from each tree and based on

the majority votes of predictions, and it predicts the final output.

 The greater number of trees in the forest leads to higher accuracy and prevents the problem

of overfitting.

Note: To better understand the Random Forest Algorithm, you should have knowledge of the

Decision Tree Algorithm.

Assumptions for Random Forest

 Since the random forest combines multiple trees to predict the class of the dataset, it is

possible that some decision trees may predict the correct output, while others may not. But

together, all the trees predict the correct output. Therefore, below are two assumptions for a better

Random forest classifier:

 There should be some actual values in the feature variable of the dataset so that the

classifier can predict accurate results rather than a guessed result.

 The predictions from each tree must have very low correlations.

Why Random Forest

 Random forest is the most used supervised machine learning algorithm for classification

and regression

 RF uses ensemble learning method in which the predictions are based on the combined

results of various individual models

 No Overfitting

 Use of multiple trees reduce the risk of overfitting

 Training time is less

 High Accuracy

 Runs efficiently on large database

 For large data. It produces highly accurate predictions

 Estimates missing data

 Random forest can maintain accuracy when a large proportion of data is missing

How does Random Forest algorithm work?

 Random Forest works in two-phase first is to create the random forest by combining N

decision tree, and second is to make predictions for each tree created in the first phase.

 The Working process can be explained in the below steps and diagram:

 Step-1: Select random K data points from the training set.

 Step-2: Build the decision trees associated with the selected data points (Subsets).

 Step-3: Choose the number N for decision trees that you want to build.

 Step-4: Repeat Step 1 & 2.

 Step-5: For new data points, find the predictions of each decision tree, and assign the new

data points to the category that wins the majority votes.

How Boosting Algorithm Works?

 The basic principle behind the working of the boosting algorithm is to generate multiple

weak learners and combine their predictions to form one strong rule.

 These weak rules are generated by applying base Machine Learning algorithms on different

distributions of the data set. These algorithms generate weak rules for each iteration.

 After multiple iterations, the weak learners are combined to form a strong learner that will

predict a more accurate outcome.

The algorithm :

 Step 1: The base algorithm reads the data and assigns equal weight to each sample

observation.

 Step 2: False predictions made by the base learner are identified. In the next iteration, these

false predictions are assigned to the next base learner with a higher weightage on these

incorrect predictions.

 Step 3: Repeat step 2 until the algorithm can correctly classify the output.

Therefore, the main aim of Boosting is to focus more on miss-classified predictions

Algorithms based on Bagging and Boosting

 Bagging and Boosting are two of the most commonly used techniques in machine learning.

Following are the algorithms will be focusing on:

 Bagging algorithms:

◦ Bagging meta-estimator

◦ Random forest

 Boosting algorithms:

◦ AdaBoost(Adaptive Boosting)

◦ GBM(Gradient Boosting)

◦ XGBM

◦ Light GBM

◦ CatBoost

Similarities Between Bagging and Boosting –

 Both are ensemble methods to get N learners from 1 learner.

 Both generate several training data sets by random sampling.

 Both make the final decision by averaging the N learners (or taking the majority of them

i.e Majority Voting).

 Both are good at reducing variance and provide higher stability.

S.No Boosting Bagging

1. Simplest way of combining

predictions that belong to the same

type

A way of combining predictions that belong

to the different types

2. Aim to decrease variance, not bias Aim to decrease bias, not variance

3. Each model receives equal weight Models are weighted according to their

performance

4. Each model is built independently New model are influenced by performance

of previously built models

5. Different training data subsets are

randomly drawn with replacement

from the entire training dataset.

Every new subsets contains the elements

that were misclassified by previous models.

6. Bagging tries to solve overfitting

problem

Boosting tries to reduce bias

7. If the classifier is unstable (high

variance) then apply bagging

If the classifier is stable and simple(high

bias) the apply boosting

8. Random forest Gradient boosting

Example: Suppose there is a dataset that contains multiple fruit images. So, this dataset is given

to the Random forest classifier. The dataset is divided into subsets and given to each decision tree.

During the training phase, each decision tree produces a prediction result, and when a new data

point occurs, then based on the majority of results, the Random Forest classifier predicts the final

decision. Consider the below image:

Applications of Random Forest

There are mainly four sectors where Random forest mostly used:

 Banking: Banking sector mostly uses this algorithm for the identification of loan risk.

 Medicine: With the help of this algorithm, disease trends and risks of the disease can be

identified.

 Land Use: We can identify the areas of similar land use by this algorithm.

 Marketing: Marketing trends can be identified using this algorithm.

Advantages of Random Forest

 Random Forest is capable of performing both Classification and Regression tasks.

 It is capable of handling large datasets with high dimensionality.

 It enhances the accuracy of the model and prevents the overfitting issue.

Disadvantages of Random Forest

 Although random forest can be used for both classification and regression tasks, it is not

more suitable for Regression tasks.

3.3 Probability & Statistics

 Machine Learning is an interdisciplinary field that uses statistics, probability, algorithms to

learn from data and provide insights which can be used to build intelligent applications.

Key concepts widely used in machine learning.

 Probability and statistics are related areas of mathematics which concern themselves with

analyzing the relative frequency of events.

 Probability deals with predicting the likelihood of future events, while statistics involves the

analysis of the frequency of past events.

Probability

 Most people have an intuitive understanding of degrees of probability, which is why we use

words like “probably” and “unlikely” in our daily conversation, but we will talk about how

to make quantitative claims about those degrees .

 In probability theory, an event is a set of outcomes of an experiment to which a probability

is assigned. If E represents an event, then P(E) represents the probability that E will occur.

A situation where E might happen (success) or might not happen (failure) is called a trial.

 This event can be anything like tossing a coin, rolling a die or pulling a colored ball out of

a bag. In these examples the outcome of the event is random, so the variable that represents

the outcome of these events is called a random variable.

 Let us consider a basic example of tossing a coin. If the coin is fair, then it is just as likely

to come up heads as it is to come up tails. In other words, if we were to repeatedly toss the

coin many times, we would expect about about half of the tosses to be heads and and half

to be tails. In this case, we say that the probability of getting a head is 1/2 or 0.5 .

The empirical probability of an event is given by number of times the event occurs divided by

the total number of incidents observed. If for trials and we observe successes, the probability of

success is s/n. In the above example. any sequence of coin tosses may have more or less than

exactly 50% heads.

Theoretical probability on the other hand is given by the number of ways the particular event

can occur divided by the total number of possible outcomes. So a head can occur once and

possible outcomes are two (head, tail). The true (theoretical) probability of a head is 1/2.

Joint Probability

 Probability of events A and B denoted byP(A and B) or P(A ∩ B)is the probability that

events A and B both occur. P(A ∩ B) = P(A). P(B) . This only applies if A and Bare

independent, which means that if Occurred, that doesn’t change the probability of B, and

vice versa.

Conditional Probability

 Let us consider A and B are not independent, because if A occurred, the probability of B is

higher. When A and B are not independent, it is often useful to compute the conditional

probability, P (A|B), which is the probability of A given that B occurred: P(A|B) = P(A ∩

B)/ P(B).

 The probability of an event A conditioned on an event B is denoted and defined P(A|B) =

P(A∩B)/P(B)

 Similarly, P(B|A) = P(A ∩ B)/ P(A) . We can write the joint probability of as A and B

as P(A ∩ B)= p(A).P(B|A), which means : “The chance of both things happening is the

chance that the first one happens, and then the second one given the first happened.”

Bayes’ Theorem

 Bayes’s theorem is a relationship between the conditional probabilities of two events. For

example, if we want to find the probability of selling ice cream on a hot and sunny day,

Bayes’ theorem gives us the tools to use prior knowledge about the likelihood of selling ice

cream on any other type of day (rainy, windy, snowy etc.).

 where Hand E are events, P(H|E) is the conditional probability that event H occurs given

that event E has already occurred. The probability P(H) in the equation is basically

frequency analysis; given our prior data what is the probability of the event occurring.

The P(E|H) in the equation is called the likelihood and is essentially the probability that the

evidence is correct, given the information from the frequency analysis. P(E) is the

probability that the actual evidence is true.

 Let H represent the event that we sell ice cream and E be the event of the weather. Then we

might ask what is the probability of selling ice cream on any given day given the type of

weather? Mathematically this is written as P(H=ice cream sale | E= type of weather) which

is equivalent to the left-hand side of the equation. P(H) on the right-hand side is the

expression that is known as the prior because we might already know the marginal

probability of the sale of ice cream. In our example this is P(H = ice cream sale), i.e. the

probability of selling ice cream regardless of the type of weather outside. For example, I

could look at data that said 30 people out of a potential 100 actually bought ice cream at

some shop somewhere. So my P(H = ice cream sale) = 30/100 = 0.3, prior to me knowing

anything about the weather. This is how Bayes’ Theorem allows us to incorporate prior

information .

 A classic use of Bayes’s theorem is in the interpretation of clinical tests. Suppose that during

a routine medical examination, your doctor informs you that you have tested positive for a

rare disease. You are also aware that there is some uncertainty in the results of these tests.

Assuming we have a Sensitivity (also called the true positive rate) result for 95% of the

patients with the disease, and a Specificity (also called the true negative rate) result for

95% of the healthy patients.

 If we let “+” and “−” denote a positive and negative test result, respectively, then the test

accuracies are the conditional probabilities : P(+|disease) = 0.95, P(-|healthy) = 0.95,

 In Bayesian terms, we want to compute the probability of disease given a positive

test, P(disease|+).

 P(disease|+) = P(+|disease)* P(disease)/P(+)

 How to evaluate P(+), all positive cases ? We have to consider two

possibilities, P(+|disease) and P(+|healthy). The probability of a false

positive, P(+|healthy), is the complement of the P(-|healthy). Thus P(+|healthy) = 0.05.

 Importantly, Bayes’ theorem reveals that in order to compute the conditional probability

that you have the disease given the test was positive, you need to know the “prior”

probability you have the diseaseP(disease), given no information at all. That is, you need to

know the overall incidence of the disease in the population to which you belong. Assuming

these tests are applied to a population where the actual disease is found to be

0.5%, P(disease)= 0.005 which means P(healthy) = 0.995.

 So, P(disease|+) = 0.95 * 0.005 /(0.95 * 0.005 + 0.05 * 0.995) = 0.088

 In other words, despite the apparent reliability of the test, the probability that you actually

have the disease is still less than 9%. Getting a positive result increases the probability you

have the disease. But it is incorrect to interpret the 95 % test accuracy as the probability you

have the disease.

Descriptive Statistics

 Descriptive statistics refers to methods for summarizing and organizing the information in

a data set. We will use below table to describe some of the statistical concepts [4].

 Elements: The entities for which information is collected are called the elements. In the

above table, the elements are the 10 applicants. Elements are also called cases or subjects.

 Variables: The characteristic of an element is called a variable. It can take different values

for different elements.e.g., marital status, mortgage, income, rank, year, and risk. Variables

are also called attributes.

Variables can be either qualitative or quantitative.

 Qualitative: A qualitative variable enables the elements to be classified or categorized

according to some characteristic. The qualitative variables are marital

status, mortgage, rank, and risk. Qualitative variables are also called categorical variables.

 Quantitative: A quantitative variable takes numeric values and allows arithmetic to be

meaningfully performed on it. The quantitative variables are income and year. Quantitative

variables are also called numerical variables.

 Discrete Variable: A numerical variable that can take either a finite or a countable number

of values is a discrete variable, for which each value can be graphed as a separate point,

with space between each point. ‘year’ is an example of a discrete variable..

 Continuous Variable: A numerical variable that can take infinitely many values is a

continuous variable, whose possible values form an interval on the number line, with no

space between the points. ‘income’ is an example of a continuous variable.

 Population: A population is the set of all elements of interest for a particular problem. A

parameter is a characteristic of a population.

 Sample: A sample consists of a subset of the population. A characteristic of a sample is

called a statistic.

Random sample: When we take a sample for which each element has an equal chance of being

selected.

 Measures of Center: Mean, Median, Mode, Mid-range

 Indicate where on the number line the central part of the data is located.

Mean

 The mean is the arithmetic average of a data set. To calculate the mean, add up the values

and divide by the number of values.The sample mean is the arithmetic average of a sample,

and is denoted x̄ (“x-bar”). The population mean is the arithmetic average of a population,

and is denoted 𝜇 (“myu”, the Greek letter for m).

Median

 The median is the middle data value, when there is an odd number of data values and the

data have been sorted into ascending order. If there is an even number, the median is the

mean of the two middle data values. When the income data are sorted into ascending order,

the two middle values are $32,100 and $32,200, the mean of which is the median income,

$32,150.

Mode

 The mode is the data value that occurs with the greatest frequency. Both quantitative and

categorical variables can have modes, but only quantitative variables can have means or

medians. Each income value occurs only once, so there is no mode. The mode for year is

2010, with a frequency of 4.

Mid-range

 The mid-range is the average of the maximum and minimum values in a data set. The mid-

range income is:

 mid-range(income) = (max(income) + min(income))/2 = (48000 + 24000)/2 = $36000

 Measures of Variability: Range, Variance, Standard Deviation

 Quantify the amount of variation, spread or dispersion present in the data.

Range

 The range of a variable equals the difference between the maximum and minimum values.

The range of income is:

 range(income) = max (income) − min (income) = 48,000 − 24,000 =$24000

 Range only reflects the difference between largest and smallest observation, but it fails to

reflect how data is centralized.

Variance

 Population variance is defined as the average of the squared differences from the Mean,

denoted as 𝜎² (“sigma-squared”):

 Larger Variance means the data are more spread out.

 The sample variance s² is approximately the mean of the squared deviations,

with N replaced by n-1. This difference occurs because the sample mean is used as an

approximation of the true population mean.

Standard Deviation

 The standard deviation or sd of a bunch of numbers tells you how much the individual

numbers tend to differ from the mean.

 The sample standard deviation is the square root of the sample variance: sd = √ s². For

example, incomes deviate from their mean by $7201.

 The population standard deviation is the square root of the population variance: sd= √ 𝜎².

 Three different data distributions with same mean (100) and different standard deviation

(5,10,20)

 The smaller the standard deviation, narrower the peak, the data points are closer to the mean.

The further the data points are from the mean, the greater the standard deviation.

3.4 Gaussian Mixture Model

• A mixture model is a model comprised of an unspecified combination of multiple

probability distribution functions.

• A statistical procedure or learning algorithm is used to estimate the parameters of the

probability distributions to best fit the density of a given training dataset.

• The Gaussian Mixture Model, or GMM for short, is a mixture model that uses a

combination of Gaussian (Normal) probability distributions and requires the estimation of

the mean and standard deviation parameters for each.

https://en.wikipedia.org/wiki/Mixture_model

How do we model this distribution?

Forest images have highest value

3.4.1 EM algorithm

• EM algorithm is an appropriate approach to use to estimate the parameters of the

distributions. It can be used for the latent variables (Variables that are not directly

observable and are actually inferred from the values of the other observed variables).

• In the EM algorithm, the estimation-step would estimate a value for the process latent

variable for each data point, and the maximization step would optimize the parameters of

the probability distributions in an attempt to best capture the density of the data.

• In the real world applications of machine learning, it is very common that there are many

relevant features available for learning but only a small subset of them are observable.

• The process is repeated until a good set of latent values and a maximum likelihood is

achieved that fits the data.

• E-Step. Estimate the expected value for each latent variable.

• M-Step. Optimize the parameters of the distribution using maximum likelihood.

• Initially, a set of initial values of the parameters are considered. A set of incomplete

observed data is given to the system with the assumption that the observed data comes from

a specific model.

• The next step is known as “Expectation”- step or E-step. In this step, the observed data

in order to estimate or guess the values of the missing or incomplete data. It is basically

used to update the variables.

• The next step if known as “Maximization”- step or M-step. In this step, the complete data

generated in the preceding “Expectation”- step in order to update the values of the

parameters. It is basically used to update the hypothesis.

• In the next step, it is checked whether the values are converging or not, if yes then stop

other wise repeat step 2 and step3 ie., Expectation- step and Maximization step until the

convergence occurs.

How does it work?

Advantages

• It is guaranteed that the likelihood will increase with each iteration

• During implementation, the E-step and M-step are very easy for many problems

• The solution for M-step often exists in closed form

Disadvantages

• EM algorithm has a very slow convergence

• It makes the convergence to the local optima only

• EM requires both forward and backward possibilities

Uses

• It can be used to fill the missing data in a sample

• It can be used as the basis of unsupervised learning of clusters

• It can be used for the purpose of estimating the parameters of Hidden Markov

Model(HMM)

Start

E-Step

M-step

Stop

Convergen

ce

• It can be used for discovering the values of latent variables

3.5 Nearest Neighbor Methods-K Nearest Neighbor

Simple Analogy..

• Tell me about your friends (who your neighbors are) and I will tell you who you are.

Nearest Neighbor Classifiers

-Basic idea- IF it walk like a duck, quacks like a duck, then it’s probably duck

KNN – Different names

• K-Nearest Neighbors

• Memory-Based Reasoning

• Example-Based Reasoning

• Instance-Based Learning

• Lazy Learning

Requires three things

- The set of stored records

- Distance Metric to compute distance between records

- The value of k, the number of nearest neighbors to retrieve

To classify an unknown record

- Compute distance to other training records

- Identify k nearest neighbors

- Use class labels of nearest neighbors to determine the class label of unknown record(e.g.,

by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Choosing k – increases k reduce variance, increases bias

NN smoothing

• Nearest neighbour methods can also be used for regression by returning the average

value of the neighbours to a point, or a spline or similar fit as the new value.

• The most common methods are known as kernel smoothers, and they use a kernel (a

weighting function between pairs of points) that decides how much emphasis(weight) to

put on to the contribution from each data point according to its distance from the input.

Both of these kernels are designed to give more weight to points that are closer to the current input,

with the weights decreasing smoothly to zero as they pass out of the range of the current input,

with the range specified by a parameter λ.

Why do we need a K-NN Algorithm?

• Suppose there are two categories, i.e., Category A and Category B, and we have a new data

point x1, so this data point will lie in which of these categories.

• To solve this type of problem, need a K-NN algorithm. With the help of K-NN, can easily

identify the category or class of a particular dataset. Consider the below diagram:

kNN algorithm is one of the simplest supervised machine learning algorithm mostly used for

Classification- It classifies a data point based on how its neighbors are classified.

• K nearest neighbour is a simple algorithm that stores all the available cases and classifies

the new data or case based on a similarity measure.

• Ie. Similar things are near to each other

• K-NN algorithm assumes the similarity between the new case/data and available cases and

put the new case into the category that is most similar to the available categories.

• K-NN algorithm stores all the available data and classifies a new data point based on the

similarity. This means when new data appears then it can be easily classified into a well

suite category by using K- NN algorithm.

• K-NN algorithm can be used for Regression as well as for Classification but mostly it is

used for the Classification problems.

• K-NN is a non-parametric algorithm, which means it does not make any assumption on

underlying data.

• It is also called a lazy learner algorithm because it does not learn from the training set

immediately instead it stores the dataset and at the time of classification, it performs an

action on the dataset.

• KNN algorithm at the training phase just stores the dataset and when it gets new data, then

it classifies that data into a category that is much similar to the new data.

Examples:

How to choose the value of k in kNN algorithm? By using Euclidean distance

To classify a new input vector x, examine the k-closest training data points to x and assign the

object to the most frequently occurring class

kNN steps

• Handle Data: Open the dataset and split into test/train datasets

• Similarity: Calculate the distance two data instances

• Neighbors: Locate k most similar data instance

• Response: Generate a response from a set of data instance

• Accuracy: Summarizing the accuracy of predictions

• Tie it all together

How does K-NN work?

• The K-NN working can be explained on the basis of the below algorithm:

• Step-1: Select the number K of the neighbors

• Step-2: Calculate the Euclidean distance of K number of neighbors

• Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.

• Step-4: Among these k neighbors, count the number of the data points in each category.

• Step-5: Assign the new data points to that category for which the number of the neighbor

is maximum.

• Step-6: Our model is ready.

How to select the value of K in the K-NN Algorithm?

Below are some points to remember while selecting the value of K in the K-NN algorithm:

• There is no particular way to determine the best value for "K", so need to try some values

to find the best out of them. The most preferred value for K is 5.

• A very low value for K such as K=1 or K=2, can be noisy and lead to the effects of outliers

in the model.

• Large values for K are good, but it may find some difficulties.

Advantages of KNN Algorithm:

• It is simple to implement.

• It is robust to the noisy training data

• It can be more effective if the training data is large.

Disadvantages of KNN Algorithm:

• Always needs to determine the value of K which may be complex some time.

• The computation cost is high because of calculating the distance between the data points

for all the training samples.

Real time example

3.6 Unsupervised Learning -K means Algorithms

k-means clustering aims to partition n observations into k clusters in which each observation

belongs to the cluster with the nearest means. It works for n-dimensional spaces

Input: k-number of clusters, D list of data points

1. Choose k number of random data points as initial centroids(cluster centers)

2. Repeat till cluster centers stabilize:

Allocate each point in D to the nearest of Kth centroids.

Compute centroid for the cluster using all points in the cluster.

K-Means algorithm for clustering

• K means algorithm is an unsupervised learning algorithm

• Given a data set of items, with certain features and values for these features ,the algorithm

will categorize the items into k groups or clusters of similarity

• To calculate the similarity, we can use the Euclidean distance, Manhattan distance,

Hamming distance, Cosine distance as measurement.

• K-means is a clustering algorithm whose goal is to group similar elements or data points

into a cluster.

• It performs division of objects into clusters which are similar between them and are

dissimilar to the objects belonging to another cluster

• K- means number of clusters

Eg., Identify bowlers (wickets)and batsman(higher runs)

• Clustering is the process of diving the datasets into groups, consisting of similar data points

• Points in the same group are as similar as possible.

• Points in different group are as dissimilar as possible

Example: Web document search

- A web search engine often returns thousands of pages in response to a broad query, making

it difficult for users to browse or to identify relevant information.

- Clustering methods can be used to automatically group the retrieved documents into a list

of meaningful categories.

• Applications of K-means clustering

– Academic performance

– Diagnostic systems

– Search engines

– Wireless Sensor Networks

• Strengths

– Simple iterative method

– User provides “K”

– No other clustering algorithm performs better than k-means

– It is alos efficient, in which the time taken to cluster k-means rises linearly with the

number of data points.

• Weaknesses

– The user needs to specify an initial value of K

– Difficult to guess the correct “K”

– The process of findings the clusters may not converge

Randomly pick C1,C2 and C3 cluster centers are (1,5), (4,1) and (8,4)

Iteration 1 – In row 1 , assign each data point to closest Cluster.

For example

Among these points 1.41,3.61 and 6.00 , assign minimum as Cluster number ie., 1.41 is minimum

and name as C1

Add centroid points (c1) and find the average. Similarly C2 and C3

 For example c1(x)= (2+2+4)/3=2.66

 c1(y)=(4+6+7)/3=5.66

Clustering – solution

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

C1 C1 C1 C1 C1

C1 C1 C1 C1 C1

C3 C3 C3 C3 C3

C1 C1 C1 C3 C3

C3 C3 C2 C2 C2

C3 C3 C3 C3 C3

C2 C2 C2 C2 C2

C3 C3 C3 C3 C3

C3 C2 C2 C2 C2

C2 C2 C2 C2 C2

At iteration 5 , there is no change in the clusters.

3.7 Vector Quantization- Self Organizing Map

• Vector quantization (VQ) is an efficient coding technique to quantize signal vectors. It

has been widely used in signal and image processing, such as pattern recognition and

speech and image coding.

• Vector quantization, also called "block quantization" or "pattern matching quantization" is

often used in lossy data compression. It works by encoding values from a

multidimensional vector space into a finite set of values from a discrete subspace of lower

dimension.

• A lower-space vector requires less storage space, so the data is compressed. Due to the

density matching property of vector quantization, the compressed data has errors that are

inversely proportional to density.

• A vector quantizer maps k-dimensional vectors in the vector space Rk into a finite set of

vectors Y = {yi: i = 1, 2, ..., N}. Each vector yi is called a code vector or a codeword.

and the set of all the codewords is called a codebook. Associated with each

codeword, yi, is a nearest neighbor region called Voronoi region, and it is defined by:

• The set of Voronoi regions partition the entire space Rk .

 Related application, data compression, which is used both for storing data and for the

transmission of speech and image data. The reason that the applications are related is that

both replace the current input by the cluster centre that it belongs to.

 For noise reduction, do this to replace the noisy input with a cleaner one, while for data

compression do it to reduce the number of data points that send.

 instead of transmitting the actual data, I can transmit the index of that data point in the

codebook, which is shorter- sound and image compression algorithm has a different method

of solving it.

 Problem is that the codebook won’t contain every possible datapoint - datapoint isn’t in

the codebook? In that case ,need to accept that our data will not look exactly the same, and

I send you the index of the prototype vector that is closest to it (this is known as vector

quantisation, and is the way that lossy compression works).

 The name for each cell is the Voronoi set of a particular prototype. Together, they produce

the Voronoi tesselation of the space. If connect together every pair of points that share an

https://en.wikipedia.org/wiki/Lossy_data_compression
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Linear_subspace

edge, as is shown by the dotted lines, then get the Delaunay triangulation, which is the

optimal way to organize the space to perform function approximation

 Choose prototype vectors that are as close as possible to all of the possible inputs. This

application is called learning vector quantisation because learning an efficient vector

quantisation. The k-means algorithm can be used to solve the problem

3.7.1 Self Organizing Map

The self-organizing map also known as a Kohonen map.

• SOM is a technique which reduce the dimensions of data through the use of self-organizing neural

networks.

• The model was first described as an artificial neural network by professor Teuvo Kohonen.

Unsupervised learning

• Unsupervised learning is a class of problems in which one seeks to determine how the data are

organized.

• One form of unsupervised learning is clustering.

How could we know what constitutes “different” clusters? • Green Apple and Banana Example. –

two features: shape and color.

Competitive learning

The position of the unit for each data point can be expressed as follows:

p(t+1) = a(p(t)-x) d(p(t),x)

• a is a factor called learning rate.

 • d(p,x) is a distance scaling function.

Competitive learning is useful for clustering of input patterns into a discrete set of output clusters.

SOM is based on competitive learning.

- The difference is units are all interconnected in a grid.

- The unit closet to the input vector is call Best Matching Unit (BMU).

- The BMU and other units will adjust its position toward the input vector.

- The update formula is Wv(t + 1) = Wv(t) + Θ (v, t) α(t)(D(t) - Wv(t))

- Wv(t + 1) = Wv(t) + Θ (v, t) α(t)(D(t) - Wv(t))

o Wv(t) = weight vector

o α(t) = monotonically decreasing learning coefficient

o D(t) = the input vector

o Θ (v, t) = neighborhood function

- This process is repeated for each input vector for a (usually large) number of cycles λ.

Algorithm

1. Randomize the map’s nodes’s weight vectors

2. Grab an input vector

3. Traverse each node in the map

4. Update the nodes in the neighbourhood of BMU by pulling them closer to the input vector

Wv(t + 1) = Wv(t) + Θ(t)α(t)(D(t) - Wv(t))

5. Increment t and repeat from 2 while t < λ

Application

- Dimensionality Reduction using SOM based Technique for Face Recognition

- A comparative study of PCA, SOM and ICA.

- SOM is better than the other techniques for the given face database and the classifier used.

- The results also show that the performance of the system decreases as the number of

classes increase

- Gene functions can be analyzed using an adaptive method – SOM.

- Clustering with the SOM Visualizer - create a standard neural network based classifier

based on the results.

- A neural network comprised of a plurality of layers of nodes.

- A system for organization of multi-dimensional pattern data into a two-dimensional

representation comprising

- It allows for a reduced-dimension description of a body of pattern data to be representative

of the original body of data.

UNIT – IV DIMENSIONALITY REDUCTION AND EVOLUTIONARY MODELS

Dimensionality Reduction – Linear Discriminant Analysis – Principal Component Analysis-

Factor Analysis – Independent Component Analysis – Locally Linear Embedding – Isomap –

Least Squares Optimization – Evolutionary Learning – Genetic algorithms – Genetic Offspring: -

Genetic Operators – Using Genetic Algorithms – Reinforcement Learning – Overview – Getting

Lost Example – Markov Decision Process

4.1 Dimensionality Reduction

• In machine learning classification problems, there are often too many factors on the basis

of which the final classification is done. These factors are basically variables called

features.

• The higher the number of features, the harder it gets to visualize the training set and then

work on it. Sometimes, most of these features are correlated, and hence redundant. This is

where dimensionality reduction algorithms come into play.

• Dimensionality reduction is the process of reducing the number of random variables

under consideration, by obtaining a set of principal variables.

• It can be divided into feature selection and feature extraction.

There are two components of dimensionality reduction:

• Feature selection: In this, we try to find a subset of the original set of variables, or

features, to get a smaller subset which can be used to model the problem. It usually

involves three ways:

– Filter

– Wrapper

– Embedded

• Feature extraction: This reduces the data in a high dimensional space to a lower

dimension space, i.e. a space with lesser no. of dimensions.

Methods of Dimensionality Reduction

The various methods used for dimensionality reduction include:

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)

Principal components analysis is a dimensionality reduction technique that enables you to

identify correlations and patterns in a data set so that it can be transformed into a data set of

significantly lower dimension without loss of any important information. Principal component

analysis (PCA) is a standard tool in modern data analysis - in diverse fields from neuroscience to

computer graphics. It is very useful method for extracting relevant information from confusing

data sets. Principal component analysis (PCA) is a statistical procedure that uses an orthogonal

transformation to convert a set of observations of possibly correlated variables into a set of

values of linearly uncorrelated variables called principal components. The number of principal

components is less than or equal to the number of original variables.

Goals

• The main goal of a PCA analysis is to identify patterns in data

• PCA aims to detect the correlation between variables.

• It attempts to reduce the dimensionality.

Need for PCA

• -High dimension data is extremely complex to process due to inconsistencies in the

features which increase the computation time and make data processing and Exploratory

data Analysis (EDA) more convoluted.

Dimensionality Reduction

• It reduces the dimensions of a d-dimensional dataset by projecting it onto a (k)-

dimensional subspace (where k<d) in order to increase the computational efficiency

while retaining most of the information.

• In pattern recognition, Dimension Reduction is defined as a process of converting a data

set having vast dimensions into a data set with lesser dimensions.

• It ensures that the converted data set conveys similar information concisely.

Example-

 Consider the following example-

• The following graph shows two dimensions x1 and x2.

• x1 represents the measurement of several objects in cm.

• x2 represents the measurement of several objects in inches.

In machine learning,

• Using both these dimensions convey similar information.

• Also, they introduce a lot of noise in the system.

• So, it is better to use just one dimension.

 Using dimension reduction techniques-

• We convert the dimensions of data from 2 dimensions (x1 and x2) to 1 dimension (z1).

• It makes the data relatively easier to explain.

Benefits-

• Dimension reduction offers several benefits such as-

• It compresses the data and thus reduces the storage space requirements.

• It reduces the time required for computation since less dimensions require less

computation.

• It eliminates the redundant features.

• It improves the model performance.

 Dimension Reduction Techniques-

• The two popular and well-known dimension reduction techniques are-

• Principal Component Analysis

• Linear Discriminant Analysis

Transformation

• This transformation is defined in such a way that the first principal component has the

largest possible variance and each succeeding component in turn has the next highest

possible variance.

PCA Approach

• Standardize the data.

• Perform Singular Vector Decomposition to get the Eigenvectors and Eigenvalues.

• Sort eigenvalues in descending order and choose the k- eigenvectors

• Construct the projection matrix from the selected k- eigenvectors.

• Transform the original dataset via projection matrix to obtain a k-dimensional feature

subspace.

• Principal Component Analysis is a well-known dimension reduction technique.

• It transforms the variables into a new set of variables called as principal components.

• These principal components are linear combination of original variables and are

orthogonal.

• The first principal component accounts for most of the possible variation of original data.

• The second principal component does its best to capture the variance in the data.

There can be only two principal components for a two-dimensional data set.

Limitation of PCA

• The results of PCA depend on the scaling of the variables.

• A scale-invariant form of PCA has been developed.

Applications of PCA :

• Interest Rate Derivatives Portfolios

• Neuroscience

PCA algorithm steps:

Step 1: Standardization of the data- is all about scaling your data in such a way that all the

variables and their values lie within a similar range

PCA Algorithm-

The steps involved in PCA Algorithm are as follows-

Step-01: Get data.

Step-02: Compute the mean vector (µ).

Step-03: Subtract mean from the given data.

Step-04: Calculate the covariance matrix.

Step-05: Calculate the eigen vectors and eigen values of the covariance matrix.

Step-06: Choosing components and forming a feature vector.

Step-07: Deriving the new data set.

Problem-01:

Given data = { 2, 3, 4, 5, 6, 7 ; 1, 5, 3, 6, 7, 8 }.

Compute the principal component using PCA Algorithm.

 OR

Consider the two dimensional patterns (2, 1), (3, 5), (4, 3), (5, 6), (6, 7), (7, 8).

Compute the principal component using PCA Algorithm.

 OR

Compute the principal component of following data-

CLASS 1

X = 2 , 3 , 4

Y = 1 , 5 , 3

CLASS 2

X = 5 , 6 , 7

Y = 6 , 7 , 8

Solution-

 Step-01:

 Get data.

The given feature vectors are-

x1 = (2, 1)

x2 = (3, 5)

x3 = (4, 3)

x4 = (5, 6)

x5 = (6, 7)

x6 = (7, 8)

Step-02:

Calculate the mean vector (µ).

 Mean vector (µ)

= ((2 + 3 + 4 + 5 + 6 + 7) / 6, (1 + 5 + 3 + 6 + 7 + 8) / 6)= (4.5, 5)

Thus,

Step-03:

 Subtract mean vector (µ) from the given feature vectors.

x1 – µ = (2 – 4.5, 1 – 5) = (-2.5, -4)

x2 – µ = (3 – 4.5, 5 – 5) = (-1.5, 0)

x3 – µ = (4 – 4.5, 3 – 5) = (-0.5, -2)

x4 – µ = (5 – 4.5, 6 – 5) = (0.5, 1)

x5 – µ = (6 – 4.5, 7 – 5) = (1.5, 2)

x6 – µ = (7 – 4.5, 8 – 5) = (2.5, 3)

 Feature vectors (xi) after subtracting mean vector (µ) are-

Step-04:

 Calculate the covariance matrix.

Covariance matrix is given by-

Now,

Covariance matrix= (m1 + m2 + m3 + m4 + m5 + m6) / 6

On adding the above matrices and dividing by 6, we get-

From here,

(2.92 – λ)(5.67 – λ) – (3.67 x 3.67) = 0

16.56 – 2.92λ – 5.67λ + λ2 – 13.47 = 0

λ2 – 8.59λ + 3.09 = 0

Solving this quadratic equation, we get λ = 8.22, 0.38

Thus, two eigen values are λ1 = 8.22 and λ2 = 0.38.

Clearly, the second eigen value is very small compared to the first eigen value.

So, the second eigen vector can be left out.

Eigen vector corresponding to the greatest eigen value is the principal component for the given

data set. So. we find the eigen vector corresponding to eigen value λ1.

We use the following equation to find the eigen vector-

MX = λX

where- M = Covariance Matrix, X = Eigen vector. λ = Eigen value

Substituting the values in the above equation, we get-

Solving these, we get-

2.92X1 + 3.67X2 = 8.22X1

3.67X1 + 5.67X2 = 8.22X2

On simplification, we get-

5.3X1 = 3.67X2 ………(1)

3.67X1 = 2.55X2 ………(2)

From (1) and (2), X1 = 0.69X2

From (2), the eigen vector is-

Thus , Principal component for the given data set is

Lastly, we project the data points onto the new subspace as-

Example

4.2 Factor Analysis – Independent Component Analysis – Locally Linear Embedding –

Isomap

• It is a statistical method used to describe variability among observed/correlated variables.

– It is possible that variations in 6 observed variables mainly reflect variations in 2

unobserved(underlying) variables

• Aim to find independent latent variables

• Variable reduction technique

• Reduction of set of variables in terms of latent factors

• Unobserved factors account for correlation among observed variables

✓ Exploratory FA-Explore the pattern among the variables

✓ No prior hypothesis to start with

✓ Confirmatory FA-Used for confirming model specification

✓ Model is already in place

✓ FA is a correlational method used to find and describe the underlying factors driving data

values for a large set of variables.

✓ FA identifies correlations between and among variables to bind them into one underlying

factor driving their values

✓ FA is used for data summarization or data reduction

✓ FA examines the interrelationships among a large number of variables and then attempts

to explain them in terms of their common underlying dimension

✓ Common underlying dimensions are referred to as factors

✓ Interdependence techniques

✓ No Interdependent Variable or Dependent Variable

✓ All variables are considered simultaneously

Assumptions of FA

• No outliers in the data set

• This means that no extreme data are present in the data set. For example, consider

the following values:1,5,8,-4,23,18 and 1,247,942

• The latter value is an outlier that overwhelms the remaining data

• Adequate sample size must be present

• This means that you must have more variables than you have factors. You cannot

have only 3 variables and have 4 factors

• Each variable must also have more data values than you have factors. Our data

sets will be large.

• No perfect multicollinearity

• This means that each value is unique.

• Homogeneity or Homoscedasticity not required between variables

• Homoscedasticity means that all variables have the same finite variance. In other

words, the curves do not have to possess the same size standard deviations

• Linearity of variables

• Each of the variables should be linear in nature

• Factor analysis is a linear function of measured variables.

• The data must be at least Interval

• Nominal and ordinal data don’t work with factor analysis

Understanding Factor Analysis

• Regardless of purpose, factor analysis is used in

– The determination of a small number of factors based on a particular number of

inters related quantitative variables.

• Unlike variables directly measured such as speed, height, weight etc., some variables

such as creativity, happiness, religiosity, comfort are not a single measureable entity

• They are constructs that are derived from the measurement of other directly observable

variables

• Factor analysis is a correlational method used to find and describe the underlying factors

driving data values for a large set of variables

• It identifies correlations between and among variables to bind them into one underlying

factor driving their values.

• For example: In a set variables(V1,V2,V3,V4,V5,V6) a correlational relationship may be

found between V1,V3 and V4. This means that these 3 variables may in fact be only one

value or factor.

• Accordingly, large numbers of variables may be reduced to only several factors

• V1,V3,V4 are a factor

• V2 & V6 are a factor

• V5 is a factor.

• Data set is explained by 3 factors rather than by 6 variables. It is referred to as data

reduction.

• Example : Result analysis

• Need to

• Determine the assumptions for factor analysis

• Develop a means of identifying factors.

• Determine if a factor is important or not and

• Examine the interaction of the variables on the factor

The problem of factor analysis is to find those independent factors, and the noise that is

inherent in the measurements of each factor. Factor analysis is commonly used in psychology

and other social sciences

Uses of FA

• Variable reduction- large collection of correlated variables

• Patter among variables-Exploratory Data Analysis

• Confirmatory Modelling

INDEPENDENT COMPONENTS ANALYSIS (ICA)

• A technique for revealing the hidden structure of data

• ICA is a computational technique used for extracting the source signals from an observed

mixture of multivariate signal.

• ICA model

– The observed data variables are linear mixtures of latent variables

– The mixing process is unknown

– The latent variables are assumed to be non-Gaussian and statistically independent;

they are called independent components

• ICA can find independent components

• ICA is used for source signals separation in many applications including medical data,

audio signals, or optical imaging. Data can be in the form of images, sounds or other time

series data

• ICA can be applied as a dimensionality reduction algorithm because after extracting the

source signals, the unnecessary signals can be removed or deleted.

• ICA is considered as an extension of the PCA. But PCA tries to find the axis that

maximizes the variance using second order statistics, while ICA tries to maximize the

independence between source signals using the higher order statistics

• Factor Analysis related approach known as Independent Components Analysis.

• In PCA, the components were orthogonal and uncorrelated (so that the covariance matrix

was diagonal, i.e., so cov(bi,bj)=0.

• Require that the components are statistically independent (so that for E[bi,bj]= E[bi]E[bj]

as well as the bi being uncorrelated), then get ICA. The common motivation for ICA is

the problem of blind source separation(Blind signal separation (BSS) aims at recovering

unknown source signals from the observed sensor signals where the mixing process is

also unknown).

• The most popular way to describe blind source separation is known as the cocktail party

problem.

The cock tail party problem is the challenge of separating out hear lots of different sounds

coming from lots of different locations (different people talking, the clink of glasses, background

music, etc.) sources from the party. The objective is to detect the speech of different people

where a group of people are talking simultaneously

Properties of the source signals

• Three assumptions about the source signals:

– Independence: the source signal are independent; however, their signal mixtures

are not as they share the same source signals

– Non normality: independent signals should come from non Gaussian distributions.

Otherwise, the ICA cannot be applied to extract source signals.

– Complexity: the complexity of the mixed signals is greater than that of its

components

• At a cocktail party, there are lots of sounds going around you

– Conversation you’re apart of

– Conversations you’re not apart of

– Background music

– Noises from outside

Our brain do a really good job of filtering out the background noise and focusing on just one

sound, but how would a computer do this?

Assumptions

• Independent sources of sound

• Non-Gaussian sources

• As many signals as there are sources

• Each signal is a linear combinations of the sources

Audio recorded on a microphone=signal

Locally Linear Embedding

• The first tries to approximate the data by sticking together sets of locally flat patches that

cover the dataset, while the second uses the shortest distances (geodesics) on the non-

linear space to find a globally optimal solution.

• The locally linear algorithm, which is called Locally Linear Embedding (LLE). It was

introduced by Roweis and Saul in 2000. The idea is that making linear approximations

will make some errors, so should make these errors as small as possible by making the

patches small where there is lots of non-linearity in the data. The error is known as the

reconstruction error and is simply the sum-of-squares of the distance between the original

point and its reconstruction:

• There are two common ways to create neighbourhoods:

– Points that are less than some predefined distanced to the current point are

neighbours (so don’t know how many neighbours there are, but they are all close)

– The k nearest points are neighbours (so e know how many there are, but some

could be far away)

The above diagram is the Locally linear embedding(LLE) algorithm with k-12

neighbours transforms the iris dataset into three points separating the data perfectly. The

LLE produces a very interesting result on the iris dataset. It separates the three groups

into three points.

ISOMAP

• Isomap stands for isometric mapping.

• Isomap is a non-linear dimensionality reduction method based on the spectral theory

which tries to preserve the geodesic distances in the lower dimension.

• Isomap starts by creating a neighborhood network.

• After that, it uses graph distance to the approximate geodesic distance between all pairs

of points.

Multi-Dimensional Scaling (MDS)

• Like PCA, MDS tries to find a linear approximation to the full dataspace that embeds the

data into a lower dimensionality.

• In the case of MDS the embedding tries to preserve the distances between all pairs of

points

4.3 Evolutionary Learning-Genetic algorithms - Genetic Offspring: - Genetic Operators-

Using Genetic Algorithms

• Genetic Algorithm- uses concept from evolutionary Biology(Natural Genetics & Natural

selection).

• John Holland introduced in 1975

• Populations of possible solutions to the given problem.

• It is a search based optimization technique

Principle of natural selection “Select the best, discard the rest”

• Genetic Algorithms are the heuristic search and optimization techniques that

mimic the process of natural evolution.

• Thus genetic algorithms implement the optimization strategies by simulating

evolution of species through natural selection

Applications

• DNA analysis

• Robotics

• Game playing

• Business

• Machine learning

• Image processing

• Vehicle Routing

• Neural Network

Genetic Algorithm

• Each iteration in the cycle produces a new generation of chromosomes

• The entire set of chromosomes is called a run

• Typical GA run is from 50 to 500 or more generations

• At the end of a run often there is at least one highly fit chromosome in the population

Basic Terminology of GA

• Population- subset of all the possible solutions to the given problem

• Chromosomes-one such solution to given problem

• Gene- one element position of a chromosome

• Allele- value a gene takes for particular chromosome

• Genotype- population in the computation space.

• Phenotype-population in the actual real world solution space

• Decoding- transforming a solution from the genotype to the phenotype space

• Encoding- transforming from the phenotype to genotype space

Genotype and Phenotype

Genotype- refers to the different pairing of alleles

• Example:

o B- black hair

o b-brown hair

o Bb,bB,BB,bb- Genotype

Phenotype-refers to the characters of the trait

• Example

o BB,bB-black hair

o Bb-brown hair

o Black hair,Brown hair-Phenotype

Selection

The process that determines which solutions are to be preserved and allowed to reproduce and

which ones deserve to die out.

The primary objective of the selection operator is to emphasize the good solutions and eliminate

the bad solutions in a population while keeping the population size constant.

“Selects the best, discards the rest”

Functions of Selection operator

• Identify the good solutions in a population

• Make multiple copies of the good solutions Eliminate bad solutions from the population

so that

• multiple copies of good solutions can be placed in the

• population

• Now how to identify the good solutions?

• There are different techniques to implement selection in Genetic Algorithms.

• They are:

o Tournament selection

o Roulette wheel selection

o Proportionate selection

o Rank selection

o Steady state selection, etc

Tournament selection

□ In tournament selection several tournaments are played among a few individuals. The

individuals are chosen at random from the population.

□ The winner of each tournament is selected for next generation.

□ Selection pressure can be adjusted by changing the tournament size.

□ Weak individuals have a smaller chance to be selected if tournament size is large.

Fitness function

• A fitness value can be assigned to evaluate the solutions

• A fitness function value quantifies the optimality of a solution. The value is used to rank

a particular solution against all the other solutions

• A fitness value is assigned to each solution depending on how close it is actually to the

optimal solution of the problem

Crossover operator

• The most popular crossover selects any two solutions strings randomly from the mating

pool and some portion of the strings is exchanged between the strings.

• The selection point is selected randomly.

• A probability of crossover is also introduced in order to give freedom to an individual

solution string to determine whether the solution would go for crossover or not.

Binary Crossover

Mutation operator

• Mutation is the occasional introduction of new features in to the solution strings of the

population pool to maintain diversity in the population.

• Though crossover has the main responsibility to search for the optimal solution, mutation

is also used for this purpose.

Binary Mutation

• Mutation operator changes a 1 to 0 or vise

 versa, with a mutation probability of .

• The mutation probability is generally kept low for steady convergence.

• A high value of mutation probability would search here and there like a random search

technique

Example

Maximize the function f(x)=x2 over the range of integers from 0 …31

1. Devise a means to represent a solution to the problem:

Assume we represent x with five-digit unsigned binary integers.

2. Devise a heuristic for evaluating the fitness of any particular solution:

The function f(x) is simple, so it is easy to use the f(x) value itself to rate the fitness of a

solution; else we might have considered a more simpler heuristic that would more or less

serve the same purpose.

3. Coding-Binary and the string length:

GAs often process binary representations of solutions. This works well, because

crossover and mutation can be clearly defined for binary solutions. A binary string of

length 5 can represent 32 numbers (0 to 31)

4. Randomly generate a set of solutions:

Here, considered a population of four solutions. However, large populations are used in

real applications to explore a larger part of the search. Assume four randomly generated

solutions as :01101,11000,01000,10011. These are chromosomes or genotypes.

Cross over operator

Mutation operator

Advantages of Genetic Algorithm

• Does not require any derivative information which may not be available for many real

world problems

• Faster and more efficient as compared to the traditional methods

• Optimizes both continuous and discrete functions and also multi objective problems

• Provides a list of ‘good’ solutions and not just a single solution. Always gets an answer

which gets better over the time.

• Useful when the search space is very large and there are a number of parameters

involved.

4.4 Reinforcement Learning-Overview -Markov Decision Process

Reinforcement learning

 Close to human learning.

 Algorithm learns a policy of how to act in a given environment.

 Every action has some impact in the environment, and the environment provides rewards that

guides the learning algorithm.

Reinforcement Learning

 Step: 1

• World: You are in state 9. Choose action A or C.

• Learner: Action A.

• World: Your reward is 100.

 Step: 2

• World: You are in state 32. Choose action B or E.

• Learner: Action B.

• World: Your reward is 50.

Step: 3

• Meaning of Reinforcement:

– Occurrence of an event, in the proper relation to a response, that tends to increase

the probability that the response will occur again in the same situation.

• Reinforcement learning is the problem faced by an agent that learns behavior through

trial-and-error interactions with a dynamic environment.

– Reinforcement Learning is learning how to act in order to maximize a numerical

reward

Examples of RL

Agent –Environment Interface

Steps for Reinforcement Learning

1. The agent(The RL algorithm that learns from trial and error) observes an input state.

2. An action is determined by a decision making function (policy)

3. The action is performed. All the possible steps that the agent can take.

4. The agent receives a scalar reward or reinforcement from the environment(The world

through which the agent moves).

5. Information about the reward given for that state / action pair is recorded.

Markov Decision Process(MDP) : Reinforcement learning deals with knowledge based on

current state and its future prediction of next state with optimal way. The direction of this

movement towards optimal solution is proposed by agent under MDP.

Q-learning is a model-free reinforcement learning algorithm to learn the value of an action in a

particular state

UNIT - V GRAPHICAL MODELS

Markov Chain Monte Carlo Methods – Sampling – Proposal Distribution – Markov Chain

Monte Carlo – Graphical Models – Bayesian Networks – Markov Random Fields – Hidden

Markov Models – Tracking Methods.

Introduction to Markov Chain Monte Carlo for Probability

• Markov Chain Monte Carlo sampling provides a class of algorithms for systematic random

sampling from high-dimensional probability distributions. Unlike Monte Carlo sampling methods

that are able to draw independent samples from the distribution, Markov Chain Monte Carlo

methods draw samples where the next sample is dependent on the existing sample, called a

Markov Chain. This allows the algorithms to narrow in on the quantity that is being approximated

from the distribution, even with a large number of random variables.

• Monte Carlo sampling is not effective and may be intractable for high-dimensional probabilistic

models.

• Markov Chain Monte Carlo provides an alternate approach to random sampling a high-

dimensional probability distribution where the next sample is dependent upon the current

sample.

• Gibbs Sampling and the more general Metropolis-Hastings algorithm are the two most common

approaches to Markov Chain Monte Carlo sampling.

• Markov Chain Monte Carlo is a method to sample from a population with a complicated

probability distribution.

Let’s define some terms:

• Sample - A subset of data drawn from a larger population. (Also used as a verb to sample; i.e. the

act of selecting that subset. Also, reusing a small piece of one song in another song, which is not

so different from the statistical practice, but is more likely to lead to lawsuits.) Sampling permits

us to approximate data without exhaustively analyzing all of it, because some datasets are too

large or complex to compute. We’re often stuck behind a veil of ignorance, unable to gauge reality

around us with much precision. So we sample.1

• Population - The set of all things we want to know about; e.g. coin flips, whose outcomes we want

to predict. Populations are often too large for us to study them in toto, so we sample. For example,

humans will never have a record of the outcome of all coin flips since the dawn of time. It’s

physically impossible to collect, inefficient to compute, and politically unlikely to be allowed.

Gathering information is expensive. So in the name of efficiency, we select subsets of the

population and pretend they represent the whole. Flipping a coin 100 times would be a sample

of the population of all coin tosses and would allow us to reason inductively about all the coin

flips we cannot see.

• Distribution (or probability distribution) - You can think of a distribution as table that links

outcomes with probabilities. A coin toss has two possible outcomes, heads (H) or tails (T). Flipping

it twice can result in either HH, TT, HT or TH. So let’s construct a table that shows the outcomes

of two-coin tosses as measured by the number of H that result.

• Markov Chain Monte Carlo (MCMC) is a mathematical method that draws samples randomly from

a black box to approximate the probability distribution of attributes over a range of objects or

future states. You could say it’s a large-scale statistical method for guess-and-check. MCMC

methods help gauge the distribution of an outcome or statistic you’re trying to predict, by

randomly sampling from a complex probabilistic space. As with all statistical techniques, we

sample from a distribution when we don’t know the function to succinctly describe the relation

to two variables (actions and rewards). MCMC helps us approximate a black-box probability

distribution.

• Markov Property says that given a process which is at a state Xn at a particular point of time, the

probability of Xn+1=k, where k is any of the M states the process can jump to, will only be

dependent on which state it is at the given moment. And not on how it reached the current state.

Mathematically speaking

•

• Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a

probability distribution based on constructing a Markov chain that has the desired distribution

as its stationary distribution. The state of the chain after a number of steps is then used as a

sample of the desired distribution. The quality of the sample improves as a function of the number

of steps.

• MCMC methods make life easier for us by providing us with algorithms that could create a Markov

Chain which has the Beta distribution as its stationary distribution given that we can sample from

a uniform distribution(which is relatively easy).

MARKOV IDEA

• Design a Markov Chain on finite state space

•
)|(),...,|(:property Markov

},...,,{ :space state

)1()()1()1()(

21

)(

−− =

iiii

s

i

xxTxxxp

xxxx

• such that when simulating a trajectory of states from it, it will explore the state space spending

more time in the most important regions (i.e. where p(x) is large)

GIBBS SAMPLING ALGORITHM

• Like other MCMC methods, the Gibbs sampler constructs a Markov Chain whose values converge

towards a target distribution. Gibbs Sampling is in fact a specific case of the Metropolis-

Hastings algorithm wherein proposals are always accepted.

• To elaborate, suppose you wanted to sample a multivariate probability distribution.

Let’s take a look at an example. Suppose we had the following posterior and conditional probability

distributions.

where g(y) contains the terms that don’t include x, and g(x) contains the those don’t depend on y. We

don’t know the value of C (normalizing constant). However, we do know the conditional probability

distributions. Therefore, we can use Gibbs Sampling to approximate the posterior distribution.

https://towardsdatascience.com/monte-carlo-markov-chain-89cb7e844c75
https://towardsdatascience.com/monte-carlo-markov-chain-89cb7e844c75

METRO POLIS –HASTING ALGORTIHM:-

SAMPLINGS:-

Statistical sampling is a large field of study, but in applied machine learning, there may be three types of

sampling that you are likely to use: simple random sampling, systematic sampling, and stratified sampling.

Simple Random Sampling: Samples are drawn with a uniform probability from the domain.

Systematic Sampling: Samples are drawn using a pre-specified pattern, such as at intervals.

Stratified Sampling: Samples are drawn within pre-specified categories (i.e. strata).

Although these are the more common types of sampling that you may encounter, there are other

techniques.

PROPOSTIONAL SAMPLING

A walk through the concept of proportional sampling by an example explanation with python codes to

perform the same.

What is proportional sampling?

Example problem

Algorithm

What is proportional sampling?

In most simple words, proportional sampling is a sampling of a population in which the probability of

finding an element is proportional to some common shared attribute or property of all the elements in

the population. For example, suppose you have a set of numbers, say {2,5,8,15,46,90}, and you want to

randomly pick a number but you don’t want the probability to be uniform. Instead, you want the

probability of finding a number to be proportional to the face values of the number which precisely means

that 90 should have the highest probability and 2 should have the lowest probability to be picked up.

EXAMPLE:

In Europe a new football tournament was announced. Many big business men came forward to start their

own clubs. There was one owner, Mr. Robert, who had no knowledge about how to choose right player

for the team. But he was quite certain that a greater number of goals a player has scored, the better is

the player. With this much of knowledge is arranged the player vs number of goals data set.

Each team has to select 18 players. Now the rule of player choosing was that Mr. Robert could take 4

players of his choice and has to select the other 14 randomly. So basically Mr. Robert has to select 14

random players from table. Now the problem is how to randomly select the player such that the

probability of selecting the player is more if the number of goals is more.

Compute the total sum of goals

Normalize goals of each player with respect to S.

Compute Cumulative Normalized Sum of goals for each player. Note: The cumulative normalized sum for

the last player will be equal to 1.0

Pick a value randomly, r, from the range (0,1).

For each cumulative normalized G in the list of G” , if r ≤ G’’_i ,then return player corresponding to

(G’’_i)*S.

Why Graphical Models?

• Framework for modeling and efficiently reasoning about multiple correlated random variables

• Provides insights into the assumptions of existing models

• Allows qualitative specification of independence assumptions

Why Graphical Models? Recent Trends in Data Mining

• Traditional learning algorithms assume – Data available in record format – Instances are i.d

samples

• Recent domains like Web, Biology, Marketing have more richly structured data

• Examples : DNA Sequences, Social Networks, Hyperlink structure of Web, Phylogeny Trees

• Relational Data Mining - Data spread across multiple tables

• Relational Structure helps significantly in enhancing accuracy

• Graphical Models offer a natural formalism to model such data

• Graph G =< V, E > representing a family of probability distributions

• Nodes V - Random Variables

• Edges E - Indicate Stochastic Dependence

• G encodes Conditional Independence assertions in domain

• Mainly two kinds of Models

• – Directed (Bayesian Networks)

• – Undirected (Markov Random Fields (MRFs))

Probabilistic

The nature of the problem that we are generally interested to solve or the type of queries we want to

make are all probabilistic because of uncertainty. There are many reasons that contributes to it.

Graphical

Graphical representation helps us to visualize better and so, we use Graph Theory to reduce the no of

relevant combinations of all the participating variables to represent the high dimensional probability

distribution model more company.

Models

A Model is a declarative representation of a real-world scenario or a problem that we want to analysis. It

is represented by using any mathematical tools like graph or even simply by an equation.

Application

• Medical diagnostics- model how a physician thinks

• Image processing- labelling pixels with information about their neighbours

• Natural language processing

• Directed graphical models specify a factorization of the joint distribution over a set of variables

into a product of local conditional distributions

• Second major class of graphical models that are described by undirected graphs and that again

 specify both a factorization and a set of conditional independence relations.

 • Markov Random Field (MRF)

 • No inference algorithms

 • But more on modeling and energy function

Why use MRF for Computer vision

• Image de‐noising

• Image de‐blurring

• Image segmentation

• Image super‐resolution

Hidden Markov Model

The Hidden Markov Model (HMM) is a relatively simple way to model sequential data.

A hidden Markov model implies that the Markov Model underlying the data is hidden or unknown

to you. More specifically, you only know observational data and not information about the states.

In other words, there’s a specific type of model that produces the data (a Markov Model) but you

don’t know what processes are producing it. You basically use your knowledge of Markov Models

to make an educated guess about the model’s structure.

HMM states (X), observations (O) and probabilities (A, B). Source: Stamp 2018

Consider weather, stock prices, DNA sequence, human speech or words in a sentence. In all these

cases, current state is influenced by one or more previous states. Moreover, often we can observe

the effect but not the underlying cause that remains hidden from the observer. Hidden Markov

Model (HMM) helps us figure out the most probable hidden state given an observation.

In practice, we use a sequence of observations to estimate the sequence of hidden states. In HMM,

the next state depends only on the current state. As such, it's good for modelling time series

data.We can classify HMM as a generative probabilistic model since a sequence of observed

variables is generated by a sequence of hidden states. HMM is also seen as a specific kind

of Bayesian network.

Discussion

• Could you explain HMM with an example?

An example of Hidden Markov Model. Source: Wikipedia 2019.

Suppose Bob tells his friend Alice what he did earlier today. Based on this information Alice

guesses today's weather at Bob's location. In HMM, we model weather as states and Bob's activity

as observations.

To solve this problem, Alice needs to know three things:

• Transition Probabilities: Probability of moving from one state to another. For example, "If today was

sunny, what's the probability that it will rain tomorrow?" If there are N states, this is an NxN matrix.

• Emission Probabilities: Probability of a particular output given a particular state. For example, "What's

the chance that Bob is walking if it's raining?" Given a choice of M possible observation symbols, this is an

NxM matrix. This is also called output or observation probabilities.

• Initial Probabilities: Probability of being in a state at the start, say, yesterday or ten days ago.

Unlike a typical Markov chain, we can't see the states in HMM. However, we can observe the

output and then predict the state. Thus, the states are hidden, giving rise to the term "hidden" in

the name HMM.

•

Typical notation used in HMM. Source: Kang 2017.

Let A, B and π denote the transition matrix, observation matrix and initial state distribution

respectively. HMM can be represented as λ = (A, B, π). Let observation sequence be O and state

sequence be Q.

HMM can be used to solve three types of problems:

• Likelihood Problem: Given O and λ, find the likelihood P(O|λ). How likely is a particular sequence of

observations? Forward algorithm solves this problem.

• Decoding Problem: Given O and λ, find the best possible Q that explains O. Given the observation

sequence, what's the best possible state sequence? Viterbi algorithm solves this problem.

• Learning Problem: Given O and Q, learn λ, perhaps by maximizing P(O|λ). What model best maps states

to observations? Baum-Welch algorithm, also called forward-backward algorithm, solves this problem. In

the language of machine learning, we can say that O is training data and the number of states N is the

model's hyperparameter.

• What are some applications where HMM is useful?

Complex birdsong analyzed using HMM. Source: Adapted from Katahira et al. 2011 .

HMM has been applied in many areas including automatic speech recognition, handwriting

recognition, gesture recognition, part-of-speech tagging, musical score following, partial

discharges and bioinformatics. In speech recognition, a spectral analysis of speech gives us suitable

observations for HMM. States are modelled after phonemes or syllables, or after the average

number of observations in a spoken word. Each word gets its own model. To tag words with their

parts of speech, the tags are modelled as hidden states and the words are the observations. In

computer networking, HMMs are used in intrusion detection systems. This has two flavours:

anomaly detection in which normal behaviour is modelled; or misuse detection in which a

predefined set of attacks is modelled. In computer vision, HMM has been used to label human

activities from skeleton output. Each activity is modelled with a HMM. By linking

multiple HMMs on common states, a compound HMM is formed. The purpose is to allow robots

to be aware of human activity.

What are the different types of Hidden Markov Models?

Some types of HMMs. Source: Rabiner 1989.

In the typical model, called the ergodic HMM, the states of the HMM are fully connected so that

we can transition to a state from any other state. Left-right HMM is a more constrained model in

which state transitions are allowed only from lower indexed states to higher indexed ones.

Variations and combinations of these two types are possible, such as having two parallel left-to-

right state paths. HMM started with observations of discrete symbols governed

by discrete probabilities. If observations are continuous signals, then we would

use continuous observation density.

There are also domain-specific variations of HMM. For example, in biological sequence analysis,

there are at least three types including profile-HMMs, pair-HMMs, and context-sensitive HMMs.

• Could you explain forward algorithm and backward algorithm?

•

Trellis diagrams showing forward and backward algorithms. Source: Adapted from Jana 2019b.

Every state sequence has a probability that it will lead to a given sequence of observations. Given

T observations and N states, there are NTNT possible state sequences. Thus, the complexity of

calculating the probability of a given sequence of observations is O(NTT)O(NTT). Both

forward and backward algorithms bring down the complexity

to O(N2T)O(N2T) through dynamic programming.

In the forward algorithm, we consider the probability of being in a state at the current time step.

Then we consider the transition probabilities to calculate the state probabilities for the next step.

Thus, at each time step we have considered all state sequences preceding it. The algorithm is more

efficient since it reuses calculations from earlier steps. Instead of keeping all path sequences, paths

are folded into a forward trellis. Backward algorithm is similar except that we start from the last

time step and calculate in reverse. We're finding the probability that from a given state, the model

will generate the output sequence that follows.

A combination of both algorithms, called forward-backward algorithm, is used to solve the

learning problem.

• What's the algorithm for solving HMM's decoding problem?

A simple explanation of Viterbi algorithm. Source: Chugg 2017.

Viterbi algorithm solves HMM's decoding problem. It's similar to the forward algorithm except

that instead of summing the probabilities of all paths leading to a state, we retain only one path

that gives maximum probability. Thus, at every time step or iteration, given that we have N states,

we retain only N paths, the most likely path for each state. For the next iteration, we use the most

likely paths of current iteration and repeat the process.

When we reach the end of the sequence, we'll have N most likely paths, each ending in a unique

state. We then select the most likely end state. Once this selection is made, we backtrack to read

the state sequence, that is, how we got to the end state. This state sequence is now the most likely

sequence given our sequence of observations.

• How can we solve the learning problem of HMM?

In HMM's learning problem, we are required to learn the transition (A) and observation (B)

probabilities when given a sequence of observations and the vocabulary of hidden states.

The forward-backward algorithm solves this problem. It's an iterative algorithm. It starts with

an initial estimate of the probabilities and improves these estimates with each iteration.

The algorithm consists of two steps:

• Expectation or E-step: We compute the expected state occupancy count and the expected state transition

count based on current probabilities A and B.

• Maximization or M-step: We use the expected counts from the E-step to recompute A and B.

While this algorithm is unsupervised, in practice, initial conditions are very important. For this

reason, often extra information is given to the algorithm. For example, in speech recognition,

the HMM structure is set manually and the model is trained to set the initial probabilities.

What is Object Tracking?

Object tracking is an application of deep learning where the program takes an initial set of object

detections and develops a unique identification for each of the initial detections and then tracks

the detected objects as they move around frames in a video. In other words, object tracking is the

task of automatically identifying objects in a video and interpreting them as a set of trajectories

with high accuracy. Often, there’s an indication around the object being tracked, for example, a

surrounding square that follows the object, showing the user where the object is on the screen.

Uses and Types of Object Tracking

Object tracking is used for a variety of use cases involving different types of input footage.

Whether or not the anticipated input will be an image or a video, or a real-time video vs. a

prerecorded video, impacts the algorithms used for creating object tracking applications. The kind

of input also impacts the category, use cases, and applications of object tracking. Here, we will

briefly describe a few popular uses and types of object tracking, such as video tracking, visual

tracking, and image tracking.

Video Tracking

Video tracking is an application of object tracking where moving objects are located within video

information. Hence, video tracking systems are able to process live, real-time footage and also

recorded video files. The processes used to execute video tracking tasks differ based on which type

of video input is targeted. This will be discussed more in-depth when we compare batch and online

tracking methods later in this article. Visual tracking or visual target-tracking is a research topic

in computer vision that is applied in a large range of everyday scenarios. The goal of visual tracking

is to estimate the future position of a visual target that was initialized without the availability of

the rest of the video.

Image Tracking

Image tracking is meant for detecting two-dimensional images of interest in a given input. That

image is then continuously tracked as they move in the setting. Image tracking is ideal for datasets

with highly contrasting images (ex. black and white), asymmetry, few patterns, and multiple

identifiable differences between the image of interest and other images in the image set. Image

tracking relies on computer vision to detect and augment images after image targets are

predetermined.

Object tracking camera

Modern object tracking methods can be applied to real-time video streams of basically any camera.

Therefore, the video feed of a USB camera or an IP camera can be used to perform object tracking,

by feeding the individual frames to a tracking algorithm. Frame skipping or parallelized processing

are common methods to improve object tracking performance with real-time video feeds of one or

multiple cameras.

What makes Object Tracking difficult

What are the common challenges and advantages of Object Tracking?

The main challenges usually stem from issues in the image that make it difficult for object tracking

models to effectively perform detections on the images. Here, we will discuss the few most

common issues with the task of tracking objects and methods of preventing or dealing with these

challenges.

1. Training and Tracking Speed

Algorithms for tracking objects are supposed to not only accurately perform detections and localize

objects of interest but also do so in the least amount of time possible. Enhancing tracking speed is

especially imperative for real-time object tracking models. To manage the time taken for a model

to perform, the algorithm used to create the object tracking model needs to be either customized

or chosen carefully. Fast R-CNN and Faster R-CNN can be used to increase the speed of the most

https://developer.magicleap.com/en-us/learn/guides/lumin-sdk-image-tracking
https://developer.magicleap.com/en-us/learn/guides/lumin-sdk-image-tracking

common R-CNN approach. Since CNNs (Convolutional Neural Networks) are commonly used for

object detection, CNN modifications can be the differentiating factor between a faster object

tracking model and a slower one. Design choices besides the detection framework also influence

the balance between speed and accuracy of an object detection model.

2. Background Distractions

The backgrounds of inputted images or images used to train object tracking models also impact

the accuracy of the model. Busy backgrounds of objects meant to be tracked can make it harder

for small objects to be detected. With a blurry or single-color background, it is easier for an AI

system to detect and track objects. Backgrounds that are too busy, have the same color as the

object, or that are too cluttered can make it hard to track results for a small object or a lightly

colored object.

3. Multiple Spatial Scales

Objects meant to be tracked can come in a variety of sizes and aspect ratios. These ratios can

confuse the object tracking algorithms into believing objects are scaled larger or smaller than their

actual size. The size misconceptions can negatively impact detections or detection speed. To

combat the issue of varying spatial scales, programmers can implement techniques such as feature

maps, anchor boxes, image pyramids, and feature pyramids.

Anchor Boxes: Anchor boxes are a compilation of bounding boxes that have a specified height

and width. The boxes are meant to acquire the scale and aspect ratios of objects of interest. They

are chosen based on the average object size of the objects in a given dataset. Anchor boxes allow

various types of objects to be detected without having the bounding box coordinates

alternated during localization.

Feature Maps: A feature map is the output image of a layer when a Convolutional Neural Network

(CNN) is used to capture the result of applying filters to that input image. Feature maps allow a

deeper understanding of the features being detected by a CNN. Single-shot detectors have to

consider the issue of multiple scales because they detect objects with just one pass through a CNN

https://viso.ai/deep-learning/deep-neural-network-three-popular-types/
https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html#:~:text=Anchor%20boxes%20are%20a%20set,sizes%20in%20your%20training%20datasets.
https://arxiv.org/pdf/1909.12605
https://arxiv.org/pdf/1909.12605
https://towardsdatascience.com/visualising-filters-and-feature-maps-for-deep-learning-d814e13bd671

framework. This will occur in a detection decrease for small images. Small images can lose signal

during down sampling in the pooling layers, which is when the CNN was trained on a low subset

of those smaller images. Even if the number of objects is the same, down sampling can occur

because the CNN wasn’t able to detect the small images and count them towards the sample size.

To prevent this, multiple feature maps can be used to allow single-shot detectors to look for objects

within CNN layers – including earlier layers with higher resolution images. Single-shot detectors

are still not an ideal option for small object tracking because of the difficulty they experience when

detecting small objects. Tight groupings can prove especially difficult. For instance, overhead

drone shots of a group of herd animals will be difficult to track using single-shot detectors.

Image and Feature Pyramid Representations: Feature pyramids, also known as multi-level feature

maps because of their pyramidal structure, are a preliminary solution for object scale variation

when using object tracking datasets. Hence, feature pyramids model the most useful information

regarding objects of different sizes in a top-down representation and therefore make it easier to

detect objects of varying sizes. Strategies such as image pyramids and feature pyramids are useful

for preventing scaling issues. The feature pyramid is based on multi-scale feature maps, which

uses less computational energy than image pyramids. This is because image pyramids consist of a

set of resized versions of one input image that are then sent to the detector at testing.

https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
http://persci.mit.edu/pub_pdfs/RCA84.pdf

4. Occlusion

Occlusion has a lot of definitions. In medicine, occlusion is the “blockage of a blood vessel” due

to the vessel merging to a close; in deep learning, it has a similar meaning. In AI vision tasks using

deep learning, occlusion happens when multiple objects come too close together (merge). This

causes issues for object tracking systems because the occluded objects are seen as one or simply

track the object incorrectly. The system can get confused and identify the initially tracked object

as a new object. Occlusion sensitivity prevents this misidentification by allowing the user to

understand which parts of an image are the most important for the object tracking system to

classify. Occlusion sensitivity refers to a measure of the network’s sensitivity to occlusion in

different data regions. It is done using small subsets of the original dataset.

Levels of Object Tracking

Object Tracking consists of multiple subtypes because it is such a broad application. Levels of

object tracking differ depending on the number of objects being tracked.

Multiple Object Tracking (MOT)

Multiple object tracking is defined as the problem of automatically identifying multiple objects in

a video and representing them as a set of trajectories with high accuracy. Hence, multi-object

tracking aims to track more than one object in digital images. It is also called multi-target tracking,

as it attempts to analyze videos to identify objects (“targets”) that belong to more than one

predetermined class Multiple object tracking is of great importance in autonomous driving, where

it is used to detect and predict the behavior of pedestrians or other vehicles. Hence, the algorithms

are often benchmarked on the KITTI tracking test. KITTI is a challenging real-world computer

vision benchmark and image dataset, popularly used in autonomous driving. In 2021, the best

performing multiple object tracking algorithms are DEFT (88.95 MOTA, Multiple Object

Tracking Accuracy), Center Track (89.44 MOTA), and SRK ODESA (90.03 MOTA).

https://www.matec-conferences.org/articles/matecconf/pdf/2018/11/matecconf_eureca2018_03001.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2018/11/matecconf_eureca2018_03001.pdf
https://www.mathworks.com/help/deeplearning/ug/understand-network-predictions-using-occlusion.html#:~:text=Occlusion%20sensitivity%20is%20a%20simple,for%20a%20deep%20network's%20classification.&text=The%20mask%20moves%20across%20the,a%20function%20of%20mask%20position.
http://www.cvlibs.net/datasets/kitti/
https://openaccess.thecvf.com/content/ACCV2020/html/Mykheievskyi_Learning_Local_Feature_Descriptors_for_Multiple_Object_Tracking_ACCV_2020_paper.html

Multiple Object Tracking (MOT) vs. General Object Detection

Object detections typically produce a collection of bounding boxes as outputs. Multiple object

tracking often has little to no prior training regarding the appearance and number of targets.

Bounding boxes are identified using their height, width, coordinates, and other parameters.

Meanwhile, MOT algorithms additionally assign a target ID to each bounding box. This target ID

is known as a detection, and it is important because it allows the model to distinguish among

objects within a class. For example, instead of identifying all cars in a photo where multiple cars

are present as just “car,” MOT algorithms attempt to identify different cars as being different from

each other rather than all falling under the “car” label. For a visual representation of this metaphor,

refer to the image below.

https://www.matec-conferences.org/articles/matecconf/pdf/2018/11/matecconf_eureca2018_03001.pdf

Single Object Tracking

Single Object Tracking (SOT) creates bounding boxes that are given to the tracker based on the

first frame of the input image. Single Object Tracking is also sometimes known as Visual Object

Tracking. SOT implies that one singular object is tracked, even in environments involving other

objects. Single Object Trackers are meant to focus on one given object rather than multiple. The

object of interest is determined in the first frame, which is where the object to be tracked is

initialized for the first time. The tracker is then tasked with locating that unique target in all other

given frames. SOT falls under the detection-free tracking category, which means that it requires

manual initialization of a fixed number of objects in the first frame. These objects are then

localized in consequent frames. A drawback of detection-free tracking is that it cannot deal with

scenarios where new objects appear in the middle frames. SOT models should be able to track any

given object.

Object Tracking Algorithms -Multiple Object Tracking (MOT) Algorithm Introduction

Most multiple object tracking algorithms incorporate an approach called tracking-by-detection.

The tracking-by-detection method involves an independent detector that is applied to all image

frames to obtain likely detections, and then a tracker, which is run on the set of detections. Hereby,

the tracker attempts to perform data association (for example, linking the detections to obtain

complete trajectories). The detections extracted from video inputs are used to guide the tracking

process by connecting them and assigning identical IDs to bounding boxes containing the same

target.

Batch method: Batch tracking algorithms use information from future video frames when deducing

the identity of an object in a certain frame. Batch tracking algorithms use non-local information

regarding the object. This methodology results in a better quality of tracking.

Online method: While batch tracking algorithms access future frames, online tracking algorithms

only use present and past information to come to conclusions regarding a certain frame.

https://arxiv.org/pdf/1907.12740.pdf
https://arxiv.org/pdf/1907.12740.pdf
https://cv-tricks.com/object-tracking/quick-guide-mdnet-goturn-rolo/
https://cv-tricks.com/object-tracking/quick-guide-mdnet-goturn-rolo/
https://www.researchgate.net/figure/Tracking-by-detection-paradigm-Firstly-an-independent-detector-is-applied-to-all_fig1_268987905

Online tracking methods for performing MOT generally perform worse than batch

methods because of the limitation of online methods staying constrained to the present frame.

However, this methodology is sometimes necessary because of the use case. For example, real-

time problems requiring the tracking of objects, like navigation or autonomous driving, do not

have access to future video frames, which is why online tracking methods are still a viable option.

Multiple Object Tracking Algorithm Stages

Most multiple object tracking algorithms contain a basic set of steps that remain constant as

algorithms vary. Most of the so-called multi-target tracking algorithms share the following stages:

Stage #1: Designation or Detection: Targets of interest are noted and highlighted in the designation

phase. The algorithm analyzes input frames to identify objects that belong to target classes.

Bounding boxes are used to perform detections as part of the algorithm.

Stage #2: Motion: Feature extraction algorithms analyze detections to extract appearance and

interaction features. A motion predictor, in most cases, is used to predict subsequent positions of

each tracked target.

Stage #3: Recall: Feature predictions are used to calculate similarity scores between detection

couplets. Those scores are then used to associate detections that belong to the same target. IDs are

assigned to similar detections, and different IDs are applied to detections that are not part of pairs.

Some object tracking models are created using these steps separately from each other, while others

combine and use the steps in conjunction. These differences in algorithm processing create unique

models where some are more accurate than others.

Popular Object Tracking Algorithms

Convolutional Neural Networks (CNN) remain the most used and reliable network for object

tracking. However, multiple architectures and algorithms are being explored as well. Among these

algorithms are Recurrent Neural Networks (RNNs), Autoencoders (AEs), Generative Adversarial

Networks (GANs), Siamese Neural Networks (SNNs), and custom neural networks.

https://arxiv.org/pdf/1907.12740.pdf
https://arxiv.org/pdf/1907.12740.pdf

Although object detectors can be used to track objects if it is applied frame-by-frame, this is a

computationally limiting and therefore a rather inefficient method of performing object tracking.

Instead, object detection should be applied once, and then the object tracker can handle every frame

after the first. This is a more computationally effective and less cumbersome process of performing

object tracking.

1. OpenCV Object Tracking

OpenCV object tracking is a popular method because OpenCV has so many algorithms built-in

that are specifically optimized for the needs and objectives of object or motion tracking.

Specific Open CV object trackers include the BOOSTING, MIL, KCF, CSRT, Median Flow,

TLD, MOSSE, and GOTURN trackers. Each of these trackers is best for different goals. For

example, CSRT is best when the user requires a higher object tracking accuracy and can tolerate

slower FPS throughput. The selection of an OpenCV object tracking algorithm depends on the

advantages and disadvantages of that specific tracker and the benefits:

The KCF tracker is not as accurate compared to the CSRT but provides comparably higher FPS.

The MOSSE tracker is very fast, but its accuracy is even lower than tracking with KCF. Still, if

you are looking for the fastest object tracking OpenCV method, MOSSE is a good choice.

The GOTURN tracker is the only detector for deep learning-based object tracking with OpenCV.

The original implementation of GOTURN is in Caffe, but it has been ported to the OpenCV

Tracking API.

2. DeepSORT

DeepSORT is a good object tracking algorithm choice, and it is one of the most widely used object

tracking frameworks. Appearance information is integrated within the algorithm, which vastly

improves DeepSORT performance. Because of the integration, objects are trackable through

longer periods of occlusion – reducing the number of identity switches.

https://viso.ai/deep-learning/object-detection/
https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking/
https://arxiv.org/abs/1703.07402

For complete information on the inner workings of DeepSORT and specific algorithmic

differences between DeepSORT and other algorithms, we suggest the article “Object Tracking

using DeepSORT in TensorFlow 2” by Anushka Dhiman.

3. Object Tracking MATLAB

MATLAB is a numeric computing platform, which makes it different in its implementation

compared to DeepSORT and OpenCV, but it is nevertheless a fine choice for visual tracking tasks.

The Computer Vision Toolbox in MATLAB provides video tracking algorithms, such as

continuously adaptive mean shift (CAMShift) and Kanade-Lucas-Tomasi (KLT) for tracking a

single object or for use as building blocks in a more complex tracking system.

4. MDNet

MDNet is a fast and accurate, CNN-based visual tracking algorithm inspired by the R-CNN object

detection network. It functions by sampling candidate regions and passing them through a CNN.

The CNN is typically pre-trained on a vast dataset and refined at the first frame in an input video.

Therefore, MDNet is most useful for real-time object tracking use cases. However, while it suffers

from high computational complexity in terms of speed and space, it still is an accurate option. The

computation-heavy aspects of MDNet can be minimized by performing RoI (Region of Interest)

Pooling, however, which is a relatively effective way of avoiding repetitive observations and

accelerating inference.

https://medium.com/analytics-vidhya/object-tracking-using-deepsort-in-tensorflow-2-ec013a2eeb4f
https://medium.com/analytics-vidhya/object-tracking-using-deepsort-in-tensorflow-2-ec013a2eeb4f
https://www.mathworks.com/help/vision/tracking-and-motion-estimation.html
https://openaccess.thecvf.com/content_ECCV_2018/papers/Ilchae_Jung_Real-Time_MDNet_ECCV_2018_paper.pdf

