

COURSE MATERIAL

SRI CHANDRASEKHARENDRA SARASWATHI VISWA
MAHAVIDYALAYA
(Deemed to be University)

Enathur, Kanchipuram-631561

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared By
 Dr.M.Saraswathi

 Assistant Professor

 Dept of CSE

BCSF183T40/ BITF183T40
Object Oriented Programming Using C++

Syllabus

Course Code : OBJECT ORIENTED PROGRAMMING USING C++ L T P C

BCSF183T40 3 0 0 3

PRE-REQUISITE

 Basic Knowledge in C Programming

OBJECTIVES

The course will introduce standard tools and techniques for software development, using object

oriented approach, use of a version control system, an automated build process, and an

appropriate framework for automated unit.

1. To understand the concept of OOP as well as the purpose and usage principles of

Inheritance, polymorphism, encapsulation and method overloading

2. To identify classes, objects, members of a class and the relationships among them needed

for a specific problem.

COURSE OUTCOMES:

 After completing the Course, students will learn:

 1. Articulate the principles of object-oriented simple abstract data types, control flow and design

implementations, using abstraction functions to document them.

2. Outline the essential features of object-oriented programming such as encapsulation,

polymorphism, inheritance, and composition of systems based on object identity using class and

object.

 3. Apply the object using constructors and destructors and using the concept of polymorphism

to implement compile time polymorphism in programs by using overloading methods and

operators.

 4. Use the concept of inheritance to reduce the length of code and evaluate the usefulness.

5. Apply the concept of run time polymorphism by using virtual functions, overriding functions

and abstract class in programs.

 6. Use I/O operations and file streams in programs and by applying the concepts of class and

objects using Generic types , error handling and STL

 7. Analyze problems and implement simple C++ applications using an object-oriented

programming approach.

8. Name and apply some common object-oriented design patterns and give examples of their

use

UNIT ï 1

 Introduction to object oriented programming, Concepts of object oriented programming. C++

programming basics- Data types, Manipulators, Cin, Cout, Type conversion, arithmetic

operators, Loops and decisions. Class and objects : Basics of class and objects, access specifiers ,

member functions defined inside and outside the class.

UNIT- II

 Constructors and its types, destructors, objects as function arguments, Returning objects from

Functions, inline functions, static data and member function. Arrays: Defining & accessing

Array elements, arrays as class member data, array of Objects.

UNIT - III

 Friend functions Friend Classes. Operator Overloading: Overloading Unary Operators,

Operator Arguments, Return Values, Overloading Binary Operators Arithmetic operators,

Concatenating Strings, Multiple overloading Comparison operators, Arithmetic Assignment

Operators , Overloading the assignment operator

UNIT- IV

 Inheritance-Derived class and base class, Types of inheritance, derived class constructors,

overriding member functions, Public and private inheritance, Class Hierarchies. Memory

management -new and delete operator, string class using new. Pointers -Pointers to Objects

Referring to Members, Array of pointers to objects.

UNIT- V

 Virtual Functions, Pure virtual functions, Late Binding, Abstract Classes, Abstract base class ,

Virtual base classes, the this pointer. Templates - function templates, class template. File

Handling-Introduction to graphics. Generic types and collections Namespace ,error handling ,

exception handling , signal handling and STL .

 TEXT BOOKS:

1. Object Oriented Programming in Microsoft C++ - Robert Lafore,Galgotia Publication Pvt

Ltd.

2. The Compete Reference C++, Herbert Schlitz, TMH

REFERENCE BOOKS:

1. Let us C++ - Yaswant Kanitkar(for templates) ,BPB Publication

2. C++ and Object Oriented Programming Paradigm, PHI

3. C++ : How to Program, 9th Edition, Deitel and Deitel, PHI

4. Object Oriented Programming in C++ - E. Balaguruswamy, Tata Mcgraw Hill.

5. Teach yourself C++ - Herbertsehildt, OSBORNE/MH

UNIT ï 1

 Introduction to object oriented programming, Concepts of object oriented programming. C++

programming basics- Data types, Manipulators, Cin, Cout, Type conversion, arithmetic operators, Loops

and decisions. Class and objects : Basics of class and objects, access specifiers , member functions

defined inside and outside the class.

Introduction to C++

o C++ is an object-oriented programming language

o C++ was developed in 1980 by Bjarne Stroustrup at AT&Tbell Laboratories in

MurrayHill,New Jersey, USA.

o C++ is an extension of C with a major addition of the class construct feature.

o Since the class was a major addition to the original C language Stroustrup called

the new language 'C with Classes'.

o However later in 1983 the name was changed to C++.

o The idea of C++ comes from the C increment operator ++ thereby suggesting

that C++ is an incremented version of C

o C++ is a superset of C.

o The three most important facilities that C++ adds on to C are classes, function

overloading, and operator overloading.

Procedure/ structure oriented Programming

o Conventional programming, using high level languages such as COBOL,

FORTRAN and C, is commonly known as procedure-oriented programming

(POP).

o In the procedure-oriented approach, the problem is viewed as a sequence of things

to be done such as reading, calculating and printing. A number of functions are

written to accomplish these tasks.

o The primary focus is on functions.

Relationship between data and function in pop

Introduction to Object Oriented Programming

o Object oriented programming is the principle of design and development of

programs using modular approach.

o Object oriented programming approach provides advantages in creation and

development of software for real life application.

o The basic element of object oriented programming is the data.

o The programs are built by combining data and functions that operate on the data.

o Some of the

Definition

 Object oriented programming (OOP) is a concept that combines both the data and the

functions that operate on that data into a single unit called the object.

 An object is a collection of set of data known as member data and the functions that

operate on these data known as member function.

 OOP follows bottom-up design technique.

 Class is the major concept that plays important role in this approach. Class is a template

that represents a group of objects which share common properties and relationships.

Features

o Emphasis is on data rather than procedure.

o Programs are divided into what are known as objects.

o Data is hidden and cannot be accessed by external functions.

o Objects may communicate with each other through functions.

o New data and functions can be easily added whenever necessary

Relationship between data and function in OOP

Procedural Programming Object Oriented Programming

Large programs are divided into

smaller programs known as functions

Programs are divided into objects

Data is not hidden and can be

accessed by external functions

Data is hidden and cannot be

accessed by external functions

Follow top down approach in the

program design

Follows bottom-up approach in the

program design

Data may communicate with each

other through functions

Objects may communicate with each

other through functions.

Emphasize is on procedure rather

than data

Emphasize is on data rather than

procedure

Characteristics of OOPôs/Basic Concepts of OOPôs

 Objects

 Class

 Data abstraction

 Data encapsulation

 Inheritance

 Polymorphism

 Message passing

 Dynamic binding

1. Object

Objects are the basic runtime entities in an object oriented system. They may represent a

person, a place, a bank account, a table of data or any item that the program has to

handle.Objects are basic building blocks for designing programs.

An object is a collection of data members and associated member functions.

Example: Apple, orange, mango are the objects of class fruit.

Each object is identified by a unique name.

Each object must be a member of a particular class.

2. Class

The objects can be made user defined data types with the help of a class.

A class is a collection of objects that have identical properties, common behavior and

shared relationship.

Once class is defined, any number of objects of that class is created.

Classes are user defined data types.

A class can hold both data and functions.

For example: Planets, sun, moon are member of class solar system.

3. Data abstraction

Data Abstraction refers to the process of representing essential features without

including background details or explanations.

Data Encapsulation:

Ɓ The wrapping of data and functions into a single unit (class) is called data

encapsulation.

Ɓ Data encapsulation enables data hiding and information hiding.

Ɓ Data hiding is a method used in object oriented programming to hide information within

computer code.

 Inheritance

o Inheritance is the process by which objects of one class acquire the properties of

objects of another class.

o In OOP, the concept of inheritance provides the idea of reusability. This means

we can add additional features to an existing class without modifying it.

o The existing class is known as base class or super class.

o The new class is known as derived class or sub class.

http://cdncontribute.geeksforgeeks.org/wp-content/uploads/inheritance2.png

Types of inheritance:

1. Single Inheritance

2.Multiple Inheritance

 3.Hierarchical Inheritance

 4.Multilevel Inheritance

 5. Hybrid Inheritance (also known as Virtual Inheritance)

Single Inheritance

In this type of inheritance one derived class inherits from only one base class. It is the most

simplest form of Inheritance.

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base

classes.

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherits from a single base class.

Multilevel Inheritance

In this type of inheritance the derived class inherits from a class, which in turn inherits from

some other class. The Super class for one, is sub class for the other.

Hybrid (Virtual) Inheritance

Hybrid Inheritance is combination of Hierarchical and Mutilevel Inheritance.

Polymorphism

 Polymorphism, a Greek term means to ability to take more than one form.

 An operation may exhibits different behaviors in different instances. The behavior

depends upon the type of data used in the operation.

 For example consider the operation of addition for two numbers; the operation

will generate a sum. If the operands are string then the operation would produce a

third string by concatenation.

 There are two types of overloading viz.

 o Operator Overloading

 o Function Overloading

The process of making an operator to exhibit different behavior in different instances is known

operator overloading.

Function overloading means two or more function have same name, but differ in the number of

arguments or data type of arguments.

.

4. Message passing

 Objects communicate with one another by sending and r

Dynamic binding:

Ɓ Binding is the process of connecting one program to another.

Ɓ Dynamic binding is the process of linking the procedure call to a specific sequence of

code or function at run time or during the execution of the program.

Message Passing:

Ɓ

Ɓ A message for an object is request for execution of procedure.

Ɓ Message passing involves specifying the name of the object, the name of the function

(message) and the information to be sent.

 Advantages of OOPS:

 It can implement real time system.

 Software complexity can be reduced.

 It can be easily upgraded to smaller to larger programs.

 Easy to partition the work in project based o objects.

 It supports abstract data types

 Using inheritance, code reusability is possible

 Information hiding can be achieved.

Applications of oops:

Computer graphics applications.

CAD/CAM software

Object-oriented database.

User-Interface design such as windows

Real-time systems.

Simulation and Modeling

Artificial intelligence and expert systems.

Client-Server Systems.

C++ Programming Basics

Å Constants

Å Variables

Å Keywords

Å Data types

Å Operators

Å Control Structures

Å Decision Making statements

Å Looping Statements

Å Manipulators

Å Type Conversion

Å The alphabets, numbers and special symbols when properly combined form constants,

variables and keywords.

Å Variables are used to store values that can be changed during the program execution.

Å Int a; /* integer variable */

Å float b; /* float variable */

Å char c; /* char variable */

Å char d[10]; /* String variable */

Å Constant values that can be changed during the program execution.

Å Int a = 10; 10 is integer constant

Å Float b = 5.5; 5.5 is floating point constant

Å a is character constant

Å scsvmv is string constant

Å A Character set denotes any alphabet, digit, or special symbol used to represent

information

Å "Keywords" are words that have special meaning to the C++ compiler.

Å Their meaning cannot be changed at any instance.

Å Serve as basic building blocks for program statements.

Å All keywords are written in only lowercase.

Rules for Variable declaration

ï May only consist of letters, digits, and underscores

ï May not begin with a number

ï May not be a C reserved word (keyword)

ï Should start with a letter or an underscore(_)

ï Can contain letters, numbers or underscore.

ï No other special characters are allowed including space.

Rules for Constants

Integer Constants

ï Refers to sequence of digits such as decimal integer, octal

ï integer and hexadecimal integer.

ï Some of the examples are 112, 0551, 56579u, 0X2 etc.

Real Constants

 The floating point constants such as 0.0083, -0.78, +67.89

 Single Character Constants

ï A single char const contains a single character enclosed within

ï

ï A string constant is a sequence of characters enclosed in double

ï

DATA TYPES:

ï

ï Data type is a pre defined keyword which tells compiler what type of data a variable can hold

ï

Declaring Variables

Before using a variable, you must give the compiler some information about the variable; i.e., you must declare it.

The declaration statement includes the data type of the variable. Examples of variable

declarations:

int rollno;

Char name[50];

float height ;

Variables are not automatically initialized. For example, after declaration

int a;

the value of the variable a can be anything (garbage).

Initializing Variables

Initialization of a variable is of two types:

Å Compile time Initialization: Here, the variable is assigned a value
in advance. This variable then acts as a constant.

Method 1 (Declaring the variable and then initializing it)

int a; a = 5;

Method 2 (Declaring and Initializing the variable together):

int a = 5;

Method 3 (Declaring multiple variables simultaneously and then initializing
them separately)

int a, b; a = 5; b = 10;

Method 4 (Declaring multiple variables simultaneously and then
 initializing them simultaneously)

int a, b;

a = b = 10;

int a, b = 10, c = 20;

Å Run time Initialization: Here, the variable is assigned a value at the run

time. The value of this variable can be altered every time the program is
being run.

int a;

cout<<ñenter the value of aò;

cin>>a;

MANIPULATORS

Å Manipulators are used to format the output. C++ has provided some predefined and user

defined manipulators. There are number of predefined manipulators present in the header

file

Å Two or more manipulators can be used as a chain in one statement as shown below:

cout << manip1 << manip2 << manip3 << item;

cout << manip1 << item1 << manip2 << item2;

1.endl manipulator-Is equivalent to \n

 Used to move to nextline

2.setw () manipulator:-

 Takes integer type of variable as its parameter. The parameter specifies the width of the

column.

Example:

 cout<< 123<<endl;

cout<< setw (3) << 10;

Output: 123

 10

Example Program using setw and endl manipulators

#include<iostream>

#include<iomanip> // for setw

int main()

{

 int basic = 950, allowance=95, total=1045;

 ndl;

return 0;

}

Output of this program is given below.

 Basic 950

Å Allowance 95

Å Total 1045

3.setprecision () manipulator:

C++ displays values of float and double type with six digits by default after decimal point.By

using the setprecision () manipulator we can pass number of digits we want to display after

decimal point.

Example:

cout<<setprecision(3);

cout<< sqrt (3) << endl;

Output

1.732 (the value of v3 is 1.7320508075689)

setfill () manipulator:

Å The main task of setfill () manipulator is to fill the extra spaces left in the output of setw()

manipulator with characters.

Example:

cout<<setfill(ó*ô)

 cout<<setw (5) << 10;

cout<<setw (5) << 257<<endl;

Output: ***10

**257

CIN AND COUT

cin and cout are standard input and output streams in C++. They are part of

the iostream library, which provides many ways to perform input and output

operations

Cin used to take input from user

Syntax ï cin >> variablename;

Cout used to print output to display

Syntax ï cout << stringToDisplay/variableName

TYPE CONVERSION

A type cast is basically a conversion from one type to another. There are two types of type

conversion:

Implicit Conversion

Explicit Conversion

Implicit Conversion

Done by the compiler on its own, without any external trigger from the user.

Generally takes place when in an expression more than one data type is present. In such

condition type conversion (type promotion) takes place to avoid lose of data.

All the data types of the variables are upgraded to the data type of the variable with largest data

type.

Explicit Conversion

This process is also called type casting and it is user- defined. Here the user can typecast the result

to make it of a particular data type.

Syntax : (type) expression

 float)5;

Operators

ARITHMETIC OPERATORS

Arithmetic Operators in C++ are used to perform arithmetic or mathematical operations on the

operands. For example,

 is used for addition, is used for subtraction, is used

for multiplication, etc.

C++ Arithmetic operators are of 2 types:

Unary Arithmetic Operator

Binary Arithmetic Operator

Control Structure
A statement that is used to control the flow of execution in a
program is called control structure.

Types of control structures
Sequence
Selection
Repetition
Function call

Sequence: Statements are executed in a specified order. No statement is skipped and
no statement is executed more than once.

Sequence Structure Flowchart

For Example
#include<iostream.h> void
main()

{
int a; a=5;
cout<<ñvalue of a ñ<<a;

}

Selection Structure

Å It selects a statement to execute on the basis of condition.

Å Statement is executed when the condition is true and ignored when it is
false

Å example

ï if,

ï if else,

ï switch structures.

Simple If statement Flow Chart

#include <iostream.h> //header file section
#include <conio.h>
Void main()
{
int age = 18; if(age > 17)
{
cout<<ñyou are eligible for voting ";
}
cout"\nThis is normal flow ";

}

if else Statement Flow Chart

For Example: #include<iostream.h>
 #include<conio.h> void main ()
{
int y; clrscr();

cout<<"Enter a year:";

cin>>y;

if (y % 4==0)

cout<<ñIs a leap yearò<<y;

else

Cout<<ñIs not a leap yearò<<y;

getch();

}

Nested else if Syntax

Biggest of three Numbers

#include<iostream.h> #include<conio.h> void main()
{
int a,b,c;
clrscr();
Cout<<"Enter the value of a,b,cò<<\n; Cin>>a>>b>>c;
if((a>b)&&(a>c)) Cout<<ña is greaterñ<<a; else if(b>c)
Cout<<ñ b is greaterñ<<b;
else
Cout<<ñc is greaterñ<<c;
getch();
}

Nested if Statement Flowchart

Repetition Structure

Å In this structure the statements are executed more than one time. It is
also known as iteration or loop

Å example

ï while loop,

ï for loop

ï do-while loops

Repetition Structure Flowchart

While Loop

For Example:
 #include<iostream.h>
 #include<conio.h>
 void main()
{
int a=1; clrscr(); while(a<=5)
{
cout<<ñC++ PROGRAMMINGò;
a++;
} //end of while
} //end of main

For Loop Program

What is for loop?

Conceptually, for loop is a bit more complex than while loop and do while loop though syntax is

neat and compact way to write certain types of loops. Typically, a programmer need to

use a for loop when you exactly know how

many times you want a block of statement to be executed repeatedly.

Example For loop

#include<iostream.h>

void main()

{

int n ;

for(n=0; n<10; n++)

{

 is

}

Program : factorial of given number

#include<iostream.h>

 #include<conio.h> void main ()

{

int i,n;

long int fact=1; clrscr();

cout<<"Enter any number"; Cin>>n;

for(i=1;i<=n;i++)

{

fact=fact*i;

}

Cout<<"Factorial of the given number is fact;

getch();

}

output :

Enter any number 6

Factorial of the given number is 720

Note
:

Although the test
condition in the while

loop
very

may
first

false for the

time. Th
e statements of do-

while
loop will be executed

at

Do While

The do while loop evaluates the condition only after the execution of the statements in its body.

The statements within the do-while loop executed at least once.

A do while loop is also called as bottom tested loop.

Difference while and do..while

Break Statement

Å Though break statement comes under decision-making statement, its most oftenly

using in looping.

Å One can use the break statement to break out from a loop or switch statement.

Å When break is executed within a loop, the loop ends immediately, and execution

continues with the first statement following the loop.

BASIS FOR COMPARISON W
HI
LE

DO-
WHILE

General Form while (condition) {
statements; //body of loop
}

do{
.
statements; // body of loop.
.
} while(Condition);

Controlling Condition In 'while' loop the controlling

condition appears at the start

of the loop.

In 'do-while' loop the

controlling condition appears

at the end of the loop.

Iterations The iterations do not occur if,

the condition at the first

iteration, appears false.

The iteration occurs at least

once even if the condition is

false at the first iteration.

Alternate name Entry-controlled loop Exit-controlled loop

Semi-colon Not used Used at the end of the loop

CLASS AND OBJECTS:

Class and Object

A class is a way to bind the data and its associated functions together. It allows the data and

functions to be hidden, if necessary, from external use. A class declaration is similar

syntactically to a structure.

General form of a class declaration is:

class classname

{

private:

Variable declaration/data members;

Function declaration/ member functions;

protected:

Variable declaration/data members;

Function declaration/ member functions;

public:

Variable declaration/data members;

Function declaration/ member functions;

};

Class Definition ï Syntax:

Classs classname{

// member variables

Constructor(){

}

// member functions

};

Object Decleration ï Syntax:

Classname objectName;

If class contains a constructor

Classname objectName();

ACCESS SPECIFIERS

Access modifiers are used to implement an important aspect of Object-Oriented

Programming known as Data Hiding.

Public: Member Functions /Data Members can be accessed from anywhere in the program

Private : Members functions/Data Members can be accessed only with in the class

Protected : Member Functions/ Data Members can be accessed only in inherited class.

Structure of C++ Program

General steps to write a C++ program using class and object:

Å Header files

Å Class definition

Å Member function definition

Å void main function

EX:Write a program to find sum of two integers using class and object.

#include<iostream.h>

class Add

{

int x, y, z;

public:

void getdata()

{

cin>>x>>y;

}

void calculate();

void display();

};

void Add :: calculate()

{

z=x+y;

}

void Add :: display()

{

cout<<z;

}

void main()

{

Add a;

a.getdata();

a.calculate();

a.display();

}

A member function can be defined

(i) Inside the class definition

(ii) Outside side the class definition using scope resolution operator (::).

Å Here in the above example we are defining the member function getdata() inside the

class definition.

Å And we are defining the member functions calculate() and display(), outside the class

definition using the scope resolution operator.

Syntax for defining member function outside of the class definition

Returntype classname :: memberfunctionname()

{

}

Ex:void add::calculate()

{

}

How to access member of a class?

To access member of a class dot operator is used. i.e.

 object-name.data-member and

 object-name.member-function

Application of Scope resolution operator (::)

Å It is used to specify scope of a member function.

Å It is used to access a global variable.

UNIT - II

UNIT- II

 Constructors and its types, destructors, objects as function arguments, Returning objects from

Functions, inline functions, static data and member function. Arrays: Defining & accessing Array

elements, arrays as class member data, array of Objects.

Constructors:

C++ provides a special member function called the constructor which enables an object to

initialize itself when it is created.

Definition:

 A constructor is a special member function whose task is to initialize the objects of its class.

It is special because its name is the same name as the class name. The constructor is invoked

whenever an object of its associated class is created. It is called constructor because it

constructs the values of data members of the class. A constructor is declared and defined as

follows:

Characteristics of Constructor:

 They should be declared in the public section.

 They are invoked automatically when the objects are created.

 They do not have return type, not even void.

 They cannot be inherited, though a derived class can call the base class.

 Like other c++ functions, they can have default arguments.

 Constructors cannot be virtual.

 We cannot refer to their addresses.



required.

Example:

Class A

{

 int x,y;

 Public:

 A()

{

}

A(int a,int b)

{

 x=a;

 y=b;

}

};

Void main ()

{

 A a;

 a(10,20);

}

Constructors are of 3 types:

 1. Default Constructor

 2. Parameterized Constructor

 3. Copy Constructor

 1. Default Constructor: A constructor that accepts no parameters is called the default

constructor.

 Ex: item()

2. Parameterized Constructors: The constructors that take parameters are called

parameterized constructors.

Ex: item(int a,int b)

3.Copy Constructor: A copy constructor is used to declare and initialize an object from

another object.

Calling Member Functions :(In Copy Constructor) 2 ways

Implicit call: Implicit type conversion is done automatically by the compiler.

Ex: a(10,20) or

 A a(10,20);

Explicit call: Explicit type conversion is done manually by the programmer.

Ex: A a = A(10,20);

 Constructor Overloading:

Two or more constructors defined in a single class is called constructor overloading. That

means default, parameterized and copy constructor in a single class.

class sample

{

 int n;

 Public:

 sample() //default constructor

 {

 n=0;

 }

 sample(int a)

 {

 n=a; //parameterized constructor

 }

Void display()

{

 cout<<n<<endl;

}

};

Void main()

{

 sample A(100); //copy constructors

 sample B(A);

 sample C=A;

 sample D;

 D=A;

 A.display();

 B.display();

 C.display();

 D.display();

}

Output: 100 100 100 100

DESTRUCTORS:

A destructor is used to destroy the objects that have been created by a constructor. Like a

constructor, the destructor is a member function whose name is the same as the class name

but is preceded by a tilde.

Eg: ~item() { }

Characteristics:

1. A destructor never takes any argument nor does it return any value.

 2. It will be invoked implicitly by the compiler upon exit from the program to clean up

storage that is no longer accessible.

3. It is a good practice to declare destructors in a program since it releases memory space for

future use.

class rectangle

{

 public:

 float length,breadth;

 public:

 rectangle()

 {

 cout<<" \n\n ***** INSIDE THE CONSTRUCTOR ***** \n\n ";

 length = 20;

 breadth = 5;

 }

 public:

 ~rectangle() //destructor

 {

 cout<<" \n\n ##### INSIDE THE DESTRUCTOR ##### \n\n "<<endl;

 }

};

int main()

{

 clrscr();

 cout<<"PROGRAM FOR CONSTRUCTOR AND DESTRUCTOR"<<endl;

 rectangle rect;

 cout<<"THE LENGTH OF RECTANGLE SET BY CONSTRUCTOR IS:"

 <<rect.length<<endl;

 cout<<"THE BREADTH OF RECTANGLE SET BY CONSTRUCTOR IS:"

 <<rect.breadth<<endl;

return 0;

}

Objects as Function Arguments:

Passing an Object as argument:

To pass an object as an argument we write the object name as the argument while calling the

function the same way we do it for other variables.

Syntax:

function_name(object_name);

It can be done in two ways:

* A copy of entire object is passed to function (Pass By Value)

* Only Address of Object Is Passed To Function (Pass By Reference)

Example

#include<iostream.h>

#include<conio.h>

class distance

{

 int feet,inches;

 public:

 void getdata(int ft,int in)

 {

 feet = ft;

 inches = in; }

 void sum(distance d1,distance d2)

 {

 inches=d1.inches+d2.inches;

 feet=inches/12;

 inches=inches%12;

 feet=feet+d1.feet+d2.feet;

 }

 void display()

 {

 cout<<feet<<"FEET"<<endl;

 cout<<inches<<"INCHES"<<endl;

 }

};

 void main()

{

 distance d1,d2,d3;

 clrscr();

 d1.getdata(1,13);

 d2.getdata(3,24);

 d3.sum(d1,d2);

 cout<<" FIRST DISTANCE = ";

 d1.display();

 cout<<"\n SECOND DISTANCE = ";

 d2.display();

 cout<<"\n RESULTANT DISTANCE = ";

 d3.display();

}

RETURNING OBJECTS FROM FUNCTIONS:

 Syntax:

object = return object name;

Example

#include<iostream.h>

#include<conio.h>

class sample

{

 public:

 int d;

 public:

 void add(sample S)

 {

 d = d + S.d;

 }

};

 void main()

 {

 sample S1,S2;

 clrscr();

 S1.d = 50;

 S2.d = 100;

 cout<<" INTIAL VALUES ";

 cout<<" VALUE OF NUMBER 1 :"<<S1.d<<" VALUE OF NUMBER 2:

 " <<S2.d<<endl;

 cout<<" NEW VALUES ";

 cout<<"VALUE OF NUMBER 1:"<<S1.d<<" VALUE OF NUMBER 2:"

 <<S2.d<<endl;

 getch();

}

INLINE FUNCTIONS:

An inline function is a function that is expanded in line when it is called. When the inline

function is called whole code of the inline function gets inserted or substituted at the point of

the inline function call. This substitution is performed by the C++ compiler at compile time.

An inline function may increase efficiency if it is small.

Syntax:

inline return-type function-name(parameters)

{

 // function code

}

Advantages:

2.It also saves the overhead of push/pop variables on the stack when a function is called.

3.It also saves the overhead of a return call from a function.

4.An inline function may be useful (if it is small) for embedded systems because inline can

yield less code than the function called preamble and return.

RESTRICTIONS:

1. If function contains loop (for loop,while loop).

2. If function contains static variables.

3. If function is recursive.

4. If function has return type.

5. If function contains switch or goto statements.

Example

#include<iostream.h>

#include<conio.h>

inline float mul(float x, float y)

{

 return(x*y);

}

inline double div(double p, double q)

{

 return (p/q);

}

void main()

{

 clrscr();

 float a = 10.5;

 float b = 9.8;

 cout<<" MULTIPLICATION OF "<<a<<" AND "<<b<<" IS "<<endl;

 cout<<mul(a,b)<<endl;

 cout<<" DIVISION OF "<<a<<" AND "<<b<<" IS "<<endl;

 cout<<div(a,b)<<endl;

 getch();

}

STATIC DATA MEMBERS:

Static data members are class members that are declared using static keywords.

Syntax:

Static int count = 1;

Static data_type member_name;

Outside the class:

Data_type class_name :: member_name = value;

Characteristics:

1. Only one copy is created for entire class and is shared by all objects of class.

2. It is initialized before any object of the class is created, even before the main

 starts.

3. It is visible only within the class , but its lifetime is entire program.

STATIC MEMBER FUNCTIONS:

The functions which can access only static data members are called static member functions.

They share a single copy of themselves with different objects of same class.

Syntax:

Static return_type function_name(arguments)

DECLARATION

 (INSIDE THE CLASS)

DEFINITION

 (OUTSIDE THE CLASS)

EX:(with static member function)

#include<iostream.h>

#include<conio.h>

Class Demo

{

 Private:

 Static int x; //declaration

 Public:

 Static void function()

 {

 }

};

 int Demo : : x = 10; //definition

Void main()

{

 Demo x;

 x.function();

 getch();

}

EX:(without static member function)

#include<iostream.h>

Class demo

{

 Public:

Static int x;

};

Int demo : : x = 10;

Int main()

{

 getch();

}

ARRAY:

Array is a collection of similar data types stored in contagious memory locations (static

memory).

Syntax:

Data_type array_name[array_size];

Ex: int age[20];

*Array index starts with zero.

ACCESSING ARRAY ELEMENTS:

We can access array elements using arr[i] for the particular loop.

Ex:

for(int i= 0; i<10; i++)

{

 cin>>arr[i] or cin>>age[i];

}

ARRAY AS CLASS MEMBERS :

By intialising the array in class definition.

Ex:

Class A

{

 int marks[10];

 char name[20];

}

ARRAY OF OBJECTS:

When a class is defined, only the specification for the object is defined; no memory or

storage is allocated. To use the data and access functions defined in the class, you need to

create objects.

Syntax:

ClassName ObjectName[number of objects];

The Array of Objects stores objects. An array of a class type is also known as an array of

objects.

Ex:

Storing the information of more than one book

#include<iostream.h>

#include<conio.h>

class book

{

 protected:

 char name[15];

 int cost;

 public:

 void read();

 void display();

};

 void book :: read()

 {

 cout<< " ENTER THE NAME OF THE BOOK : "<<endl;

 cin>>name;

 cout<<" ENTER THE COST OF THE BOOK : " <<endl;

 cin>>cost;

 }

 void book :: display()

{

 cout<<" #####!!!! BOOK DETAILS !!!!##### "<<endl;

 cout<<" BOOK NAME : " <<name<<endl;

 cout<<" COST : "<<cost<<endl;

}

 void main()

{

 int i,n;

 clrscr();

 book b[3];

 cout<<"ENTER THE NUMBER OF BOOKS : "<<endl;

 cin>>n;

 for(i=0;i<n;i++)

 {

 b[i].read();

 b[i].display();

 }

 getch();

}

Unit III

1. Friend functions, Friend Classes.

2. Operator Overloading:

Overloading Unary Operators, Operator Arguments, Return Values.

Overloading Binary Operators Arithmetic operators, Concatenating Strings,

 Multiple overloading Comparison operators, Arithmetic Assignment Operators,

Overloading the assignment operator.

FRIEND FUNCTION:

Å A Friend function is a non-member function of the class that has been granted access to all

private members of the class.

Å We simply declare the function within the class by prefixing its declaration with the keyword

friend.

Å The function can be defined anywhere in the program like a normal C++ function.

DIFFERENCE BETWEEN MEMBER FUNCTION AND A FRIEND FUNCTION

The major difference between a member function and a friend function is that the member

function is accessed through the object while a friend function requires an object to be passed

as a parameter.

CHARACTERISTICS OF FRIEND FUNCTION

Å Function definition must not use the keyword friend or scope resolution operator.

Å The Scope of a Friend function is not inside the class in which it is declared.

Å Since its scope is not inside the class, it cannot be called using the object of that class

Å It can be called the same as a normal function without using any object.

Å It cannot directly access the data members like other member functions and it can access the

data members by using an object through the dot operator.

Å It can be declared either in the private or public part of the class definition.

Å Usually, it has the objects as arguments.

Syntax:

class ABC

{

 public:

friend void xyz(object of class); //declaring friend function

};

EXAMPLE:

#include<iostream.h>

#include<conio.h>

class student

{

 int age;

 char name[30];

 public:

 void getdata()

 {

 cout<<"Enter the name of student: ";

 cin>>name;

 cout<<"Enter the age: ";

 cin>>age;

 }

 friend void display(student); //declaring friend function

};

 void display(student a) //

 {

 cout<<"DETAILS OF A STUDENT: "<<endl;

 cout<<"NAME OF STUDENT: "<< a.name<<endl;

 cout<<"AGE OF STUDENT: "<<a.age<<endl;

 }

void main()

{

 student s;

 clrscr();

 s.getdata();

 display(s);

}

OUTPUT:

EXAMPLE USING TWO CLASSES:

#include <iostream>

using namespace std;

class TwoValues

{

int a,b;

public:

TwoValues(int i, int j)

 {

a = i;

b = j;

}

friend class Min; //friend class decalration

};

class Min

{

public:

int minimal(TwoValues x)

{

return x.a < x.b ? x.a: x.b;

}

};

int main()

{

TwoValues ob(10, 20);

Min m;

cout << m.minimal(ob);

return 0;

}

OUTPUT:

10

FRIEND CLASS:

A friend class can access both private and protected members of the class in which it has

been declared as a friend. We declared only one function as a friend of another class. But it is

possible that all the members of one class can be friend of another class.

EXAMPLE:

#include <iostream>

using namespace std;

class A

{

 int x =5;

 friend class B; // friend class.

};

class B

{

 public:

 void display(A &a)

 {

 cout<<"value of x is : "<<a.x;

 }

};

int main()

{

 A a;

 B b;

 b.display(a);

 return 0;

}

OUTPUT:

Value of x is: 5

OPERATOR OVERLOADING:

In C++, Operator overloading is a compile-time polymorphism.

It is an idea of giving special meaning to an existing operator in C++ without changing its

original meaning.

C++ permits us to add two variables of user-defined types with the same syntax that is

applied to the basic types.

For example, the Addition(+) operator can work on operands of type char, int, float, double,

and long int.

However, if s1,s2, and s3 are objects of the class string, then we can write the statement

s3=s1+s2 to concatenate these two objects.

Hence, The mechanism of giving special meaning to an operator is known as OPERATOR

OVERLOADING.

Operator is a symbol that indicates an operation,

Overloading is assigning different meanings to an operation, depending on the context.

NOTE: We can overload all C++ operators except the following

 Class member access operator(. , *)

 Scope resolution operator(::)

 Size operator(size of)

 Conditional operator (? :)

DEFINING OPERATOR OVERLOADING

The general form of an operator function is:

 Syntax:

return_type class_name :: operator op(argument)

{

 Function body // task defined

}

Example:

Int unaryop :: operator +(a)

The operator function should be either a member function or a friend function.

TYPE NORMAL FUNCTION FRIEND FUNCTION

Unary Operator Overloading No Arguments One Argument

Binary Operator Overloading One Argument Two Arguments

TYPES OF OPERATOR OVERLOADING:

There are two types of operator overloading:

1. Unary operator overloading

2. Binary operator overloading

Unary operator overloading:

It works only with one class object.

It is the overloading of an operator operating on a single operand.

Ex. unary minus (-), increment(++), decrement (--)

++ or -- can be used as either a prefix or suffix with the function

ex. A=10, a++ => A=11

A => A=9

- (Unary minus)A

10 => -10

Unary operator overloading works on only these symbols.

EXAMPLE:

Using normal member functions and declaring the member function outside of the class

#include<iostream.h>

#include<conio.h>

class Unaryop

{

 int x,y,z;

 public:

 Unaryop()

 {

 x=0;

 y=0;

 z=0;

 }

 Unaryop(int a, int b, int c)

 {

 x=a;

 y=b;

 z=c;

 }

 void display()

 {

 cout<<" "<<x<<" "<<y<<" "<<z<<endl;

 }

 void operator - ();

};

void Unaryop :: operator -()

 {

 x=-x;

 y=-y;

 z=-z;

 }

int main()

 {

 Unaryop Un(10,-40,70);

 clrscr();

 cout<<"NUMBERS ARE : "<<endl;

 Un.display();

 -Un;

 cout<<"NUMBERS AFTER OVERLOADED MINUS (-) operator::: "<<endl;

 Un.display();

 return 0;

 }

OUTPUT:

NUMBERS ARE:

10 -40 70

NUMBERS AFTER OVERLOADED MINUS (-) OPERATOR:::

-10 40 -70

EXAMPLE FOR ++ and -- OPERATORS:

#include<iostream.h>

#include<conio.h>

class binaryop

{

 int x,y;

 public:

 void get()

 {

 cout<<"Enter two numbers: ";

 cin>>x>>y;

 }

 void display()

 {

 cout<<" "<<x<<" "<<y<<endl;

 }

 void operator ++ ()

 {

 x=++x;

 y=++y;

 }

 void operator --()

 {

 x=--x;

 y=--y;

 }

};

int main()

 {

 binaryop bn;

 clrscr();

 bn.get();

 bn.display();

 bn++;

 cout<<"NUMBERS AFTER OVERLOADING USING ++ operator::: "<<endl;

 bn.display();

 bn--;

 cout<<"NUMBERS AFTER OVERLOADING USING -- operator::: "<<endl;

 bn.display();

 return 0;

 }

OUTPUT:

Enter Two Numbers: 4 5

 4 5

Numbers After Overloading Using ++ Operator:::

 5 6

Numbers After Overloading Using -- Operator:::

 4 5

USING FRIEND FUNCTION:

#include<iostream>

using namespace std;

class Unaryop

{

 int a=10;

 int b=20;

 int c=30;

 public:

 void get()

 {

 cout<<"Values of A, B & C"<<endl;

 cout<<a<<" "<<b<<" "<<c<<" "<<endl;

 }

 void show()

 {

 cout<<a<<" "<<b<<" "<<c<<" "<<endl;

 }

 void friend operator-(Unaryop &x); //Pass by reference

};

void operator-(Unaryop &x)

{

 x.a = -x.a; //Object name must be used as it is a friend function

 x.b = -x.b;

 x.c = -x.c;

}

int main()

{

 Unaryop un;

 un.get();

 cout<<"Before Overloading"<<endl;

 un.show();

 cout<<"After Overloading "<<endl;

 -un;

 un.show();

 return 0;

}

OUTPUT:

Values of A, B & C

10 20 30

Before Overloading

10 20 30

After Overloading

-10 -20 -30

Binary Operator Overloading

A binary operator + can be overloaded to add two objects rather than adding two variables.

Using binary operator overloading a functional notation, C = sum(A, B);can be replaced by,

C = A + B;

There should be one argument to be passed. It is the overloading of an operator operating on

two operands.

The friend operator function takes two parameters in a binary operator.

The operator function is implemented outside of the class scope by declaring that function as

the friend function.

Example:

#include<iostream.h>

#include<conio.h>

class complex

{

 double real;

 double img;

 public:

 complex () {}

 complex(double r ,double i)

{

 real = r;

 img = i;

}

complex operator + (complex param)

{

 complex temp;

 temp.real = real + param.real;

 temp.img = img + param.img;

 return(temp);

}

 void print()

{

 cout<<real<<" + i "<<img<<endl;

}

};

int main()

{

 complex c1(3.1,1.5);

 complex c2(1.2,2.2);

 complex c3;

 clrscr();

 c3=c1+c2;

 cout<<"THE COMPLEX NUMBERS ARE: "<<endl;

 c1.print();

 c2.print();

 cout<<"THE ADDITION OF NUMBERS: "<<endl;

 c3.print();

 return 0;

}

OUTPUT:

THE COMPLEX NUMBERS ARE:

3.1 + i 1.5

1.2 + i 2.2

THE ADDITION OF NUMBERS:

4.3 + i 3.7

USING FRIEND FUNCTION:

#include <iostream>

using namespace std;

class Complex

{

 private:

 int real;

 int img;

 public:

 Complex (int r = 0, int i = 0)

 {

 real = r;

 img = i;

 }

 void Display ()

 {

 cout << real << "+i" << img;

 }

 friend Complex operator + (Complex c1, Complex c2);

};

Complex operator + (Complex c1, Complex c2)

{

 Complex temp;

 temp.real = c1.real + c2.real;

 temp.img = c1.img + c2.img;

 return temp;

}

int main ()

{

 Complex C1(5, 3), C2(10, 5), C3;

 C1.Display();

 cout << " + ";

 C2.Display();

 cout << " = ";

 C3 = C1 + C2;

 C3.Display();

}

OUTPUT

5+i3 + 10+i5 = 15+i8

STRING CONCATENATION USING BINARY OPERATOR OVERLOADING

Using binary operator overloading, we can conca

EXAMPLE:

#include<iostream.h>

#include<conio.h>

#include<string.h>

class string

{

 char str[20];

 public:

 void get()

 {

 cout<<" ENTER A STRING: ";

 cin>>str;

 }

 void display()

 {

 cout<<"STRING: "<<str;

 }

 string operator+(string s)

 {

 string obj;

 strcat(str,s.str);

 strcpy(obj.str,str);

 return obj;

 }

};

void main()

{

 clrscr();

 string str1,str2,str3;

 str1.get();

 str2.get();

 str3=str1+str2;

 str3.display();

 getch();

}

OUTPUT:

Enter string: Radhey

Enter string: Krishna

RadheyKrishna

NOTE:

The operators that cannot be overloaded using the friend function.

Å Assignment operator (=)

Å Function call operator ()

Å Subscripting operator []

Å Class member access operator (->) this pointer

COMPARISON OPERATORS:

The comparison operators are very simple.Comparison Operators == and !=

EXAMPLE:

#include<iostream>

using namespace std;

class Equal

{

 private :

 int number;

 public :

 void get()

 {

 cin>>number;

 }

 int operator == (Equal x)

 {

 if(number==x.number)

 return 1;

 else

 return 0;

 }

 int operator != (Equal x)

 {

 if(number!=x.number)

 return 1;

 else

 return 0;

 }

};

int main()

{

 Equal n1,n2;

 cout<<"Please enter 1st number. ";

 n1.get();

 cout<<"Please enter 2nd number. ";

 n2.get();

 if(n1==n2)

 { cout<<"n1 is equal to n2. ";}

 else if(n1!=n2)

 { cout<<"n1 is not equal to n2. ";}

 else

 { cout<<"Sorry "; }

 return 0;

}

OUTPUT:

Please enter 1st number. 34

Please enter 2nd number. 23

n1 is not equal to n2.

ARITHMETIC ASSIGNMENT OPERATORS:

#include<iostream>

using namespace std;

class Distance

{

private:

int feet;

float inches;

public:

Distance(){

feet=0, inches=0;

}

Distance(int ft, float in)

{

feet=ft;

inches=in;

}

void getdist()

{

\nEnter feet: ";

cin >> feet;

cin >> inches;

}

void showdist()

{

cout << feet << " "<< inches <<" ";

}

void operator += (Distance);

};

void Distance::operator += (Distance d2)

{

feet += d2.feet;

feet=feet+d2.feet;

inches += d2.inches;

if(inches >= 12.0)

{

inches -= 12.0;

feet++;

}

}

int main()

{

Distance dist1;

dist1.getdist();

cout <<" dist1 = ";

dist1.showdist();

cout<<endl;

Distance dist2(11, 5);

cout << "dist2 = ";

dist2.showdist();

cout<<endl;

dist1 += dist2;

cout << "after addition: ";

cout << "dist1 = ";

dist1.showdist();

cout << endl;

return 0;

}

OUTPUT:

Enter feet: 20

Enter inches: 5

dist1 = 20 5

dist2 = 11 5

after addition: dist1 = 42 10

ASSIGNMENT OPERATOR OVERLOADING:

You can overload the assignment operator (=) just as you can other operators.

EXAMPLE:

#include <iostream>

using namespace std;

class Distance

{

 private:

 int feet; // 0 to infinite

 int inches; // 0 to 12

 public:

 Distance()

 {

 feet = 0;

 inches = 0;

 }

 Distance(int f, int i)

 {

 feet = f;

 inches = i;

 }

 void operator = (const Distance &D) {

 feet = D.feet;

 inches = D.inches;

 }

 void displayDistance()

 {

 cout << "Feet: " << feet << " Inches:" << inches << endl;

 }

};

int main()

{

 Distance D1(11, 10), D2(5, 11);

 cout << "First Distance: ";

 D1.displayDistance();

 cout << "Second Distance:";

 D2.displayDistance();

 // use assignment operator

 D1 = D2;

 cout << "First Distance: ";

 D1.displayDistance();

 return 0;

}

OUTPUT:

First Distance : Feet: 11 Inches: 10

Second Distance :Feet: 5 Inches: 11

First Distance :Feet: 5 Inches: 11

UNIT- IV

 Inheritance-Derived class and base class, Types of inheritance, derived class constructors,

overriding member functions, Public and private inheritance, Class Hierarchies. Memory management

-new and delete operator, string class using new. Pointers -Pointers to Objects Referring to Members,

Array of pointers to objects.

Definition:-

Inheritance is a process in which one object acquires all the properties and behaviors of its

parent object automatically.

The class which inherits the members of another class is called derived class and the class

whose members are inherited is called base class. The derived class is the specialized class

for the base class.

Advantages of inheritance:-

Reduced Code Duplication: Inheritance reduces code duplication by allowing derived classes

to reuse the properties and methods defined in the base class.

Developers don't have to write the same code multiple times in different classes when a

common functionality exists.

Derived class:- A Derived class is defined as the class derived from the base class.

The Syntax of Derived class:

class derived_class_name :: visibility-mode base_class_name

{

 //body of derived class

}

Visibility modes:-

 public, its visibility will be open to all. It means that

https://www.geeksforgeeks.org/access-modifiers-in-c/

 protected, The its visibility will be only to the derived

class. It means that any derived class can access and use this y.

 private, its visibility will not be open to any other class. It

means that any derived class cannot access and use this z.

Public Visibility mode: If we derive a subclass from a public base class. Then the public

member of the base class will become public in the derived class and protected members of

the base class will become protected in the derived class.

Protected Visibility mode: If we derive a subclass from a Protected base class. Then both

public member and protected members of the base class will become protected in the derived

class.

 Private Visibility mode: If we derive a subclass from a Private base class. Then both public

member and protected members of the base class will become Private in the derived class.

Types of Inheritance:-

1.Single inheritance

2.Multiple inheritance

3.Multilevel inheritance

4.Hierarchical inheritance

5.Hybrid inheritance

Single Inheritance:-

When one class inherits another class, it is known as single level inheritance.

#include<iostream.h>

#include<conio.h>

class person

{

 private:

 int age;

https://www.geeksforgeeks.org/access-modifiers-in-c/
https://www.geeksforgeeks.org/access-modifiers-in-c/

 public:

 void getage()

 {

 cout<<" ENTER THE AGE : "<<endl;

 cin>>age;

 }

 void show_age()

 {

 cout<<" AGE : "<<age<<endl;

 }

};

class aim : public person

{

 private:

 int salary;

 public:

 void getsalary()

 {

 cout<<" ENTER THE SALARY : "<<endl;

 cin>>salary;

 }

 void show_salary()

 {

 cout<<" SALARY : "<<salary<<endl;

 }

};

void main()

{

 aim a;

 clrscr();

 a.getage();

 a.getsalary();

 a.show_age();

 a.show_salary();

getch();

}

Multiple Inheritance:-

Multiple inheritance is the process of deriving a new class that inherits the attributes from

two or more classes.

#include<iostream.h>

#include<conio.h>

class car

{

 private:

 char name1[20],name2[20];

 public:

 void getdata()

 {

 cout<<" ENTER THE NAME OF CAR 1 : "<<endl;

 cin>>name1;

 cout<<" ENTER THE NAME OF CAR 2 : " <<endl;

 cin>>name2;

 }

 void display()

 {

 cout<<"1.CAR : "<<name1<<endl;

 cout<<"2.CAR : "<<name2<<endl;

 }

};

class city

{

 private:

 char city1[20],city2[20];

 public:

 void getcity()

 {

 cout<<" ENTER CITY ONE : "<<endl;

 cin>>city1;

 cout<<" ENTER CITY TWO : "<<endl;

 cin>>city2;

 }

 void showcity()

 {

 cout<<" 1.CITY : "<<city1<<endl;

 cout<<" 2.CITY : "<<city2<<endl;

 }

};

class brand : public car , public city

{

 private:

 char brand1[10],brand2[10];

 public:

 void getbrand()

 {

 getdata();

 getcity();

 cout<<" ENTER BRAND 1 : "<<endl;

 cin>>brand1;

 cout<<" ENTER BRAND 2 : "<<endl;

 cin>>brand2;

 }

 void showbrand()

 {

 display();

 showcity();

 cout<<" 1.BRAND : "<<brand1<<endl;

 cout<<" 2.BRAND : "<<brand2<<endl;

 }

};

void main()

{

 brand b;

 clrscr();

 b.getbrand();

 b.showbrand();

getch();

}

Multilevel Inheritance:-

Multilevel inheritance is a process of deriving a class from another derived class.

#include<iostream.h>

#include<conio.h>

class student

{

 char name[10];

 int age;

 public:

 void getdata()

 {

 cout<<" ENTER THE NAME OF THE STUDENT : "<<endl;

 cin>>name;

 cout<<" ENTER THE AGE OF THE STUDENT : "<<endl;

 cin>>age;

 }

 void display()

 {

 cout<<" NAME : "<<name<<endl;

 cout<<" AGE : "<<age<<endl;

 }

};

class test : public student

{

 protected:

 int math,eng,sci;

 public:

 void gettest()

 {

 getdata();

 cout<<" ENTER MATHS MARKS : ";

 cin>>math;

 cout<<" ENTER ENGLISH MARKS : ";

 cin>>eng;

 cout<<" ENTER SCIENCE MARKS : ";

 cin>>sci;

 }

 void show_test()

 {

 display();

 cout<<" MATH MARKS : "<<math<<endl;

 cout<<" ENGLISH MARKS : "<<eng<<endl;

 cout<<" SCIENCE MARKS : "<<sci<<endl;

 }

};

class result : public test

{

 protected:

 int total,avg;

 public:

 void getresult()

 {

 gettest();

 total = math+eng+sci;

 avg=total/3;

 }

 void show_result()

 {

 show_test();

 cout<<" TOTAL : "<<total<<endl;

 cout<<" AVERAGE : "<<avg<<endl;

 }

};

void main()

{

 result r;

 clrscr();

 r.getresult();

 r.show_result();

getch();

}

Hierarchial Inheritance:-

It is the hierarchy of classes. There is a single base class and multiple derived classes.

Furthermore, the derived classes are also inherited by some other classes. Thus a tree-like

structure is formed of hierarchy.

Hybrid Inheritance:-

 Combination of any of the above types of inheritance.

Memory management Operators in c++

malloc() vs new in C++

Both the malloc() and new in C++ are used for the same purpose. They are used for

allocating memory at the runtime. But, malloc() and new have different syntax. The main

difference between the malloc() and new is that the new is an operator while malloc() is a

standard library function that is predefined in a stdlib header file.

The new is a memory allocation operator, which is used to allocate the memory at the

runtime.

Syntax of new operator

type pointer variable = new type(parameter_list);

example:

int *p=new int[];

In the above syntax

type: It defines the datatype of the variable for which the memory is allocated by the new

operator.

variable: It is the name of the variable that points to the memory.

parameter_list: It is the list of values that are initialized to a variable.

Example

#include <cstring> //for strlen

using namespace std;

int main()

{

int len = strlen(str);

char* ptr = new char[len+1]; //set aside memory:

strcpy(ptr, str); //copy str to new memory area ptr

delete ptr; // delete pointervariable

return 0;

The delete Operator

delete[] ptr;

A String Class Using new

// using new to get memory for strings

#include <iostream>

#include <cstring> //for strcpy(), etc

using namespace std;

class String

{

private:

char* str; //pointer to string

public:

String(char* s) //constructor, one arg

{

int length = strlen(s); //length of string argument

 char str = new char[length+1]; //get memory

strcpy(str, s); str=hello world

}

~String() //destructor

{

\

delete str; //release memory

}

void display()

{

cout << str << endl;

}

};

int main()

{

s1.display();

return 0;

}

Pointers to Objects

Pointers can point to objects as well as to simple data typ

examples of objects defined and given a name, in statements like

Distance dist;

where an object called dist is defined to be of the Distance class.

program, ENGLPTR, that compares the two approaches to creating objects.

#include <iostream>

using namespace std;

class Distance

{

private:

int feet;

float inches;

public:

void getdist() //get length from user

{

\

cin >> feet; feet=5

 inches=4.6

cin >> inches;

}

void showdist()

\ - \ -4.6

};

int main()

{

Distance dist; //define a named Distance object

dist.getdist(); //access object members

dist.showdist(); // with dot operator

Distance* distptr; //pointer to Distance

distptr = new Distance;

Distance *distptr=new Distance;

distptr->getdist(); -> //access object members

distptr->showdist(); // with -> operator

cout << endl;

return 0;

}

Another Approach to new

#include <iostream>

using namespace std;

class Distance // English Distance class

{

private:

int feet;

float inches;

public:

void getdist() // get length from user

{

\

}

void showdist() // display distance

{ c \ - \

};

int main()

{

Distance & dist = *(new Distance); // create Distance object

dist.getdist(); // access object members

dist.showdist(); // with dot operator

cout << endl;

return 0;

}

An Array of Pointers to Objects

A common programming construction is an array of pointers to objects. This arrangement

allows easy access to a group of objects, and is more flexible than placing the objects

themselves in an array

#include <iostream>

using namespace std;

//

class person //class of persons

{

protected:

char name[40];

public:

void setName() //set the name

{

cin >> name;

}

void printName() //get the name

{

cout \

}

};

int main()

{

Person *persPtr[100];

 //array of pointers to persons

int n = 0; //number of persons in array

char choice;

do

{

persPtr[n] = new person; //make new object

persPtr[n]->setName(); me

n++; //count new person

 //enter another

cin >> choice; //person?

}

for(int j=0; j<n; j++)

{

\

persPtr[j]->printName();

}

cout << endl;

return 0;

}

UNIT -5

Virtual Functions, Pure virtual functions, Late Binding, Abstract Classes, Abstract base

class , Virtual base classes, this pointer.

Templates - function templates, class template. File Handling-Introduction to graphics.

Generic types and collections Namespace, error handling , exception handling, signal

handling and STL.

POLYMORPHISM

COMPILE - TIME POLYMORPHISM

 FUNCTION OVERLOADING

 OPERATOR OVERLOADING

RUN - TIME POLYMORPHISM

 VIRTUAL FUNCTIONS

 PURE VIRTUAL FUNCTIONS

VIRTUAL FUNCTIONS :

A virtual function (also known as virtual methods) is a member function that is declared

within a base class and is re-defined (overridden) by a derived class. When you refer to a

derived class object using a pointer or a reference to the base class, you can call a virtual

 Virtual functions ensure that the correct function is called for an object, regardless

of the type of reference (or pointer) used for the function call.

 They are mainly used to achieve Runtime polymorphism.

 Functions are declared with a virtual keyword in a base class.

 The resolving of a function call is done at runtime.

Rules for Virtual Functions

The rules for the virtual functions in C++ are as follows:

1. Virtual functions cannot be static.

2. A virtual function can be a friend function of another class.

3. Virtual functions should be accessed using a pointer or reference of base class

type to achieve runtime polymorphism.

4. The prototype of virtual functions should be the same in the base as well as the

derived class.

5. They are always defined in the base class and overridden in a derived class. It is

not mandatory for the derived class to override (or re-define the virtual function),

in that case, the base class version of the function is used.

6. A class may have a virtual destructor but it cannot have a virtual constructor.

https://www.geeksforgeeks.org/polymorphism-in-c/
https://www.geeksforgeeks.org/virtual-destructor/

SAMPLE PROGRAM WITHOUT RUN - TIME POLYMORPHISM:

#include<iostream.h>

#include<conio.h>

class one

{

 public:

 void student()

 {

 cout<<"student"<<endl;

 }

 void address()

 {

 cout<<"address"<<endl;

 }

};

class two:public one

{

 public:

 void student()

 {

 cout<<"derived student"<<endl;

 }

 void address()

 {

 cout<<"derived address"<<endl;

 }

};

void main()

{

 clrscr();

 one a;

 two b;

 one *ptr;

 ptr=&a;

 ptr->student();

 ptr->address();

 ptr=&b;

 ptr->student();

 ptr->address();

 getch();

}

OUTPUT :

SAMPLE PROGRAM WITH VIRTUAL FUNCTIONS :

#include<iostream.h>

#include<conio.h>

class one

{

 public:

 virtual void student()

 {

 cout<<"student"<<endl;

 }

 void address()

 {

 cout<<"address"<<endl;

 }

};

class two:public one

{

 public:

 void student()

 {

 cout<<"derived student"<<endl;

 }

 void address()

 {

 cout<<"derived address"<<endl;

 }

};

void main()

{

 clrscr();

 one a;

 two b;

 one *ptr;

 ptr=&a;

 ptr->student();

 ptr->address();

 ptr=&b;

 ptr->student();

 ptr->address();

 getch();

}

OUTPUT :

Limitations of Virtual Functions

 Slower: The function call takes slightly longer due to the virtual mechanism and

makes it more difficult for the compiler to optimize because it does not know

exactly which function is going to be called at compile time.

 Difficult to Debug: In a complex system, virtual functions can make it a little

more difficult to figure out where a function is being called from.

PURE VIRTUAL FUNCTIONS :

 A pure virtual function (or abstract function) in C++ is a virtual function for which

we can have an implementation, But we must override that function in the derived

class, otherwise, the derived class will also become an abstract class. A pure

virtual function is declared by assigning 0 in the declaration..

SAMPLE PROGRAM FOR PURE VIRTUAL FUNCTION :

#include<iostream.h>

#include<conio.h>

class A

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/

{

 public:

 virtual void robo()=0;

 virtual void chitti()=0;

 void sana()

 {

 cout<<"sana"<<endl;

 }

};

class B:public A

{

 public:

 void robo()

 {

 cout<<"robo"<<endl;

 }

 void chitti()

 {

 cout<<"chitti"<<endl;

 }

};

void main()

{

 clrscr();

 B b;

 b.robo();

 b.chitti();

 b.sana();

 getch();

}

OUTPUT :

LATE BINDING AND EARLY BINDING

Aspect

Early Binding (Static

Binding) Late Binding (Dynamic Binding)

Timing of Binding Occurs at compile-time. Occurs at runtime.

Decision Time
Decisions are made before

execution.

Decisions are made during program

execution.

Mechanism
Function overloading,

templates.
Virtual functions and polymorphism.

Implementation Resolved at compile-time. Resolved at runtime.

Flexibility
Less flexible, as decisions

are fixed during compilation.

More flexible, as decisions can

change at runtime based on the

actual object type.

Examples
Function overloading,

templates.
Virtual functions, polymorphism.

Code Example

(Partial)
cpp Base obj; obj.display();

cpp Base* ptr = &obj; ptr-

>display();

Keyword (if

applicable)
Not applicable.

virtual keyword is used with

functions in the base class.

Common Use Case
Compile-time optimization,

performance considerations.

Achieving runtime polymorphism,

flexibility in design.

THIS POINTER :

In C++, the this pointer is a keyword that represents a pointer to the current instance of a

class. It is a hidden parameter that is passed to all member function calls. The this pointer is

used to access the members of the class within its own member functions, especially when

there is a need to disambiguate between member variables and parameters with the same

name.

#include<iostream.h>

#include<conio.h>

class A

{

 int a,b;

 public:

 A()

 {

 a=0;

 b=0;

 }

 void get(int a,int b)

 {

 this->a=a;

 this->b=b;

 }

 void show()

 {

 cout<<"the value of a :"<<a<<endl;

 cout<<"the value of b :"<<b<<endl;

 }

};

void main()

{

 A a;

 clrscr();

 a.get(10,20);

 a.show();

 getch();

}

OUTPUT :

TEMPLATES

Templates in C++ are a powerful feature that allows you to write generic code. Templates can

be used for functions, classes, and even entire programs

Templates in C++ offer several advantages, making them a powerful and flexible feature.

Here are some key advantages:

Code Reusability:

 Templates allow you to write generic code that can work with multiple data types.

This promotes code reusability since the same template can be used for different types

without duplicating the code.

Type Safety:

 Templates maintain type safety by allowing you to write generic code that is still

checked at compile time for type correctness. This helps catch errors early in the

development process.

Flexibility:

 Templates provide a flexible way to create generic algorithms and data structures.

This flexibility enables you to write code that adapts to different data types and

structures seamlessly.

Performance:

 Template code is generated at compile time, which can result in more efficient code

execution compared to runtime polymorphism. In situations where performance is

crucial, templates offer a way to achieve high-performance generic solutions.

Standard Template Library (STL):

 The C++ Standard Template Library (STL) extensively uses templates. Containers

like vectors, lists, and maps, as well as algorithms like sort and find, are implemented

as templates. This allows for a consistent and generic approach to handling various

data structures and algorithms.

Compile-Time Polymorphism:

 Templates enable compile-time polymorphism, as opposed to runtime polymorphism

offered by virtual functions and inheritance. This can lead to more efficient code

execution since decisions are made at compile time.

Template Specialization:

 C++ templates support specialization, allowing you to provide specific

implementations for certain types. This can be useful when you need to customize

behavior for specific data types while maintaining a generic solution for others.

Clearer Code:

 Templates often result in more concise and readable code, as they allow you to

express generic algorithms without the need for extensive type-specific code. This can

lead to clearer and more maintainable code.

Generic Programming:

 Templates support generic programming, a programming paradigm that focuses on

writing algorithms and data structures in a way that they can operate on any data type.

This approach leads to more versatile and adaptable code.

In summary, templates in C++ contribute to code reusability, type safety, flexibility, and

performance, making them a valuable tool for generic programming and the creation of

versatile software components.

Templates are of two types :

1. FUNCTION TEMPLATES

2. CLASS TEMPLATES

FUNCTION TEMPLATES VS CLASS TEMPLATES :

Certainly, here's a tabular representation summarizing key aspects of function templates and

class templates in C++:

Aspect Function Templates Class Templates

Definition Syntax
template <typename T> returnType

functionName(parameters);

template <typename T1,

typename T2> class

ClassName { /* ... */ };

Generic Types Single generic type (e.g., T)
Multiple generic types (e.g.,

T1, T2)

Use in Functions Used for generic functions Used for generic classes

Example Function
cpp int max(T a, T b) { return (a > b)

? a : b; }

Not applicable (class

template example provided

earlier)

Example Usage
cpp int resultInt = max(5, 10); double

resultDouble = max(3.14, 2.71);

cpp Pair<int, std::string>

myPair(42, "Hello");

Type Safety Ensures type safety at compile time
Ensures type safety at

compile time

Template

Specialization
Can be specialized for specific types

Can be specialized for

specific types

Code Reusability
Enables reuse with different data

types

Enables reuse with different

data types

Compile-time

Polymorphism
Offers compile-time polymorphism

Offers compile-time

polymorphism

STL Usage
Used in algorithms like std::max and

std::sort

Used in containers like

std::vector and algorithms

like std::find

Flexibility
Provides flexibility in handling

different data types

Provides flexibility in

handling different data types

These templates play a crucial role in generic programming, allowing developers to write

versatile and efficient code that can adapt to various data types and structures.

 SAMPLE CODES :

A) FUNCTION TEMPLATES

#include<iostream.h>

#include<conio.h>

template<class T, class U>

void multiply(T a,U b)

{

cout<<"MULTIPLICATION: "<<a*b<<endl;

}

int main()

{

int a,b;

float x,y;

clrscr();

cout<<"ENTER TWO INTEGER DATA: "<<endl;

cin>>a>>b;

cout<<"ENTER TWO FLOAT DATA: "<<endl;

cin>>x>>y;

multiply(a,b);

multiply(x,y);

multiply(a,x);

getch();

return 0;

}

OUTPUT :

B) CLASS TEMPLATE

 #include<iostream.h>

#include<conio.h>

template<class T>

class addition

{

 public:

 T add(T,T);

};

template<class T>

T addition<T>::add(T n1,T n2)

{

 T result;

 result=n1+n2;

 return result;

}

int main()

{

 int a,b;

 long c,d;

 float result;

 addition<int>x;

 addition<long>y;

 clrscr();

 cout<<"Enter the integer input :"<<endl;

 cin>>a>>b;

 cout<<"Enter the long values :"<<endl;

 cin>>c>>d;

 cout<<"The result integers is :"<<endl;

 result=x.add(a,b);

 cout<<result;

 cout<<"\nthe result long is :"<<endl;

 result=y.add(c,d);

 cout<<result;

 return 0;

}

OUTPUT :

FILE HANDLING

File :

File Is A Collection Of Records Where Each Record Consists Of Number Of Items .

These Files Can Be Arrange In Three Ways :

❑ Ascending /Descending Order

❑ Alphabetical Order

❑ Chronological Order

1. Order Of Occurances Like Accoding To Date Or Size Or Events

Stream :

In C++ , A Stream Is A Data Flow From Keyboard To Monitor .

For Input And Output They Are Two Different Streams.

❑ Cin Standard Input Stream

❑ Cout Standard Output Stream

❑ Cerr Standard Error Stream

♦ Ifstream :

 It Is The Input File Stream Class .

 It Can Inherit The Folloing Functions .

 Open()

 Get()

 Getline()

 Read() Etc ...

♦ Ofstream :

 It Is The Output File Stream Class .

 Open()

 Put()

 Write()

♦ Fstream :

 It Supports Files For Input And Output .

Functions :

Open Opens The File .

Close Closes The File .

Close All It Closes All The Opened Streams

Seekg

Seekp

Tellg R

Tellp

Opening And Closing A File :

We Can Open A File In 2 Ways :

 Using Constructors Of The Stream Class .

 By Using Open() Function .

Opening The File Using Open() Function :

 Declare A New File In Ofstream Or Output Stream .

Advantages:

More Than One File Can Be Opened At A Time In Program .

Storing Files :

 If The Information Is Very Important Then We Must Try To Save It On Hard Disk So

That It Can Be Reused .

 Normally , Contents Of Objects Are Lost As Soon As Object Goes Out Of Scope Or

Execution Is Over .

 The Objects Which Remeber Their Data Are Called Persistent Objects .

Detecting End Of File :

 A Simple Method Know To Know Is By Testing The Strream In While

Loop

While(<Stream>)

{

//

}

 The <Stream> Returns 0 Then As Soon As End Of The File Is

Detected .

Graphics Handling :

Introduction :

 Graphics In C++ Is Defined To Create A Graphic Model By Creating Different

Shapes And Adding Colours To It.

 It Can Be Done In C++ Console By Importing Graphics.H Library To Gcc Compiler.

 We Can Draw Circle, Line, Ellipse And Other Geometric Shapes Too.

 The Application Of Oops Is A Primary Technique To Be Used Here.

 C++ Does Not Have Any Inbuilt Funtion To Perform Drawing As They Have Low

Level Programs To Use; Instead ,We Can Use Api To Do Graphics.

Formal Syntax :

The Formal Syntax Is Given As:

#include<graphics.h>

{

Initgraph();

}

ATTRIBUTES IN GRAPHICS :

 setcolor(color)

 setbkcolor(color)

 setlinestyle(style,pattern,thickness)

INITGRAPH :

 INITGRAPH IS USED TO INITIALIZE THE SYSTEM GRAPHICS BY LOADING

A GRAPHICS DRIVER FROM DISK AND THEREBY PUTTING THE SYSTEM

INTO GRAPHICS MODE .

 INITGRAPH HAS 3 PARAMETERS :

 1)GRAPHIC DETECT

 2)GRAPHIC MODE

 3)BGI FILE :

I)BGI STANDS FOR BORLAND GRAPHICS INTERFACE ,IT IS A

GRAPHIC LIBRARY.

II)THIS LIBRARY LOADS GRAPHIC DRIVER AND VECTOR

FONTS(*.CHR)

CLOSEGRAPH:

CLOSEGRAPH DELLOCATES THE MEMORY ALLOCATED BY THE SYSTEM

GRAPHICS AND THEN RESTORES THE SCREEN TO THE MODEIT WAS

BEFORE CALLING INITGRAPH.

COLOUR FUNCTIONS :

 IN C++ GRAPHICS THERE ARE 16 COLORS DECLARED

 WE USE THESE 16 COLOURS TO CHANGE BACKGROUND COLOUR,

FONT COLOUR, CHANGE COLOUR OF SHAPES, FILL COLOUR OF

SHAPES, CHANGE TEXT COLOUR .

TEXTCOLOR :

TEXTCOLOR IS USED TO SET THE TEXT COLOUR.

textcolor(green);

TEXT IN GREEN

SETBKCOLOR :

SETBKCOLOR IS USED TO SET THE BACKGROUND COLOUR BY

SPECIFYING THE COLOUR NAME OR NAME THE NUMBER.

setbkcolor(blue);

rectangle(100,100,200,200);

SETCOLOR :

SETCOLOR IS USED TO SET THE TEXT COLOR OR SET THE

 OUTLINE COLOUR OF VARIOUS SHAPES .

setcolor(green); (or) setcolor(3);

rectangle(100,100,200,200);

COLOUR NAME COLOUR

VALUE

BLACK 0

BLUE 1

GREEN 2

CYAN 3

RED 4

MAGENTA 5

BROWN 6

LIGHT GRAY 7

DARK GRAY 8

LIGHT BLUE 9

LIGHT GREEN 10

LIGHT CYAN 11

LIGHT RED 12

LIGHT MAGENTA 13

YELLOW 14

WHITE 15

OTHER FUNCTIONS :

 BLINK : IT HELPS TO BLINK THE CHARACTER ON THE

CONSOLE SCREEN WINDOW.

 GOTOXY : IT HELPS TO MOVE THE CURSOR TO ANY POSITION ON THE

SCREEN.

 DELAY : IT SUSPENDS A FEW SECTIONS .

 For example , For moving a car;it waits for a while .

 GETMAXX : RETURNS TO MAXIMUM OF X COORDINATES .

 GETMAXY : RETURNS TO MAXIMUM OF Y COORDINATES .

CO-ORDINATES :

THIS SPECIFIES HOW POINTS ARE PLACED IN A WINDOW ; THE INITIAL POINT

OF THE SCREENING POINT IS ASSUMED AS (0,0).

THIS CO-ORDINATED SYSTEM DEPICTS HOW AND WHERE TO PERFORM A

DRAW OPTION IS SPECIFIED .

❑ THE GRAPHICS SCREEN HAS 640*480 PIXELS.

SHAPES :

★ CLEAR() - IT RETURNS THE CURSOR POSITION TO (0,0).

★ CIRCLE(x,y,radius) - IT CREATES A CIRCLE WITH A GIVEN RADIUS .

 IT CAN BE DRAWN WITH THREE PARAMETERS .

 x,y,radius ARE THREE PARAMETERS USED .

 x,y ARE THE POINT OF CO-ORDINATES OF

CENTRE .

★ LINE(x,y) - IT CREATES A LINE WITH STARTING AND ENDING POINTS .

 IT CAN BE DRAWN WITH THREE PARAMETERS .

 x,y,radius ARE THREE PARAMETERS USED .

 (x1,y1) and (x2,y2) ARE THE POINT OF CO-ORDINATES OF

EITHER ENDS .

★ RECTANGLE(x1,x2,y1,y2) :IT IS USED TO CREATE A RECTANGLE.

 IT CAN BE DRAWN WITH THREE PARAMETERS .

 x,y,radius ARE FOUR PARAMETERS USED .

 x1,x2,y1,y2 ARE THE POINT OF CO-ORDINATES OF EITHER

ENDS .

 X1(LEFT)

 Y1(TOP)

 X2(RIGHT)

 Y2(BOTTOM)

NAMESPACE::

In C++, namespaces are used to organize code by grouping related elements together,

preventing naming conflicts. They are defined using the namespace keyword and accessed

using the scope resolution operator ::. Namespaces are beneficial for maintaining code clarity

and avoiding issues in large projects or when integrating different libraries. The using

namespace directive can simplify code, but it should be used cautiously to avoid unintended

conflicts.

#include <iostream>

// First namespace

namespace Math

 {

 int add(int a, int b)

 {

 return a + b;

 }

 int subtract(int a, int b)

 {

 return a - b;

 }

}

// Second namespace

namespace Utility

 {

 void displayMessage(const char* message)

 {

 std::cout << message << std::endl;

 }

}

int main()

{

 // Using functions from the Math namespace

 int sum = Math::add(10, 5);

 int difference = Math::subtract(10, 5);

 std::cout << "Sum: " << sum << std::endl;

 std::cout << "Difference: " << difference << std::endl;

 // Using function from the Utility namespace

 Utility::displayMessage("Hello, namespaces!");

 return 0;

}

ERROR HANDLING AND EXCEPTION HANDLING ::

Aspect Error Handling Exception Handling (C++)

Definition

Broad concept dealing with

both expected and unexpected

errors.

Specific mechanism for dealing with

exceptional situations using try, catch, and

throw.

Language

Support

Present in most programming

languages.

C++ has explicit support for exception

handling.

Handling

Method

- Return values indicating

success/failure.
 - Error

codes for specific error

conditions.
 - Global

variables or flags.
 -

Logging.

- try block contains code that might throw

an exception.
 - throw statement raises

an exception.
 - catch block handles

the exception.
 - Standard exception

classes (e.g., std::runtime_error).

Structured

Approach

Less structured, error checks

may be scattered throughout

the code.

More structured, separates error-handling

code from main logic.

Example

(C++)

cpp int result = divide(10, 0);

if (result < 0) { // handle error

}

cpp try { int result = divide(10, 0); } catch

(std::runtime_error& e) { // handle

exception }

Use Cases

- General error situations

where explicit handling is

feasible.
 - Commonly

used in many languages.

- Handling exceptional situations that are

not easily predictable.
 - Provides a

clean separation of normal and exceptional

code paths.
 - Used in C++ for robust

error management.

This tabular representation summarizes the key aspects of both error handling and exception

handling in programming, with a focus on C++ for exception handling.

EXCEPTION HANDLING SAMPLE CODE :

#include <iostream>

#include <stdexcept>

using namespace std;

float Division(float a, float b)

{

 if (b == 0)

 {

 throw runtime_error("Math error: Attempted to divide by Zero\n");

 }

 return (a / b);

}

int main()

{

 float a, b, result;

 a =12.5;

 b= 0;

 try

 {

 result = Division(a, b);

 cout << "The quotient is "<< result << endl;

 }

 catch (runtime_error& e)

 {

 cout << "Exception occurred" << endl << e.what();

 }

} // end main

