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MAXIMUM AND MINIMUM DEGREE ENERGIES OF p-SPLITTING

AND p-SHADOW GRAPHS

K. S. RAO1, K. SARAVANAN1, K. N. PRAKASHA2, I. N. CANGUL3, §

Abstract. Let vi and vj be two vertices of a graph G. The maximum degree matrix of
G is given in [2] by

dij =

{
max {di, dj} if vi and vj are adjacent

0 otherwise.

Similarly the (i, j)-th entry of the minimum degree matrix is defined by taking the
minimum degree instead of the maximum degree above, [1]. In this paper, we have
elucidated a relation between maximum degree energy of p−shadow graphs with the
maximum degree energy of its underlying graph. Similarly, a relation has been derived
for minimum degree energy also. We disprove the results EM (S′(G)) = 2EM (G) and
Em(S′(G)) = 2Em(G) given by Zheng-Qing Chu et al. [3] by giving some counterexam-
ples.

Keywords and Phrases: maximum degree energy, minimum degree energy, splitting
graph, shadow graph.

Mathematics Subject Classification: 05C50, 05C35

1. Introduction

The adjacency matrix of a graph G is known to be a {0, 1} matrix with the (i, j)-th
entry 1 if vi and vj are adjacent, and 0 if vi and vj are non-adjacent. Gutman introduced
the notion of energy of a graph contingent on adjacency matrix which was emanated by
the motivation of Hückel molecular orbital approximation, [5]. He defined the energy of a
graph as the sum of the absolute values of eigenvalues of the adjacency matrix. Due to the
intensive use of the adjacency matrix, many other graph matrices have been introduced
which are related to different properties of graph, see e.g. [4, 7, 9]. Distance matrix,
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of Mathematics, 2022; all rights reserved.

1



2 TWMS J. APP. AND ENG. MATH. V.12, N.1, 2022

Randic matrix, Laplacian matrix, partition matrix, sum connectivity matrix, minimum
covering matrix etc. are some of such matrices.

Let G be a simple graph with n vertices {v1, v2, · · · , vn} and let di be the degree of
vi for i = 1, 2, 3, · · · , n. The maximum degree matrix is defined by Adiga and Smitha
in [2] as

dij =

{
max {di, dj} if vi and vj are adjacent

0 otherwise

Let µ1, µ2, · · · , µn be the maximum degree eigenvalues of M(G). As the maximum
degree matrix is a real symmetric matrix with zero trace, these maximum degree eigenval-
ues are real with sum equal to zero. The maximum degree energy of a graph G is defined
similarly to the classical adjacency energy as

EM (G) =
n∑

i=1

|µi| .

It is shown that if the maximum degree energy of a graph is rational, then it must be
an even integer [2]. K.Srinivasa Rao, et al. [8] obtained bounds on the maximum degree
eigenvalues for a general graph and as well as some frequently used graph classes. Several
unicyclic graph classes are defined and their maximum degree eigenvalues and energy are
calculated [8].

The minimum degree matrix, [1], is defined similarly to the maximum degree matrix
with the change in (i, j)-th entry. Here the (i, j)-th entry is the minimum of the degrees
of two adjacent vertices vi and vj . Let ρ1, ρ2, · · · , ρn be the minimum degree eigenvalues
of the minimum degree matrix. The minimum degree energy is defined as

Em(G) =
n∑

i=1

|ρi| .

Proposition 1.1. [6] Let A ∈Mm, B ∈Mn. Let λ be an eigenvalue of A corresponding
to an eigenvector x and µ be an eigenvalue of B corresponding to an eigenvector y. Then
λµ is an eigenvalue of A⊗B corresponding to the eigenvector x⊗ y.

2. Maximum and minimum degree energy of splitting graphs

A derived graph is a graph which is obtained from a given graph according to some set
of rules. One of the derived graphs is called splitting graph. The splitting graph S

′
(G) of

a graph G is obtained by adding a new vertex u
′

to each vertex u such that u
′

is adjacent
to every vertex that is adjacent to u in G. See Fig. 1 as an example:

Figure 1
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2.1. Errors. Zheng-Qing Chu et al., [3], gave the following relations between EM (S′(G))
and EM (G) and also between Em(S′(G)) and Em(G). These two results are proven in this
paper to be incorrect. We provide some counter-examples which disprove these results.
First we recall the erroneous results:

Theorem 2.1. [3] For a graph G,

EM (S′(G)) = 2EM (G).

Theorem 2.2. [3] For a graph G,

Em(S′(G)) = 2Em(G).

Maximum and minimum degree matrices of G and S
′
(G) given in Fig. 1 are

M(G) =

 0 2 2
2 0 0
2 0 0


and

m(G) =

 0 1 1
1 0 0
1 0 0


and also

M(S
′
(G)) =


0 4 4 0 4 4
4 0 0 2 0 0
4 0 0 2 0 0
0 2 2 0 0 0
4 0 0 0 0 0
4 0 0 0 0 0

 and m(S
′
(G)) =


0 2 2 0 1 1
2 0 0 2 0 0
2 0 0 2 0 0
0 2 2 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

 .

Here EM (G) = 5.6569, Em(G) = 2.8284, EM (S′(G)) = 20.3961 and Em(S′(G)) = 10.198.
We can easily observe that EM (S′(G)) 6= 2EM (G) and Em(S′(G)) 6= 2Em(G). With this
example, we can conclude that Theorem 1 and Theorem 2 of [3] are not correct. This is
due to the wrong construction of M(S′(G)) and m(S′(G)) in the proof of Theorem 1 and
Theorem 2.

2.2. Maximum degree energy of p-splitting graphs. The p-splitting graph S
′
p(G) of

a graph G is obtained by adding p new vertices, say {u1, u2, · · · , up}, to each vertex u of
G such that for 1≤ i ≤ p, ui is adjacent to each vertex that is adjacent to u in G.

In this section, we consider an r-regular graph G and obtain the maximum degree energy
of a p-splitting graph S

′
p(G) in terms of the maximum degree energy of the graph G. Also

we obtain the maximum degree energy of p-splitting graphs of some classes of r-regular
graphs.

Theorem 2.3. If G is an r-regular graph, then

EM (Sp
′(G)) = (p+ 1)(

√
1 + 4p)EM (G).

Proof. Let {u1, u2, · · · , un} be the vertices of an r-regular graph G. Then the maximum
degree matrix M(G) is of order n where (i, j)-th entry is given by

M(G)(i, j) =

{
max(di, dj) if ui and uj are adjacent,

0 otherwise.
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Let {u1i , u2i , · · · , u
p
i } be the vertices corresponding to each vi which are added to G to

obtain S
′
p(G) such that N(u1i ) = N(u2i ) = · · · = N(vpi ) = N(vi) for i = 1, 2, · · · , n. The

maximum degree matrix of S
′
p(G) is a block matrix of the form

M(S
′
p(G)) =


(p+ 1)M(G) (p+ 1)M(G) · · · (p+ 1)M(G)
(p+ 1)M(G) 0 · · · 0
(p+ 1)M(G) 0 · · · 0

...
...

. . .
...

(p+ 1)M(G) 0 · · · 0



=


p+ 1 p+ 1 · · · p+ 1
p+ 1 0 · · · 0
p+ 1 0 · · · 0

...
...

. . .
...

p+ 1 0 · · · 0

⊗M(G) = A⊗M(G)

where O is a null matrix and A=


p+ 1 p+ 1 · · · p+ 1
p+ 1 0 · · · 0
p+ 1 0 · · · 0
· · · · · ·

p+ 1 0 · · · 0

.

The spectrum of A is

 0
(p+ 1)(1 +

√
1 + 4p)

2

(p+ 1)(1−
√

1 + 4p)

2
p− 1 1 1

.

Hence the spectrum of M(S
′
p(G)) is(

0µ1 · · · 0µn Xµ1 · · · Xµn Y µ1 · · · Y µn

p− 1 · · · p− 1 1 · · · 1 1 · · · 1

)

where X =
(p+ 1)(1 +

√
1 + 4p)

2
and Y =

(p+ 1)(1−
√

1 + 4p)

2
. Hence

EM (S
′
p(G)) =

n∑
i=1

∣∣∣∣(p+ 1)

(
1±
√

1 + 4p

2

)
µi

∣∣∣∣
= (p+ 1)

n∑
i=1

|µi|
(

1 +
√

1 + 4p

2
+

√
1 + 4p− 1

2

)
= (p+ 1)(

√
1 + 4p)EM (G).

�

Corollary 2.1. If G is a cycle graph of order n ≥ 3, then

EM (S
′
p(Cn)) = 4(p+ 1)

√
1 + 4p

n−1∑
k=0

∣∣∣∣cos
2kπ

n

∣∣∣∣ .
Proof. If G is a cycle graph Cn (n ≥ 3), then EM (Cn) = 4

∑n−1
k=0

∣∣∣∣cos
2kπ

n

∣∣∣∣, [8].

Since Cn is a 2-regular graph, we have the required result using Theorem 2.3. �
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Corollary 2.2. If G is complete graph of order n, then

EM (S
′
p(Kn)) = 2(p+ 1)

√
1 + 4p(n− 1)2.

Proof. If G is the complete graph Kn, then EM (Kn) = 2(n−1)2, [2]. Since Kn is an n−1
regular graph, using Theorem 2.3, we have the required result. �

Corollary 2.3. If Kn,n is a complete bipartite graph, then

EM (S
′
p(Kn,n)) = 2n2(p+ 1)

√
1 + 4p.

Proof. If G is a complete bipartitie graph, then EM (Km,n) = 2
√
mn3 for m ≥ n, [8].

Therefore EM (Kn,n) = 2n2. Hence by Theorem 2.3, we have the required result. �

Corollary 2.4. If G is a crown graph on 2n vertices, then

EM (S
′
p(G)) = 4(p+ 1)

√
1 + 4p(n− 1)2.

Proof. If G is a crown graph on 2n vertices then EM (G) = 4(n − 1)2, [8]. Hence by
Theorem 2.3, we have the required result. �

2.3. Minimum Degree Energy of p-Splitting Graphs. If G is an r-regular graph,
then m(G) = M(G). Hence we have the following result:

Theorem 2.4. If G is an r-regular graph, then

Em(G) = EM (G).

Theorem 2.5. If G is an r-regular graph, then

Em(Sp
′(G)) =

√
(p+ 1)2 + 4pEm(G).

Proof. Let {u1, u2, · · · , un} be the vertices of an r-regular graph G and m(G) be the
minimum degree matrix. Let {u1i , u2i , · · · , u

p
i } be the vertices corresponding to each vi

which are added in G to obtain S
′
p(G) such that N(u1i ) = N(u2i ) = · · · = N(vpi ) = N(vi),

i = 1, 2, · · · , n. Then the minimum degree matrix of S
′
p(G) is a block matrix of the form

m(S
′
p(G)) =


(p+ 1)m(G) m(G) · · · m(G)

m(G) O · · · O
m(G) O · · · O

...
...

. . .
...

m(G) O · · · O



=


p+ 1 1 · · · 1

1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0


p+1

⊗m(G)

=A⊗m(G)
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where O is a null matrix and A=


p+ 1 1 · · · 1

1 0 · · · 0
1 0 · · · 0
· · · · · ·
1 0 · · · 0

. Hence the spectrum of A is

 0
p+ 1 +

√
(p+ 1)2 + 4p

2

p+ 1−
√

(p+ 1)2 + 4p

2
p− 1 1 1

 .

Now the spectrum of m(S
′
p(G)) is

(
0µ1 · · · 0µn Pµ1 · · · Pµn Qµ1 · · · Qµn

p− 1 · · · p− 1 1 · · · 1 1 · · · 1

)

where P =
p+ 1 +

√
(p+ 1)2 + 4p

2
and Q =

p+ 1−
√

(p+ 1)2 + 4p

2
. Hence

Em(S
′
p(G)) =

n∑
i=1

∣∣∣∣∣p+ 1±
√

(p+ 1)2 + 4p

2
µi

∣∣∣∣∣
=

n∑
i=1

|µi|

(
p+ 1 +

√
(p+ 1)2 + 4p

2
+

√
(p+ 1)2 + 4p− (p+ 1)

2

)
=
√

(p+ 1)2 + 4pEm(G).

�

Corollary 2.5. If Cn is the cycle graph of order n (n ≥ 3), then

Em(S
′
p(Cn)) = 4

√
(p+ 1)2 + 4p

n−1∑
k=0

∣∣∣∣cos
2kπ

n

∣∣∣∣ .
Corollary 2.6. If Kn is the complete graph of order n, then

Em(S
′
p(Kn)) = 2(n− 1)2

√
(p+ 1)2 + 4p.

Corollary 2.7. If Kn,n is complete bipartite graph, then

Ep(S
′
(Kn,n)) = 2n2

√
(p+ 1)2 + 4p.

Corollary 2.8. If G is crown graph with 2n vertices then

Ep(S
′
(G)) = 4(n− 1)2

√
(p+ 1)2 + 4p.

3. Maximum and minimum degree energies of p-shadow graphs

The shadow graph D2(G) of a connected graph G is constructed by taking two copies

of G say G
′

and G
′′

and joining each vertex u
′

in G
′

to the neighbors of the corresponding
u

′′
in G

′′
. For example The p-shadow graph Dp(G) of a connected graph G is similarly

constructed by taking p copies of G, say G1, G2, · · · , Gp and then joining each vertex u
of Gi to the neighbors of the corresponding vertex v in Gj , for 1 ≤ i, j ≤ p. For example
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Figure 2. The shadow graph of P3

3.1. Maximum degree energy of p-shadow graphs.

Theorem 3.1. For a graph G, we have

EM (Dp(G)) = p2EM (G).

Proof. Let {u1, u2, · · · , un} be the set of vertices of a graph G. Then the maximum
degree matrix of G is the same with the one in the proof of Theorem 2.3. Consider p-
copies of graph G, say G1, G2, · · · , Gp with vertices u11, u

2
2, · · · , u

p
n. To obtain Dp(G),

each vertex v in Gj is joined to the neighbors of the corresponding vertex v in Gj , for 1
≤ i, j ≤ p. Then M(Dp(G)) is a block matrix of order np and it is of the form

M(Dp(G)) =


pM(G) pM(G) · · · pM(G)
pM(G) pM(G) · · · pM(G)
pM(G) pM(G) · · · pM(G)

...
...

. . .
...

pM(G) pM(G) · · · pM(G)



=


p p · · · p
p p · · · p
p p · · · p
...

...
. . .

...
p p · · · p

⊗M(G)

= pJp ⊗M(G).



8 TWMS J. APP. AND ENG. MATH. V.12, N.1, 2022

Since the spectrum of pJp is

(
0 p2

p− 1 1

)
, the spectrum of M(Dp(G)) is(

0µ1 · · · 0µn p2µ1 · · · p2µn
0 · · · 0 1 · · · 1

)
.

Hence we deduce

EM (Dp(G)) =
n∑

i=1

|p2µi|

= p2EM (G).

�

In the following corollaries, we obtain the maximum degree energies of shadow graphs
of some classes of graphs:

Corollary 3.1. If G is a cycle graph of order n ≥ 3, then

EM (Dp(Cn)) = 4p2
n−1∑
k=0

∣∣∣∣cos

(
2kπ

n

)∣∣∣∣ .
Corollary 3.2. If G is a complete graph of order n, then

EM (Dp(Kn)) = 2p2(n− 1)2.

Corollary 3.3. If Km,n is the complete bipartite graph with m ≥ n, then

EM (Dp(Km,n)) = 2p2
√
mn3.

Proof. Since EM (Km,n) = 2
√
mn3 for m ≥ n [8], EM (Dp(Km,n)) = 2p2

√
mn3. �

Corollary 3.4. If G is a path graph on n vertices, then

EM (Dp(Pn)) = 4p2
n∑

k=1

∣∣∣∣cos
kπ

n+ 1

∣∣∣∣ .
Proof. If G is a path graph on n vertices, then EM (Pn) = 4

∑n
k=1

∣∣∣∣cos
kπ

n+ 1

∣∣∣∣, [8]. There-

fore EM (Dp(Pn)) = 4p2
∑n

k=1

∣∣∣∣cos
kπ

n+ 1

∣∣∣∣ . �

Corollary 3.5. If G is a crown graph with 2n vertices, then

EM (Dp(G)) = 4p2(n− 1)2.

3.2. Minimum degree energy of p-shadow graphs. In this section, we obtain the
minimum degee energy of a p-shadow graph in terms of minimum degree energy. Also
obtained the minimum degree energy of p-shadow graphs of some classes of regular graphs.

Theorem 3.2. For a graph G, Em(Dp(G)) = p2Em(G).

Proof. Let m(G) be the minimum degree matrix of G. Then, mimimum degree matrix of
p-shadow graph of G is block matrix of order pn and it is of the form

m(Dp(G)) =


p ·m(G) p ·m(G) · · · ·m(G)
p ·m(G) p ·m(G) · · · p ·m(G)

...
...

. . .
...

p ·m(G) p ·m(G) · · · p ·m(G)

 = Jp ⊗m(G).
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Since the spectrum of pJp is (
0 p2

p− 1 1

)
,

the spectrum of m(Dp(G)) is(
0ρ1 · · · 0ρn m2ρ1 · · · m2ρn
0 · · · 0 1 · · · 1

)
.

Hence

Em(Dp(G)) =
n∑

i=1

|p2ρi| = p2Em(G).

�

We now obtain the minimum degree energy of shadow graph of some classes of graphs
in the following corollaries:

Corollary 3.6. If G is a cycle graph of order n ≥ 3, then

Em(Dp(Cn)) = 4p2
n−1∑
k=0

∣∣∣∣cos
2kπ

n

∣∣∣∣ .
Corollary 3.7. If G is a complete graph of order n, then

Em(Dp(Kn)) = 2p2(n− 1)2.

Corollary 3.8. If G is crown graph with 2n vertices, then

Em(Dp(G)) = 4p2(n− 1)2.

Corollary 3.9. If Kr,s is the complete bipartite graph with r ≥ s, then

Em(Dp(Kr,s)) = 2p2
√
rs3.
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Abstract

In this paper, we obtained Hosoya polynomial and Wiener index of (1 × n) ,
(2 × n), (3 × n) and (4 × n) King’s graph type nanostructures and extended this to
(n× n) King’s graph.

AMS 2010 Subject Classification Number: 05C07, 05C30, 05C38, 05C76
Keywords: Wiener Index, Hosoya Polynomial, King’s graph.

1 Introduction
Now a days graph theory has many applications in such different fields as computer sci-
ence, engineering, biology etc., and particularly in chemistry. In 1947, Harold Wiener
published a paper [1], entitled Structural Determination of Paraffin Boiling Points. In this
work, Wiener Index or Wiener number was introduced for the first time and he used his
index for the calculation of the boiling points of alkanes. Let G be a connected graph, then
the Wiener Index of the graph G(V,E) is defined as :

W (G) =
∑

{u,v}⊂V (G)

d(u, v)
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where d(u, v) is the minimum of the lengths of all u− v paths in G, i.e., the shortest path
between the vertices u and v. The Hosoya polynomial (also called Wiener polynomial) of
G is defined as

H(G, x) =
∑

{u,v}⊂V (G)

xd(u,v).

It is clear that
H(G, x) =

∑
k≥0

d(G, k)xk,

where d(G, k) is the number of pairs (u, v) of vertices of G such that d(u, v) = k. The
Hosoya polynomial of a vertex v of G is defined as

H(v,G;x) =
∑
k≥1

d(v,G, k)xk,

in which d(v,G, k) is the number of all vertices u belonging to V (G), such that d(u, v) =
k. The Wiener index of G can be obtained directly from the Hosoya polynomial of G as
follows:

W (G) =
d

dx
(H(G, x))|x=1.

Gutman. et.al [2] obtained Hosoya polynomial for a number of homologeous series of
unbranched catcondensed benenoid systems using recursive method. In [3]-[4], Rao, N.P.
and Prasanna, A.L., obtained formulas for Wiener indices of chemical graphs formed of
concatenated 5-cycles. Ali.A.Ali and Ahmed M. Ali [5] Hosoya polynomials of several
types of graphs consisting of concatenated pentagonal rings are obtained using induction.
Recently K.S.Rao, et.al [6], obtained Hosoya polynomials of different types of graphs con-
sisting of concatenated octachain rings are obtained. In this paper,we calculated Hosoya
polynomial and Wiener index of (1× n) , (2× n), (3× n), (4× n), (5× n) King’s graph
type nanostructures and extended this to (n× n).

1.1 King’s Graph
King’s graph is a graph that represents all legal moves of the king chess piece on a chess-
board where each vertex represents a square on a chessboard and each edge is a legal move.
More specifically, an (m×n) king’s graph is a king’s graph of an (m×n) chessboard.It is
the map formed from the squares of a chessboard by making a vertex for each square and
an edge for each two squares that share an edge or a corner. For (n× n) King’s graph, the
total number of vertices is (n− 1)2 and the number of edges 2n(2n+1). We obtained the
Hosoya Polynomial and Wiener index for the graph G(1 × n, S1), consisting of one row
and n columns of King’s graph in the next theorem.

2
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Figure 1: G(1× n, S1)

Theorem 1.1. The Hosoya polynomial of the graph G(1× n, S1) is given by

H[G(1× n, S1)] = (5n+ 1)x+ 4
n−1∑
k=1

(n− k)xk+1, n ≥ 2

Proof. We prove this theorem using Mathematical induction on n for n ≥ 2.
For n = 2, we have by direct calculation, the Hosoya polynomial is 11x + 4x2.Also,
H[G(1× 2, S1)] = 11x+ 4

∑1
k=1(2− k)xk+1 = 11x+ 4x2. Thus, the theorem is true for

n = 2.
Let us assume that the theorem is true for n = r ≥ 2 and we prove this is true for n = r+1.
From the figure 1,

H[G(1× (r + 1), S1)] = H[G(1× r, S1)] + g(x) (1)

where g(x) =
∑2

i=1 (H[ai, G(1× (r + 1), S1)])−x+4xr+1 and a1 = ur+2, a2 = vr+2.
But by the symmetry H[ur+2, G(1× (r + 1), S1)] = H[vr+2, G(1× (r + 1), S1)]
Therefore, g(x) = H[ur+2, G(1× (r + 1), S1)]− x+ 4xr+1.
Also, H[ur+2, G(1× (r + 1), S1)] = 3x+ 2

∑r−1
k=1 x

k+1.
Therefore,

g(x) = 6x+ 4
r−1∑
k=1

xk+1 − x+ 4xr+1

= 5x+ 4
r−1∑
k=1

xk+1 = 5x+ 4
r∑

k=1

xk+1

3
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Therefore, from (1)

H[G(1× (r + 1), S1)] = H[G(1× r, S1)] + g(x)

= (5r + 1)x+ 4
r−1∑
k=1

(r − k)xk+1 + 5x+ 4
r∑

k=1

xk+1

= [5(r + 1) + 1)x+ 4
r∑

k=1

[(r + 1)− k]xk+1

Hence the result is true for all n ≥ 2. Thus we haveH[G(1 × n, S1)], n ≥ 2. The
Hosoya polynomial for G(1 × 1, S1) = 6x. Hence we have the Hosoya polynomial for
H[G(1× n, S1)] for all natural numbers n.

Theorem 1.2. The Wiener index of the graph G(1× n, S1) is given by

W (G(1× n, S1)) =
1

3

(
2n3 + 6n2 + 7n+ 3

)
, n ≥ 2

Proof. Wiener index can be obtained by taking derivative of H[G(1×n, S1)] with respect
to x and substituting x = 1.

W (G(1× n, S1)) =
d

dx
(H[G(1× n, S1)])x=1

= (5n+ 1) + 4
n−1∑
k=1

(n− k)(k + 1)

= (5n+ 1) +
2

3
(n3 + 3n2 − 4n)

=
1

3

(
2n3 + 6n2 + 7n+ 3

)
, n ≥ 2

By direct calculation W [G(1 × n, S1)] =6. Thus we obtained W (G(1 × n, S1)) for all
natural numbers.

Here, we consider the structure S2 consisting of 2 rows and n columns of King’s graph,
i.e, G(2× n, S1) and obtained Hosoya polynomial and Wiener index.

Theorem 1.3. The Hosoya polynomial of the graph G(2× n, S2) is given by

H[G(2× n, S2)] = (9n+ 2)x+ (12n− 8)x2 + 9
n−1∑
k=2

(n− k)xk+1, n ≥ 3
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Figure 2: G(2× n, S2)

Proof. We prove this theorem using Mathematical induction on n for n ≥ 3
For n = 3, we have by direct calculation, the Hosoya polynomial is 29x+28x2+9x3.Also
H[G(2× 3, S2)] = 29x+ 28x2 + 9x3. Hence the theorem is true for n = 3.
Let us assume that the theorem is true for n = r ≥ 3 and we prove this is true for n = r+1.
From the figure 2,

H[G(2× (r + 1), S2)] = H[G(2× r, S2)] + g(x) (2)

where g(x) =
∑3

i=1 (H[ai, G(2× (r + 1), S2)])− 2x− x2 + 9xr+1 and a1 = ur+2, a2 =
vr+2, a3 = wr+2. But by the symmetry H[ur+2, G(2× (r+1), S2)] = H[wr+2, G(2× (r+
1), S2)]
Therefore,
g(x) = 2H[ur+2, G(2×(r+1), S2)]+H[vr+2, G(2×(r+1), S2)]−2x−x2+9xr+1. Also,
H[ur+2, G(2× (r+1), S2)] = 3x+5x2+3

∑r−1
k=2 x

k+1. and H[vr+2, G(2× (r+1), S2)] =
5x+ 3

∑r−1
k=1 x

k+1.
Therefore,

g(x) = 6x+ 10x2 + 6
r−1∑
k=2

xk+1 + 5x+ 3
r−1∑
k=2

xk+1 − 2x− x2 + 9xr+1

= 11x+ 13x2 + 9
r−1∑
k=2

xk+1 − 2x− x2 + 9xr+1

= 9x+ 12x2 + 9
r∑

k=2

xk+1
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Therefore,

H[G(2× (r + 1), S2)] = H[G(2× r, S2)] + g(x)

= (9r + 2)x+ (12r − 8)x2 + 9
r−1∑
k=2

(r − k)xk+1 + 9x+ 12x2 + 9
r∑

k=2

xk+1

= [9(r + 1) + 2]x+ [12(r + 1)− 8]x2 + 9
r∑

k=2

[(r + 1)− k]xk+1

Hence the result is true for all n ≥ 3. Thus we obtain H[G(2× n, S2)] for all n ≥ 3. The
Hosoya polynomial of G(2× 1, S2) = 11x+ 4x2 and G(2× 2, S2) = 20x+ 16x2. Hence
we have the Hosoya polynomial of G(2× n, S2) for all natural numbers n.

Theorem 1.4. The Wiener index of the graph G(2× n, S2) is given by

W (G(2× n, S2)) =
1

2

(
3n3 + 9n2 + 18n+ 8

)
, n ≥ 3

Proof. The proof of the theorem is similar to the proof of Theorem 1.2

By direct calculation W [G(2×1, S2)] =19 and W [G(2×2, S2)] =52 Thus we obtained
W (G(2× n, S2)) for all natural numbers.
Here, we consider the structure S3 consisting of 3 rows and n columns of King’s graph,
i.e, G(3× n, S3) and obtained Hosoya polynomial and Wiener index.

Theorem 1.5. The Hosoya polynomial of the graph G(3× n, S3) is given by

H[G(3×n, S3)] = (13n+3)x+(20n−12)x2+(21n−33)x3+16
n−1∑
k=3

(n−k)xk+1, n ≥ 4

Proof. We prove this theorem using Mathematical induction on n for n ≥ 4
For n = 4, we have by direct calculation, the Hosoya polynomial is 55x+ 68x2 + 51x3 +
16x4. Also H[G(3× 4, S3)] = 55x+ 68x2 + 51x3 + 16x4. Hence the theorem is true for
n = 4.
Let us assume that the theorem is true for n = r ≥ 4 and we prove this is true for n = r+1.
From the figure 3,

H[G(3× (r + 1), S3)] = H[G(3× r, S3)] + g(x) (3)

where g(x) =
∑4

i=1 (H[ai, G(3× (r + 1), S3)]) − 3x − 2x2 − 9x3 + 16xr+1 and a1 =
ur+2, a2 = vr+2, a3 = wr+2, a4 = xr+2. But by the symmetry

6
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Figure 3: G(3× n, S3)

H[ur+2, G(3× (r + 1), S3)] = H[xr+2, G(3× (r + 1), S3)]

H[vr+2, G(3× (r + 1), S3)] = H[wr+2, G(3× (r + 1), S3)]

Therefore,

g(x) = 2H[ur+2, G(3×(r+1), S3)]+2H[vr+2, G(3×(r+1), S3)]−3x−2x2−x3+16xr+1

Also, H[ur+2, G(3× (r + 1), S3)] = 3x+ 5x2 + 7x3 + 4
∑r−1

k=3 x
k+1. and

H[vr+2, G(3× (r + 1), S3)] = 5x+ 6x2 + 4
∑r−1

k=2 x
k+1.

Therefore,

g(x) = 16x+ 22x2 + 22x3 + 16
r−1∑
k=3

xk+1 − 3x− 2x2 − x3 + 16xr+1

= 13x+ 20x2 + 21x3 + 16
r−1∑
k=3

xk+1 + 16xr+1

Therefore,

H[G(3× (r + 1), S3)] = H[G(3× r, S3)] + g(x)

= (13r + 3)x+ (20r − 12)x2 + (21r − 33)x3 + 16
∑r−1

k=3(r − k)xk+1

+13x+ 20x2 + 21x3 + 16
∑r−1

k=3 x
k+1 + 16xr+1

= [13(r + 1) + 3]x+ [20(r + 1)− 12]x2 + [21(r + 1)− 33]x3

+16
∑r−1

k=3[(r + 1)− k]xk+1

Hence the result is true for all n ≥ 4. Thus we obtain H[G(3× n, S3)] for all n ≥ 4.

7
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The Hosoya polynomial of G(3 × 1, S3) = 16x + 8x2 + 43, G(3 × 2, S3) = 29x +
28x2+9x3 and G(3×3, S3) = 42x+48x2+30x3. Hence we have the Hosoya polynomial
of G(3× n, S3) for all natural numbers n.

Theorem 1.6. The Wiener index of the graph G(3× n, S3) is given by

W (G(3× n, S3)) =
1

3

(
8n3 + 24n2 + 28n+ 120

)
, n ≥ 4

By direct calculation, W (G(3 × 1, S3))=44, W (G(3 × 2, S3))=112, and W (G(3 ×
3, S3))=228. Thus we obtain, W (G(3× n, S3)) for all natural numbers n.
Here we consider the structure S4 consisting of 4- rows and n-columns of King’s graph
and obtained the Hosoya polynomial and Wiener index.

Theorem 1.7. The Hosoya polynomial of the graph G(4× n, S4), ∀ n ≥ 5 is given by

H[G(4×n, S4)] = (17n+4)x+(28n−16)x2+(33n−48)x3+(32n−80)x4+25
n−1∑
k=4

(n−k)xk+1

Proof. We prove this theorem using Mathematical induction on n for n ≥ 5
For n = 5, we have by direct calculation, the Hosoya polynomial is 89x+124x2+117x3+
80x4 + 25x5. Also H[G(4 × 5, S4)] = 89x + 124x2 + 117x3 + 80x4 + 25x5. Hence the
theorem is true for n = 5.
Let us assume that the theorem is true for n = r ≥ 5 and we prove this is true for n = r+1.
From the figure 4,

H[G(4× (r + 1), S4)] = H[G(4× r, S4)] + g(x) (4)

where g(x) =
∑5

i=1 (H[ai, G(4× (r + 1), S4)]) − 4x − 3x2 − 2x3 − x4 + 25xr+1 and
a1 = ur+2, a2 = vr+2, a3 = wr+2, a4 = xr+2 and a5 = yr+2 But by the symmetry

H[ur+2, G(4× (r + 1), S4)] = H[yr+2, G(4× (r + 1), S4)]

H[vr+2, G(4× (r + 1), S4)] = H[xr+2, G(4× (r + 1), S4)]

Therefore,

g(x) = 2H[ur+2, G(4×(r + 1), S4)] + 2H[vr+2, G(4× (r + 1), S4)]

+H[wr+2, G(4× (r + 1), S4)]− 4x− 3x2 − 2x3 − x4 + 25xr+1

Also,

H[ur+2, G(4× (r + 1), S4)] = 3x+ 5x2 + 7x3 + 9x4 + 5
r−1∑
k=4

xk+1
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Figure 4: G(4× n, S4)

H[vr+2, G(4× (r + 1), S4)] = 5x+ 6x2 + 8x3 + 5x4 + 5
r−1∑
k=4

xk+1

H[wr+2, G(4× (r + 1), S4)] = 5x+ 9x2 + 5x3 + 5x4 + 4
r−1∑
k=4

xk+1

Therefore,

g(x) = 6x+ 10x2 + 14x3 + 18x4 + 10
∑r−1

k=4 x
k+1 + 10x+ 12x2 + 16x3

+10x4 + 10
∑r−1

k=4 x
k+1 + 5x+ 9x2 + 5x3 + 5x4 + 5

∑r−1
k=4 x

k+1

−4x− 3x2 − 2x3 − x4 + 25xr+1

= 17x+ 28x2 + 33x3 + 32x4 + 25
∑r−1

k=4 x
k+1 + 25xr+1

Therefore,

H[G(4× (r + 1), S4)] = H[G(4× r, S4)] + g(x)
= (17r + 4)x+ (28r − 16)x2 + (33r − 48)x3

+(32r − 80)x4 + 25
∑r−1

k=4(r − k)xk+1 + 17x+ 28x2

+33x3 + 32x4 + 25
∑r−1

k=4 x
k+1 + 25xr+1

= [17(r + 1) + 4]x+ [28(r + 1)− 16]x2 + [33(r + 1)− 48]x3

+[32(r + 1)− 80]x4 + 25
∑r

k=4[(r + 1)− k]xk+1
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Hence the result is true for all n ≥ 5. Thus we obtain H[G(4× n, S4)] for all n ≥ 5.

The Hosoya polynomial of G(4× 1, S4) = 21x+ 12x2 + 8x3, G(4× 2, S4) = 38x+
40x2 + 18x3 + 9x4,G(4 × 3, S4) = 55x + 68x2 + 51x3 + 16x4 and G(4 × 4, S4) =
72x+ 96x2 + 84x3 + 48x4 Hence we have the Hosoya polynomial of G(4× n, S4) for all
natural numbers n.

Theorem 1.8. The Wiener index of the graph G(4× n, S4) is given by

W (G(4× n, S4)) =
1

6

(
25n3 + 75n2 + 350n+ 48

)
, n ≥ 5

By direct calculation, W (G(4 × 1, S4))=85, W (G(4 × 2, S4))=208, and W (G(4 ×
3, S4))=408 and W (G(4× 4, S4))=708. Thus we obtain, W (G(4× n, S4)) for all natural
numbers n.
Finally we consider the graph G(n × n, Sn) consisting of n- rows and n -columns of
King’s graph as shown in the fig.5 and the Hosoya polynomial, Wiener index are given in
the following theorems.

Figure 5: G(n× n, Sn)
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Theorem 1.9. The Hosoya polynomial of the graph G(n× n, Sn) is given by

H[(n× n, Sn)] = 2
n−1∑
k=0

(k + 1)(n− k)(2n− k + 1)xk+1

Theorem 1.10. The Wiener index of the graph G(n× n, Sn) is given by

W [(n× n, Sn)] =
1

30
(7n5 + 35n4 + 65n3 + 55n2 + 18n)
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INTRODUCTION:  

Petri nets are introduced in [1][2]. 

Generating basis siphons and traps of Petri 

nets using the sign incidence matrix is 

discussed in [3].The analysis of marked 

graph are discussed in [4] [5], we take the 

marked graph of 2 machine system 

processing two part types given in [6] and 

analyse them using sign incidence matrix 

suggested in [3] [4] [5]. This paper is 

organised as follows. 

Section I contains basic definitions on 

petri nets. Section II contains algorithm 

given in [3] [4] [5].section III contains 

analysis of marked graph given in 6 using 

sign incidence matrix section IV contains 

conclusions and references. 

SECTION I 

1.1 BASIC DEFINITIONS: 

A PN is a bipartite graph, where 

nodes are classified as places and 

transitions (graphically pictured as circles 

and bars, respectively), and directed arcs 

connect only nodes of different type. 

Places are endowed with integer variables 

called tokens. More formally, a marked PN 

is a 5-tuple N = (P, T, F, W, M0), where P  

is a finite set of places, T is a finite set of 

transitions, with P∩T = ∅,F⊂(PxT)U (T x 

P) is the incidence or flow relation (each 

element of F corresponds to an arc in the 

PN), W : F —> N \ {0} is the arc weight 

function, and M0: P —> N is the initial 

marking (a marking M : P —> N defines 

the distribution of tokens in places), where 

N is the set of natural numbers. 

It is an ordinary PN iff W admits 

only unitary weights. The flow arc weight 

information can be given In the form of 

matrices, namely the input (I) and output 

(0), or incidence (C = O — I) 

matrices.)The generic element ikj[okj] of 

the J|p|x|T|[0|p|x|T|] matrix"represents the 

weight of the arc from place pk to 

transition tj [from transition tj to place pk] 

(conventionally, a 0 value is associated to 

nonexisting arcs). The preset •X of a set of 

nodes X C P U T is defined as •X = [y ∈ P 

∪ T\3x ∈  Xs.t.(y,x) ∈  F}. Similarly, the 

postset of X is defined as X •  = {y ∈   P U 

T\3x ∈  X s.t.(x,y) ∈ F}. 

A transition tj e T is said to be 

enabled in a marking M if M > /(*, j), 

where A(*J) indicates the jth column of a 

generic matrix A. An enabled transition 

may fire, yielding the marking M* = M + 

C(*J). 

   Definition 1.2: A Marked graph is 

a petri net in which each place as exactly 

one input transition and one output 

transition. 
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   Definition 1.3: For a Petrinet N 

with n-transitions and m-places, the sign 

incidence matrix A = [aij]is        an n x m 

matrix, where its entry is given as follows. 

aij       =        +  if place j is an output place 

of transition i. 

 aij       =      —  if it is an input place of 

transition i.t 

 aij        =          ±   if it is both input and 

output places of transition i (i.e. transition  i 

and place j form a self loop ) and 

aij=             0 otherwise.  

  Definition 1.4: The addition denoted by 

⊕ is a commutative binary operation on 

the set of four             elements B = {+,-, 0, 

± } defined as follows.[3][4][5] 

+    ⊕   -   =    ±     

X   ⊕   x   =    x,          For every x ∈ B 

±   ⊕   x   =    ±,          For every x ∈ B 

0   ⊕     x   =    x,         For every x ∈ B 

 Definition 1.5 : 

A subset of places denoted as Z is 

both siphon and trap if Z * = * Z 

SECTION II 

Enumeration of siphon and trap 

subsets of places of marked graphs 

In this section we present an 

algorithm for marked graphs to find all 

subsets of places which are both siphon 

and trap. We define a siphon-trap matrix 

for marked graphs. An relation between 

signincidence matrix and siphon-trap 

matrix for marked graphs is obtained. 

Theorem : 2.1 subset of k-places Z = {p1, 

p2> ...... pk) in a marked graph N is both 

siphon and trap iff the addition of k-

column vectors of the sign incidence 

matrix of N, A⊕ A2 ⊕.....⊕ Ak contains 

either zero entry or ± entry where Aj 

denote the column vector corresponding to 

place P j, j = 1,2,....k. 

Proof:Let A1 ⊕ A2 ⊕ ..... © Ak = V = 

[vj], where Vj denote the ith row of the 

column vector V. The following 

statements are obvious from the definition 

of sign incidence matrix and the operation 

⊕. 

(a)      Vi = 0 means that no place in Z is 

an input or output place of 

transition i. 

(b)      Vj =   + means that some place in Z 

is an output place of transition i. 

(c)       v, =   - means   that   some   place   

in   Z   is   an   input   place   of transition i.  

and 

(d)      Vj =   ±   means that some place in 

Z is an input place of transition i and some 

place in Z is an output place of transition i. 

From the above it can be seen that 

every transition having an output place in 

Z has an input place in Z iff Vi ≠ + , for 

every i and every transition having an 

input place in Z has an output place in Z iff 

Vi ≠ — for every i. Thus every transition 

having an input place in Z and an output 

place in Z iff Vi ≠ + or —. That is if the 

vector V has only either zero entry or ± 

entry. Thus Z is both siphon and trap iff 

the vector V contains only either zero or ± 

entries. 

Definition 2.2:  A + entry is said to be 

neutralized by adding a—entry to get a ± 

entry. 

ALGORITHM 2.3 [3][4][5] 

Input   :  Sign incidence matrix A of order 

m x n. 

Step 1:Select Aj, the first column in 

the sign incidence matrix A, whose 

corresponding ‘place is  denoted as 

PLACEj. 

Set recursion level r to 1  

Set Vj r = Aj 

Set PLACE jr = PLACE j 

Step 2:If Vjr has a ± entry at ith row 

then PLACE j is a self loop with 

transition tj. Go to step 5. 
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Step 3:If Vi j has a+ entry in the kth 

row find a column A, which contains 

a- entry at the kth row. 

(a) If no such column A8exists, Go to step 5. 

(b) If such A, exists add it to Vj r to obtain 

Vj(r+1), = Vj r⊕ Ag, containing a ± entry at kth 

row. Then PLACEj(r+1) = PLACEjr U 

PLACE g. 

(c) Repeat this step for all possible 

nutralizing columns Ag. This gives a new 

set of Vj(r+1)'s and PLACEj(r+!)’s. 

Step 4:Increment r by 1. Repeat step 3 

until there are no more + entries in 

each V^- r = A! 0 A2 0 .... 0 A,- r or no 

neutralizing column can be found. 

Step 5:Any Vjr without + entries and 

without-entries (i.e., all the entries are 

either zero or ±) represents both 

siphon and trap (By theorem ). i.e., the 

places in PLACEj r form both siphon 

and trap. 

Step 6: 

Delete A j 

j=j+1 

Output:All sets which are both siphon 

and trap. 

SECTION III 

FLEXIBLE MANUFACTURING 

SYSTEM. 

A Flexible manufacturing system 

(FMS) is an integrated computer 

controlled configuration of machine tools 

and automated material handling devices 

that simultaneously process medium sized 

volumes of a variety of part types. High 

productivity is achieved in such system by 

effectively incorpariting principle of 

Group technology, total quality control, 

etc,. and following  production  control 

strategies such as manufacturing resources 

planning (MRP II ) and just in time (JIT) 

production. Flexible manufacturing system 

is a discrete event dynamical system in 

which the work pieces Of various job 

classes enter the system asynchronously 

and are Concurrently, sharing the limited  

resources, viz., workstations, robots, MHS, 

buffrs and so on. Modeling ,analysis and 

performance evaluations studies of fame 

are of immense practical interest  to 

estabilish feasibility , evaluate qualitative 

and quantitative performance  and compare 

alternative fess configuration. 

Consider a set of two machine m1 and m2  

processing two part types j1 and j2 each 

part type  goes through one stage o f 

operation and this operation can be 

performed or either m1 or m2 figure 1 

depicts the Petri net model of the situation  

the places, transition have the following 

interpretation . 

P1  : available fresh jobs. 

P2  : available machine . 

P3  :  processi of  in progress  

T1  : transition indicating start of 

processing. 

T2  : transition indicating finishing of 

processing . 

 

For the above marked graph the sign 

incidence matrix is given by 

A=
𝑡1

𝑡2
[
𝑃1 𝑃2 𝑃3

− − −
+ + −

] 

Take the first column of A.By applying the 

above algorithm we get 

A1= V11 = [
−
+] 

V11
(1)= [

−
+] ⊕ [

+
−

]      = [
±
±

]          PLACE 

11
(1) = {P1,P3 } 

A2 = V21 = [
−
+] 
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V21
(1)=[

−
+] ⊕ [

+
−

]  = [
±
±

] PLACE ={P2,P3 } 

A3= V31
(1)=[

−
+] 

V31
(2)=[

+
−

] ⊕ [
−
+]      =[

±
±

] 

V31
(3)=[

+
−

] ⊕ [
−
+]  =[

±
±

]  PLACE ={P3,P2 } 

The set of places which are both siphon 

and traphs are given by Z1=[p1,p3] 

Z2=[P2,P3]. 

DEFINITION 3.1: Let ST = {Z1,Z2, .....Zm } 

be a set of subsets of places which are both 

siphon and trap of a marked graph N. Then 

siphon- traph matrix of N denoted as 

ST(N)=(aij) is a matrix where n= |𝑃| , the 

number of places of N  

  aij                 =         1   if  place j belongs to Zi 

                         =        0   otherwise 

The siphon trap matrix of the given 

marked graph N is given by  

ST(N)=
𝑍1

𝑍2
[
𝑃1 𝑃2 𝑃3

1 0 1
0 1 1

]  

Definition 3.2 : A Commutative binary 

operation ⊛  between the sets C= {0,1} 

and B = {0,+,-,±} is defined as  

    0  ⊛   X  =  0   x ∈ B 

    1   ⊛   ± =   0 

    1   ⊛  X =  x       for all  x ∈ B – {±}. 

Definition 3.3: A commutative binary 

operation Θ on the set U = { 0, + , - } is 

defined as  

 0          Θ        x              =    x 

+          Θ        +              =   + 

-       Θ         -              =   - 

+         Θ         -              =    0 

THEOREM 3.4: Let ST(N) and A denote 

the siphon traph matrix and sign incidence 

matrix for a marked graph N. then A⊛ 

ST(N)T=ST(N) ⊛ AT=0   (under Θ ) 

The theorem can easily verified for the 

above 2 matrices. 

THEOREM 3.5: Let N be a marked graph 

with initial marking M0. Let Z 

={P0,P1,…PS } be asset of places which is 

both siphon and trap . Then for any 

marking M ∈R(M0), 

∑ 𝑀𝑆
𝑖=0  (pi)   =  ∑ 𝑀𝑆

𝑖=0 0 (pi) 

 The petri Nets fig 1  may have 

three types of initial markings they are  M0 

= (1, 1,1)  in this marking both t1 and t2 will 

be enabled and there will be a conflict 

therefore we can assume M10=(0,0,1) or 

M0=(1,0,1).In the first case t2 is enabled 

and can fire. In the Second case 

 t1  is enabled and can fire.This Petri Net is 

live.But the token count is not the 

same.Therefore the above theorem is not 

satisfied. 

We convert the above  Petri Net in 

Fig 1 in to a directed graph by the 

following way.The transitions are changed 

in to vertices and places as edges.The arc 

is drawn as per the input and output 

relationship of the transitions. 

 

The above diagraph is not an Euler 

digraph as in degree is not equal to out 

degree in both the vertices. Therefore 

further analysis is not possible according 

to   

SECTION IV 

CONCLUSION 

  In this paper we took a 

marked graph of  a two machine system 

processing two part types. We analyse it 

using sign incidence matrix and find the 

set of places which are both siphon and 
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trap. We form the siphon-trap matrix and 

we analyse it.we form the equivalent 

digraph and analyse it.   
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ABSTRACT

The effects of convective heat generation and the oscillatory motion of a plate in the presence 
of MHD, Alumina nanofluid flow, thermal radiation, and Hall current are considered. 
The plate oscillates harmonically in its axes with uniform temperature. The dimensional 
equations have to be changed into non-dimensional equations with a set of dimensionless 
parameters. The Laplace transformation technique is utilized to get an exact solution. The 
possessions of velocity and temperature are analyzed with several parameters like Prandtl 
number (Pr), Grashof number (Gr), Hall parameter (m), magnetic parameter (M), radiation 
(R), solid volume fraction(φ), phase angle(ω).The influence of primary and secondary 
velocity is discussed by the graph. It is observed that the increment of Hall parameter (m) 
diminishes the primary velocity, an increment of Grashof number leads to an increase in 
both velocities, and increasing solid volume fraction raises the temperature. The Nusselt 
number and skin friction coefficient values have expressed in the table. It is apparent that an 
increment of radiation increased the value of the Nusselt number and also an increment of 
phase angle value diminished the skin friction coefficient value.
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INTRODUCTION

A nanofluid contains colloidal suspensions of a nano-
meter-sized particle which is rapidly settling in fluid and 
stay suspended much longer than a microparticle. With 
the increasing influence of microprocessors and other 

electronic types of machinery, a pursuit for a more efficient 
heat-dissipating system has created nowadays an enig-
matic career. Nanofluids are playing a major role in heat 
transfer. New prototypical nanofluids have to consider 
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the surface area, size, structure-dependent behavior, and 
boundary resistance for thermal conductivity. The heat 
flux is increased by the conventional method. The auto-
mobile, electrical, and electronics companies have faced 
the challenges to reduce the heat level in the prototype of 
manufacturing. The thermal conductivity increases on the 
accumulation ofalumina nanofluids to normal fluids. The 
Alumina particle regulates the pH value in a wide range. 
It is an eco-friendly particle that is used in water purifica-
tion and cosmetics production. Oscillating flows character-
ize a significant feature of conventional fluid dynamics. The 
oscillating plate is encouraged heat and mass transfer which 
is attained by fluid shaking around an immovable item or 
shaking of a solid form in any fluid. The Al2O3 nanofluid 
is acted as a coolant in double tube heat exchangers. It is 
extensively used in ceramics, nanocomposites, catalyst sup-
port, heat transfer fluids, water-resistant additives.

The numerical solution is the stability among the com-
putational period and exactness of the solution. CongTam 
Nguyen et al. [1] have analyzed 36 nm and 47 nm particle size 
in a nanofluid. The heat and mass transmission of the verti-
cal plate with MHD was analyzed by Muthucumaraswamy 
et al. [2]. Veeranna Sridhara et al. [3] reviewed Alumina 
nanofluid. He collected the experiment results of nanoflu-
ids which have substantially higher thermal conductivi-
ties than base fluid. The transport andthermal properties 
of the base fluid are converted by nanoparticles. Bhaskar 
Chandra Sarkar et al. [4] revealed that unsteady primary 
flow Hall current leads to a decrease in the amplitude of 
the shear stress. Lee et al. [5] experimentally inspected the 
thermal conductivity performance of dilute nanofluids by 
a transient hot-wire technique. On rotating a porous plate 
with chemically reactive fluid, impacts of hall current and 
radiation on MHD convective heat and mass transmission 
were contemplated by Dual pal et al. [6]. Mohammad Reza 
Mohaghegh [7] suggested a spectral algorithmfor the fast 
and competent computation of periodic flows. Siddarth 
Roy et al. [8]studied the heat transfer characteristics of 
silver/water nanofluid in a solar flat plate collector. Rajesh 
et al. [9] related to magnetic nanomaterial thermal flow in 
engineering branches and identified key development of 
thermal radiation heat flux in nanomaterial fabrication.

Mohaghegh et al. [10] have used periodic boundary 
conditions exclusively for oscillation bodies. Das et al. [11] 
compared Copper, Alumina, and Titania nanofluid flow 
with Hall effects and radiation in rotating angular veloc-
ity. Veera Krishna et al. [12] deliberated Hall effects in the 
oscillating porous plate with a graph that was drawn using 
MATHEMATICA software. Dastagiri Babu et al. [13] had 
instructed to neglect Hall Effect with a very small value of 
Reynolds number and absence of electric field. He noticed 
that the velocity value decreases with the increasing inten-
sity of the magnetic parameter (M). Obulesu et al. [14] 
studied chemical reaction, buoyancy effects of thermal and 
mass diffusion with Hall effects. He assumed constant heat 

generation in volumetric. Hussain et al. [15] investigated 
the effects of Hall current and pointed out that neither 
energy was added nor deducted from the fluid in the elec-
tric field. Gauri Shankar Seth et al. [16]acknowledged fluid 
temperature and fluid velocity slowdown in ramped tem-
perature plates instead of the isothermal plate. Sebiha Yıldız 
[17] has discussed the natural cooling process for reducing 
excess heat. He also investigated various directions at dif-
ferent angles of inclination for cooling a plate. Kataria et 
al. [18] are concerned about the heat and mass transfer of 
Casson fluid flow past over an oscillating plate. He analyzed 
the oscillating plate with ramp temperature and concentra-
tion. On the oscillating plate, Vijayalakshmi et al. [19] have 
explored the unchanging heat and mass flux with radiation, 
MHD, in presence of the chemical. Iqbal et al. [20] exam-
ined the combined reactions of radiation, Hall currents and 
analyzed different shapes of nanoparticles. Arifuzzaman 
et al. [21] considered high-speed MHD nanofluid flow 
with chemical reaction and radiation effect. He optimized 
numerical values of flow parameters and evaluated momen-
tum and thermal boundary layer thickness. He noticed that 
the same order of Coriolis and viscous forces magnitude 
which is called Ekman layer formation near the plate.Siva 
Reddy et al. [22] compared the numerical values of skin 
friction and Nusselt number with previously published 
work and interpret the current values. Radha Madhavi et 
al. [23] have considered Alumina (Al2O3) nanoparticles 
with water and kerosene as the base fluid. Heat generation 
has been increased the heat transfer process and motion. 
Brinkman fluid had been chosen for the experiment by 
Arshad Khan et al. [24].Patel et al. [25] contemplated the 
effects of radiation, Hall current in an oscillating plate in 
a porous medium. He investigated isothermal temperature 
with the ramped wall temperature of the plate. He talked 
about MHD applications in various fields.  He examined 
four different kinds of nanoparticles for computational.

Figure 1. The physical model and coordinate system.
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Dharmaiah et.al. [26] have taken Titanium alloy water-
based nanofluid and a two-term analytical method applied 
to get a closed-form solution. Baby rani et al. [27]used 
Ag-water-based nanofluid and applied perturbation tech-
nique to solve nonlinear ordinary differential equations. 
Manjula et al. [28] carried the Dufour number with ther-
mal radiation and chemical reaction. Balaji et al. [29] exam-
ined various cooling methods specifically the liquid cooling 
method with nanometer-sized particles of nanofluids. From 
the above literature review, they discussed the effects of par-
ticle size, the thickness of boundary layer, various nanofluid 
flow, different base fluid, heat reduction, MHD, radiation.

The physical model and coordinate system of a prob-
lem are shown in Figure 1.A lot of applications from the 
industry created important attention and motivated by the 
above literature review. The effects of MHD nanofluid flow 
of an incompressible viscous fluid past an oscillating verti-
cal plate in the presence of Hall effects and radiation have 
not been studied in all the above-cited papers. In this paper, 
alumina-water is used.

To our knowledge, no attempts have been made to study 
the effects of MHD nanofluid flow of an oscillating verti-
cal plate is considered in the presence of Hall effects and 
radiation.

MATHEMATICAL ANALYSIS

In the presence of thermal radiation, the viscous flow 
of an incompressible Al2O3 nanofluid past an oscillating 
vertical plate has been considered. The x* oy* the plane is 
taken and z*= 0. At time t ≤ 0, the plate and fluid are at 
the same temperature T∞. The plate has oscillated along the 
x* axis and the y* axis is normal for the remaining axes. 
Near the plate, the temperature value is expected T∞. The 

velocity u u v tf
* * *cos= ( ) ( )







0

1
3  is started oscillating and 

the temperature surges to TW. The uniform magnetic field 
B0 is applied uniformly parallel to the z* axis. The radia-
tive heat flux qr is applied in the normal direction to the 
plate.Thermo-physical properties of water and Alumina 
nanoparticles are tabulated in Table 1.

The equation of continuity is ∇⋅ =F
��

0 where u*, v*, w* 

denotes the components of the velocity vector F→. It provides 
w*= 0 inflow which is satisfied by the plate everywhere. The 
external velocity varies inversely–linear with the distance 
along the surface which is known as Pseudo similarity. In 

this similarity transformation, the velocity similarity vari-
ables are taken as the core similarity variables. It is denoted 
by η. Thewater-based Al2O3 nanoparticles are taken as a 
fluid. The base fluid and the suspended nanoparticles are 
carried which are in thermal equilibrium.

Z* and t* direct the flow. The flow far away from the 
plate without disruption is considered.

The unstable flow of usual Boussinesq’s approximation 
governing equations are as follows:
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where u* is the primary velocity and v* is the secondary 
velocity.

The initial and boundary conditions of the projected 
problem are given by:
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On introducing the following non-dimensional quanti-
ties are:
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Table 1. Thermo-physical properties of water and Alumina nanoparticles

Physical Properties ρ (kg / m3) Cp (J/KgK) K(W / mK) β × 105 (K–1) φ σ(S/m)
Water / Base fluid 997.1 4179 0.613 21 0.0 5.5 × 10–6

Al2O3 (Alumina) 3970 765 40 0.85 0.15 35 × 106
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The local radiant for the case of an optically thin gray 
gas is expressed by
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It is assumed that the temperature differences within the 
flow are sufficiently small such that T4 may be expressed as 
a linear function of the temperature. This is accomplished 
by expanding T4 in a Taylor series about T∞ and neglecting 
higher-order terms, thus
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By using equations, dimensionless parameter equation 
(3) reduces to 
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By using the dimensionless parameter, equations Eq. 
(1), Eq. (2), and Eq. (3) leads to,
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Where R is the radiation parameter, Pr is the Prandtl 
number, Gr is the thermal Grashof number, and Gr approx-
imates the ratio of the buoyancy force to the viscous force 
acting. Large R signifies a large radiation effect while R→0 
corresponds to zero radiation effect.

The corresponding initial and boundary conditions are 
represented by Eq. (11),
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	 Let F = U + iV	 (12)

The newest governing equations are

	 L
F
t

L
F

Z
L

F im M
m

L Gr1 3

2

2 4

2

2 2
1
1

∂
∂

=
∂
∂

−
+
+

+
( )

. 	 (13)

	 L
t

L
Z

R
5 6

2

2

1∂
∂

=
∂
∂

−
Pr Pr

	 (14)

The newest initial and boundary conditions are,

	

F for all Z t

t F Cos t at Z
F at Z

= = ≤

> = ( ) = =
→ → → ∞

0 0 0

0 1 0
0 0

, ,

: ,
,

	 (15)

SOLUTION PROCEDURE

The solutions are in terms of the exponential and com-
plementary error functions. The relation connecting the 
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error function and its complementary error function is as 
follows:

	 erfc(x) = 1– erf(x) 	 (16)

Rajesh et al. [9] have been solved equations by the 
implicit finite-difference method of the Crank-Nicolson 
type. Vijayalakshmi et al. [19] changed partial differential 
equations into an ordinary differential equation using simi-
larity transformation and applied the Runge-Kutta method 
to find a solution.

Laplace transformation technique is applied in the 
development of time-domain fluid line models, signal pro-
cessing, control systems, statistical mechanics, data min-
ing, and machine learning. Laplace transform deals with 
unsteady-state difficulties of transport phenomena.The 
standard Laplace transformation is used to solve the major 
dimensionless equations Eq. (13) and Eq. (14) along with 
conditional equations Eq. (15).The results are explained as 
follows
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Dharmaiah G et.al. [26] calculated and tabulated the 
skin friction coefficient, Nusselt number. The dimension-
less skin friction coefficient, rate of heat transfer are given 
as follows
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The velocity F has computed and represented by Eq. 
(17). Using the below formula, the complex error function 
is detached from real (U) and imaginary (V) parts sepa-
rately. Real and imaginary parts are differentiated with ini-
tial conditions for calculating the Nusselt and Skin friction 
coefficient.
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RESULTS AND DISCUSSION

The primary velocity (U), the secondary velocity (V) 
are taken in terms of parameters M, Gr, t, Pr, ω, η, m, R. 
The numerical calculations of respective equations are 
computed and represented in several graphs. The primary 
and secondary velocity profiles of Alumina – Water with 
coordinate is represented by the graph from Figure 2 to 
Figure 17.

Effects of Different Parameters on The Primary 
and Secondary Velocity Profile.

The primary velocity U decreases with an increasing 
value of t is shown in Figure 2, if ☐ =π, φ=0.15, Pr=0.71, 
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Figure 2. Primary velocity profile for various t. Figure 3. Primary velocity profile for various R.

Figure 4. Primary velocity profile for various φ.
Figure 5. Primary velocity profile for a various M.

Figure 6. Primary velocity profile for various ω. Figure 7. Primary velocity profile for various Gr.
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In Figure 5 and Figure 15, it is noted an increase in the 
magnetic field parameter (M) leads to a decrease in the pri-
mary velocity U and secondary velocity V. Due to the trans-
verse magnetic field, Lorentz force is raised with a higher 
M value. It has a trend to slow down fluid motion. So both 
velocity is decreased with increasing values of magnetic 
field parameter. Baby rani et al. [27] explained Lorentz force 
who was resisted nanofluid flow and reduced the velocity.

In Figure 6, the phase angle ☐ increment from π/24 
to 5π/12 reduced the primary velocity U. It is also noticed 
that the increase of phase angle has reduced the second-
ary velocity V in Figure 10. The velocity attains maximum 

R=0.5, t=0.26 to 0.46, Gr=3, M=1, m=1.it is observed that 
the secondary velocity V decreases with an increasing value 
of time (t) in Figure 11.

The primary velocity U and secondary velocity V 
increase with an increasing value of radiation (R) are illus-
trated in Figure 3 and Figure 16. The radiation increases the 
speediness of the fluid over the boundary layer field. The 
increment of solid volume fraction φ decreases the primary 
velocity U and secondary velocity V in Figure 4 and Figure 
17. The density of fluid increases when nanoparticles are 
added to the base fluid and the fluid transforms into denser. 
It decreases the velocity of the fluid.

Figure 8. Primary velocity profile for various m.

Figure 10. Secondary velocity profile for various ω.

Figure 9. Primary velocity profile for various Pr.

Figure 11. Secondary velocity profile for various t.
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Grashof number has carried positive values. The cooling 
procedure is based on the Grashof number which is applied 
in the cooling of electronic components and nuclear 
reactors.

In Figure 8 and Figure 14, an increment of Hall param-
eter (m) value had reduced in Primary velocity U and sec-
ondary velocity V. Both velocity profiles decreased if m 

values are large, M2 
(1+m2)

 became very small then the mag-

netic field diminishes. An increase in m decreases whose 
active conductivity leads to magnetic restraining.

The primary velocity U and secondary velocity V 
increase with an increasing value of Prandtl number (Pr) 
are represented in Figure 9 and Figure 12. An increment 

value if it is near a plate and the velocity decreasing with an 
increasing angle from the plate, finally approaches zero as 
z→ ∞.

The primary velocity U and secondary velocity V 
increase with an increasing value of Grashof number (Gr) 
are shown in Figure 7 and Figure 13. Gr is the ratio of the 
thermal buoyancy and viscous force that controls a fluid. 
The various values of Gr contribute to increasing the buoy-
ancy force as well as decreasing the viscous forces. The fluid 
velocity will increase because the viscosity decreases as well 
as the internal resistance of the fluid decrease. In natural 
convection flow, the Grashof number increases the control 
of the flow. In the non-appearance of the free convection, 
the Grashof number is zero. In the cooling problem, the 

Figure 12. Secondary velocity profile for various Pr.
Figure 13. Secondary velocity profile for various Gr.

Figure 14. Secondary velocity profile for various m. Figure 15. Secondary velocity profile for  various M.
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decrease in the Prandtl number. Thermal diffusion has a 
propensity to reduce the fluid temperature. The tempera-
ture profile for different values of Pr has presented in Figure 
18. The temperature profile for different values of t has pre-
sented in Figure 19. It has been found that the temperature 
of Alumina-water nanofluid decreased with increasing val-
ues of time t.

The temperature profiles for different values of radia-
tion parameter and solid volume fraction have shown in 
Figure 20. and Figure 21. It has been generated that the 
temperature of Alumina– Water nanofluid decreases with 

of Prandtl number increase the Primary velocity U and 
secondary velocity V.Due to the Prandtl number increase, 
boundary layer thickness increases.it leads to an increase 
in the velocities.

Effects of Parameters on Temperature Profiles
The heat transfer rate is existed high in air comparing 

with water by Muthucumaraswamy et al. [2]. So tempera-
ture increases while decreasing the Prandtl number. The 
ratio of viscosity to thermal diffusivity is called the Prandtl 
number. An increase in thermal diffusivity points to a 

Figure 16. Secondary velocity profile for various R. Figure 17. Secondary velocity profile for various φ

Figure 18. Temperature profile for different Pr. Figure 19. Temperature profile for different t.
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increasing values of R. The temperature profile for different 
values of φ has displayed in Figure 21. It has been found 
that the temperature of Alumina-water nanofluid increases 
with increasing values of solid volume fraction φ.

Effects of Parameters of Skin Friction Coefficient and 
Nusselt Number

Friction is played a major role in a lot of engineering 
fields such as transportation, household usage, and mea-
surements. Skin friction is a component of drag, the force 
resisting the motion of a fluid across the surface of a body. 
Veerakrishna et.al. [12] had calculated and listed skin fric-
tion coefficient, Nusselt number, and Sherwood number. He 

also revealed that skin friction increased due to an increase 
of urge by  force and it diminished with the rise in mag-
netic parameter M, phase angles ω, and Grashof number. 
The particle size φ = 0.15 has been taken for Nusselt num-
ber and skin friction coefficient exploration.The numeri-
cal effects of solid volume fraction, radiation parameter, 
Prandtl number with various times on heat transfer coef-
ficients are calculated and listed in Table.2.

From Table 2, the.Nusselt number values are gradually 
increased with increasing time t and t radiation R.

If Pr=0.71, Pr=2, Pr=3 then the Nusselt number val-
ues are increasing. Since free and forced convection, the 
Prandtl Number usage is high for heat transfer calculation 
with fluidproperties. In heat transfer, the Nusselt number is 
calculated to identify the heat transfer which is conduction 
or convection. The Nusselt number values of various solid 
volume fractions (☐) in the reference paper and the pres-
ent study are shown in Table 3 which is decreasing with the 
increased values of particle size. In Figure 22, the Nusselt 
number increases with the increment of radiation

In Figure 23, Skin friction values are increased with 
increasing values of Hall parameter (m). The MHD flow 

Figure 20. Temperature profile for different R.
Figure 21. Temperature profile for different ☐

Table 2. Variations in Nusselt Number

t Pr ☐ R –θ'(0)

0.5 0.71 0.15 1 1.2583
0.6 0.71 0.15 1 1.3459
0.7 0.71 0.15 1 1.4302
1.0 0.71 0.15 1 1.6657
1.0 2.00 0.15 1 1.8879
1.0 3.00 0.15 1 2.0754
0.1 0.71 0.15 1 0.8688
0.1 0.71 0.20 1 0.8102
0.1 0.71 0.25 1 0.7560
0.3 0.71 0.15 2 1.3459
0.3 0.71 0.15 3 1.5899
0.3 0.71 0.15 4 1.8101

Table 3. Comparison of the values of Nusselt number

☐ Ref.[5] Present Study

0.02 1.9334 1.0492
0.04 1.7238 1.0182
0.06 1.5333 0.9885
0.08 1.3603 0.9601
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with Hall current is used in the flight synchrotron. From 
Figure 24 and Figure 25, the Skin friction coefficient has 
either increased or decreased with a different time in 
Primary and secondary velocity. The skin friction values are 
compared with parameter radiation in Table 4.

The time (t), Prandtl number (Pr), Grashof number 
(Gr), Hall parameter (m), Magnetic parameter (M), radia-
tion (R), phase angle (ω) parameters are considered to cal-
culate skin friction coefficient values. It is listed in Table 5 
and Table 6.

CONCLUSION

The main exertion of the paper is to acquire the exact 
solution and to find the influence of Heat transfer and Hall 

Effects for the unsteady free convective Aluminananofluid 
flow over an oscillating plate with the existence of thermal 
radiation and magnetohydrodynamic. The primary and 
secondary velocity and temperature existence explained. 

Figure 22. Nusselt number for different values of  R.
Figure 23. Skin friction coefficient for different values of  
m.

Figure 24. Skin friction coefficient values for different t in 
U.

Table 4. Comparison of the values of skin friction coefficient 
(Cf)

R Ref [26] Present Study

0.02 0.8887 -0.0476
0.04 0.9032 -0.0390
0.06 0.9096 -0.0306

Figure 25. Skin friction coefficient values for different t in 
V.



J Ther Eng, Vol. 8, No. 6, pp. 1–15, November 202212

Table 5. Variations in Skin friction coefficient values of Primary Velocity (U)

t Pr R m M Gr ☐ Cf

0.2
0.4
0.6
3.6
3.8
4.0

4.0 1.0 0.1 1.0 2.0 π/6 1.4930
1.7912
2.0058
–2.0344
–2.5403
–3.0382

0.2 1.0
1.5
2.0

1.0 0.6 1.0 3.0 π/3 0.8295
0.8682
1.5645

1 0.71 2.0
2.2
2.4

0.5 2 5.0 π/4 0.4745
0.5054
0.5344

0.2 3.0 1.2 0.2
0.3
0.4

0.2 4.0 π/6 1.6885
1.6889
1.6893

0.6 0.71 0.2 0.5 2.0
4.0
15.0

5.0 π/5 2.5994
7.0455
29.3983

0.3 2.0 0.9 0.6 1.0 3.0
11.0
20.0

π/7 1.6886
2.5698
3.5612

0.7 4.0 1.5 0.7 1.1 6.0 π/8
π/4
π/2

3.8620
3.5230
2.3037

In the probe of the oscillating plate and nanofluid flow, the 
highlights of concluding remarks have been summarized as 
followed.

•	 The velocity of fluid increases with the increasing 
values of radiation parameter, Prandtl parameter, 
Grashof number in both primary and secondary 
flows.

•	 The temperature of the fluid decreases with the 
increasing values of radiation parameter, time, and 
Prandtl parameter. But increasing solid volume leads 
to an increase the temperature.

•	 The Nusselt number values decrease with the increas-
ing value of particle size.

•	 In primary velocity (U),the skin friction values are 
increased with increasing values of radiation, Hall 
parameter, Magnetic parameter, Prandtl number.
In secondary velocity (V), the skin friction value is 
increased when M and ? are increased.

NOMENCLATURE

List of symbols
B0	 Constant applied magnetic field (Wbm-2)
Cp	 Specific heat at constant pressure (J kg-1 K-1)
Cf	 Coefficient of Skin Friction 
E	 Electric field (kJ)
F	 Complex Function
g	 Gravity acceleration (ms-2)
Gr	 Thermal Grashof number
M	 Dimensionless magnetic field parameter
m	 Hall Parameter
Nu	 Nusselt Number
n	 Dimensionless frequency
Pr	 Prandtl number
qw
–	 Dimensional heat flux from the plate

t*	 Time(s)
t	 Dimensionless time (s)
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T	 Local temperature of the nanofluid (K)
Tw	 Wall temperature (K)
T∞	 The temperature of the ambient nanofluid (K)
u*,v*,w*  Velocity components along x*, y*, z* axes 
U,V,W  Dimensionless velocity components 
x,y,z	 Cartesian coordinates

Greek symbols
α	 Thermal diffusivity (m2 s-1)
β	 Thermal expansion coefficient (K-1)
ε	 Dimensionless small quantity (<<1)
φ	 Solid volume fraction of the nanoparticles
ρ	 Density 
k	 Thermal conductivity (m2s-1)
μ	 Dynamic viscosity (Pa s)
ϑ	 Kinematic viscosity (m2 s-1)
θ	 Dimensionless temperature
η	 Pseudo-similarity variable

ω	 Phase angle
σ	 Electrical conductivity (m2 s-1)

Superscript
–	 Dimensional quantities

Subscripts
f	 Fluid
nf	 Nanofluid
s	 Solid
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ABSTRACT 

  Teaching is a process of transmitting resources from one to the whole and teachers, in the process, are 

the charioteers. Teachers remained the only source of content delivery in the past. But, the arrival of the internet 

revolution has paved a new way in the process of delivering the content to the stakeholders. As a result of the IT 

revolution, the introduction of software in teaching has been considered an innovative practice. Understanding 

mathematical problems have been viewed as a challenging task for the students and a tough job for the teachers 

over several decades. Commercial software like MATLAB and MAPLE help in solving and understanding several 

mathematical problems. There are Openwares available in the market which acts as an alternative to those 

commercial wares. This paper gives a glimpse of some Openwares in detail to teach mathematics at the tertiary 

level. 
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1. INTRODUCTION 

   Mathematics education in today’s 

world is dependent on the growth of 

computer technologies for teaching, 

learning and research in mathematics. 

Calculating parts in arithmetic has advanc

ed from the old-fashioned four-function 

calculators to scientific calculators to 

graphing calculators and presently to 

computers with a polynomial 

math framework. The utilization of 

computer programs to instruct them to 

solve the problems is still generally 

uncommon but the growing body of 

research and the interests that recommend 

that its extended use is immortal. 

   The underlying concepts and proofs 

of many mathematical concepts involve 

hard and abstract concepts that present a 

precipitous hindrance for many students. 

Mathematics software offers both an 

opportunity and a challenge to present new 

approaches that assist students and teachers 

to develop a better understanding of the 

original concepts. They can be used to 

change the emphasis of learning and 

teaching mathematical concepts away from 

usual techniques and routine symbolic 

manipulation toward higher-level cognitive 

skills that focus on concepts and problem-

solving. Two key indicators of deep 

learning and conceptual understanding are 

the ability to transfer knowledge learned in 

one task to another task and the ability to 

move between different representations of 

mathematical objects. The software allows 

learners to discover rules, make and test 

conjectures and explore the relationship 

between different representations of 

functions and other mathematical objects 

using a blend of visual, symbolic and 

computational approaches. 

2. Historical Perspective 

  Software in Mathematics began to 

appear in the early 1970s and has evolved 

into so many advancements out of research 

into artificial intelligence and machine 

learning concepts these days. The 

pioneering work on developing a 

computer-aided program was conducted 

by the Nobel laureate Prof. Martin 

Veltman, for symbolic mathematics, 
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especially to calculate the High Energy 

Physics in 1963. The first popular software 

systems that are introduced in the market 

were Reduce, Derive, and Macsyma which 

are still commercially available. A free 

version of Macsyma called Maxima is 

actively being maintained. The current 

market leaders are Maple, Mathematica, 

MatLab, SciLab and MuPAD. These are 

commonly used by mathematicians, 

scientists, and engineers.  

  The following table highlights 

some of the most popular free and 

commercial mathematical software. More 

pieces of information about them can be 

easily seen on their websites. 

Software 

Year 

of 

Start 

Utility 

MatLab* 
Late 

1970 
General-purpose 

Maple* 1985 General-purpose 

MathCAD* 1985 General-purpose 

GP/PARI 1985 Number Theory 

GAP 1986 
Group Theory, Discrete 

Math 

Gnuplot 1986 Plotting software 

MuPAD* 1993 General-purpose 

Magma* 1993 
Arithmetic Geometry, 

Number Theory 

Octave 1993 

Numerical 

computations, Matlab-

like 

R 1993 Statistics 

SciLab 1994 General-purpose CAS 

Macaulay2 1995 
Commutative Algebra, 

Algebraic Geometry  

CoCoA 1995 Polynomial Calculation 

Singular 1997 
Commutative Algebra, 

Algebraic Geometry 

Mathematica* 1998 General-purpose 

Maxima 1998 General-purpose 

YACAS 1999 General-purpose 

Dynamic 

Solver 
2002 Differential Equation 

GeoGebra 2002 
Draw Geometric and 

Algebraic objects 

SAGE 2005 
Algebra and Geometry 

Experimentation 

Kash/Kant 2005 
Algebraic Number 

Theory 

Here star (*) ones are commercial 

software and the remaining are free 

software. Note that the above list is not 

complete still and there may be many more 

mathematical software. 

3. Teaching Applications of Some 

Openwares 

  In this paper, we are going to 

discuss the usage of some Openwares that 

are used to teach Mathematics for tertiary 

level students. Teaching mathematics with 

software helps the student to understand the 

concepts more and helps them to visualise 

everything that they solve in front of their 

eyes. 

3.1 Microsoft Mathematic 

  With the Microsoft Mathematics 

Add-in for Word and OneNote, one can 

perform mathematical calculations and plot 

graphs in Word documents and OneNote 

notebooks. The add-in also provides an 

extensive collection of mathematical 

symbols and structures to display formatted 

mathematical expressions. Also, quickly it 

helps to insert commonly used expressions 

and math structures by using the Equation 

gallery. Some of the usability of the add-in 

is listed below:  

• Compute standard mathematical 

functions, such as roots and logarithms 

• Compute trigonometric functions, such 

as sine and cosine 

• Find derivatives and integrals, limits, 

sums and products of series 

• Perform matrix operations, such as 

inverses, addition, and multiplication 

• Perform operations on complex 

numbers 

• Plot 2-D graphs in Cartesian and polar 

coordinates 

• Plot 3-D graphs in Cartesian, 

cylindrical, and spherical coordinates 

• Solve equations and inequalities 

• Calculate statistical functions, such as 

mode and variance, on lists of numbers 

• Factor polynomials or integers 
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• Simplify or expand algebraic 

expressions  

3.2 MegaStat 

  MegaStat for Excel is a full-

featured Excel add-in that performs 

statistical analyses with an Excel 

workbook. It helps the user to solve all the 

statistical related problems all in one place. 

It performs basic functions, such as 

descriptive statistics, frequency 

distributions, and probability calculations 

as well as hypothesis testing, ANOVA, 

regression, and more. MegaStat output is 

carefully formatted and ease-of-use 

features include Auto Label Detect and 

Auto Expand for quick data selection. 

3.3 Analysis ToolPak 

  For solving and developing 

complex statistical or engineering analyses, 

an add-in called, Analysis ToolPak from 

Microsoft Excel helps in saving steps and 

time. When the data is provided with 

parameters for each analysis, using the 

appropriate statistical tool or engineering 

macro functions to calculate and the results 

are displayed in an output table in a form of 

a separate sheet in the same Workbook 

immediately with one click. Some tools 

generate charts in addition to output tables. 

  The data analysis functions can be 

used on only one worksheet at a time. When 

performing data analysis on grouped 

worksheets, the results will appear on the 

first worksheet and empty formatted tables 

will appear on the remaining worksheets. 

To perform data analysis on the remainder 

of the worksheets, recalculate the analysis 

tool for each worksheet. The Analysis 

ToolPak includes the tools described in the 

following sections: 

• Descriptive 

Statistics 

• Exponential 

Smoothing 

• Correlation 

• Regression 

• Covariance 

• ANOVA 

• F-test Two-

Sample for 

Variance 

• Fourier Analysis 

• Histogram 

• Moving 

Average 

• Random 

Number 

Generation 

• Rank and 

Percentile 

• Sampling 

• t-test 

• z-test 

3.4 GeoGebra 

  GeoGebra is a completely free 

program which allows the user to draw 

geometric and algebraic objects (shapes 

and graphs) and investigate their properties 

quickly and easily. It can be downloaded 

from the website www.geogebra.org, 

where one can also use a web-based version 

of the program, or browse GeoGebra files 

others have created. Using GeoGebra, one 

can draw graphs by typing the 

mathematical equation directly into the 

input bar, generate shapes and common 

constructions easily, and on the same 

canvas if needed. The basic functions are 

fairly easy to pick up, so it is encouraging 

to play around with the program. 

4. Conclusion 

  Software is a tool and not a self-

contained learning package or 

encyclopaedia of mathematical knowledge. 

It is the way in which it is presented to and 

used by students that determine its ability to 

influence learning. Much emphasis these 

days is placed on student-centred learning 

and less on the teaching but teaching and 

learning are equally important. It is 

necessary to first understand the learning 

process and then design teaching and 

learning activities to achieve these. Only 

then will students become deep learners. 

There are many implications of using 

computers in the teaching and learning of 

mathematics at the tertiary level. In this 

paper, some of the Openwares for 
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mathematics education have been 

highlighted and shown the things that are 

being used for the purpose/result upon the 

necessities. 
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MORE SPECIAL RELATIONS 

 

 

Introduction: 

    Our introduction of relations λ,  ρ on a 

near idempotent semigroup is inspired by 

McLean's relations L  and  R defined on a 

band respectively. This exercise's goal is to 

break down a generic Near idempotent 

semigroup decomposition, more 

specialised one. Each  δ-class is a near 

idempotent semigroup into rectangular near 

idempotent semigroup, and each  λ(ρ) -class 

is a left/right singular near idempotent 

semigroup. Finally, we demonstrate that the 

relations λ, ρ, δ and  ξ are nothing more than 

the extensions of the relations of green ℒ, ℛ, 𝒟  𝑎𝑛𝑑  ℋ.. 
 

Preliminaries and Notations  

Definition  -Idempotent 

If ee = e (e2 = e), then element e of a 

semigroup S is referred to be an idempotent 

element of S. 

Zero elements and one-sided identities are 

idempotent.  

The opposite is typically untrue. 

Definition  

let  S  be a semigroup and  ‘a’  an element 

of  S.  ‘a’  is said to be a near – idempotent 

element of  S  if  xa2y  =  xay  for all  x, y 

in  S. 

A semigroup  S  is called a near 

idempotent semigroup if every element of  

S  is near idempotent element of  S. 

In any semigroup  S, the left (right, two – 

sided) identity elements and the left (right, 

two – sided) zero elements are idempotents. 

Definition - Band 

If every element of a semigroup  S  is 

idempotent we shall say that  S  itself is 

idempotent , or that  S  is a band. (Klein – 

Barmen 1940) 

ABSTRACT 

David Mclean[2] has managed to decomposition of a band into additional specialty ensembles. 

He created a band by semilattice union of rectangular bands. We have made an effort to create a 

Near idempotent semigroup as a union of more specific Near idempotent semigroups in response 

to this conclusion. For this reason, we changed the Mclean relations  L and  R into λ  and  ρ  before 

moving on to define δ as C, which is also the same as ρ  ◦  λ, as inspired by Green's 𝒟[3]. 

     Keywords:   decomposition of a band, semilattice, rectangular band, left/right singular near 

idempotent semigroup. 
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Definition - Semi – lattice 

A commutative band is called a semi – 

lattice. 

Definition - rectangular band   

Let a  and b  be any two non – empty sets.  

Then, the system  S  =  (A × B, * )  where  ( 

a,b )  *  ( a’, b’ )  =  ( a, b’ ) 

For all  a, a’  in A   and b, b’  in  B  is a band.  

It is called a rectangular band  or  an anti- 

commutative band. 

Green’s relations  ℒ, ℛ, 𝒟  𝑎𝑛𝑑  ℋ.  
Let S1 for each semigroup S be a semigroup 

generated from S by adjoining an identity if 

S does not already contain an identity, and 

let S1 Equal S otherwise. The equivalence 

relations on the set S that Green first 

developed are known as the "Green's 

relations of S." 

According to such definitions,  the L -

relation as follows.  

For any a, b  S,    a L b if and only if S1a 

= S1b, or equivalently, a L b if and only if a 

= xb and b = ya for some x, y  S1.  

Dually,  the R  - relation defined as follows.  

a R  b if and only if aS1 = bS1, or 

equivalently, a R  b if and only if a = bx and 

b= ay for some x, y  S1.  

Moreover,  the   J  - relation defined as 

follows.  

 

a  J  b  if and only if  S1 aS1 =  S1 bS1,  

or equivalently,  a J  b  if and only if  a =  

xby  and  b = uav  for some  x, y, u, v  S1.  

Finally, we define  H  = L  Ռ R  and  D = L  

ₒ R , where  o   is the composition of relations. 

Since the relations L  and R  commute, it 

follows that  L  ₒ R  = R  ₒ L . 

Special relations similar to Green’s 
relations  ℒ, ℛ, 𝒟  𝑎𝑛𝑑  ℋ.  
We first define the dual relations  λ  and  ρ   

on a near idempotent semigroup in the 

following. 

Definition  

 Let  S  be a near- idempotent semigroup  

and  a  and  b,  elements of  S. We define 

the relations λ   and   ρ   on  S  as follows: 

a  λ  b   if and only if   xaby  =  xay   and   

xbay  =  xby   for all   x, y  ∈  S                                       

a  ρ  b   if and only if   xaby  =  xby   and  

xbay  =  xay   for all  x, y  ∈  S. 

Both   λ    and   ρ   turn out to be equivalence 

relations on   S.  It is easy to check that   λ   

is a right congruence and   ρ   is a left 

congruence relation on   S. 

Lemma  

Let   S   be a near idempotent semigroup. 

Then the relation   λ   is an equivalence 

relation on  S.  

Proof  xa2y   =   xay   for all   x, y , a ∈  S,  

by the definition of   near- idempotent 

semigroup, so that  a  λ  a  for all  a  in  S. 

 

Hence  λ   is reflexive. 

Let   a  λ  b.   
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Then   xaby   =   xay    and    xbay   =   xby    

for all    x, y  ∈  S 

which also implies   b  λ  a. 

Hence    λ    is symmetric. 

Let   a  λ b   and   b  λ  c 

Then for all    x, y  ∈  S,  

we have, xaby   =   xay,   xbay   =   xby    and     

xbcy  =  xby,  xcby  =  xcy 

Hence    xacy  =  x a cy  =  x ab cy  =  x a 

bc y  =  x ab y  =   xay   for all   x, y   ∈  S 

Similarly, 

  xcay   =  x cb a y  =  x c ba y  =  x c b y  =  

xcy   for all   x, y  ∈  S,  

 Which implies     a   λ   c.    Hence   λ   is 

transitive. 

Thus   λ   is an equivalence relation on   S. 

Dually, We can prove that   ρ   is an 

equivalence relation on the near - 

idempotent semigroup   S. 

We now prove that   λ   is a right congruence 

and   ρ   is a left congruence relation on   S. 

The following theorem shows that   λ   is a 

right congruence relation on   S. 

Lemma 

Let  S   be a near – idempotent semigroup.  

Let   a  λ  b. Then  ac  λ  bc  for all  c ∈   S 

Proof 

Let   a  λ  b  where   a, b ∈  S.  

We claim that for any  c ∈  S,    ac  λ  bc.    

a  λ  b   ⇒    xaby   =   xay   and   xbay   =   

xby   for all   x, y  ∈  S 

Then for all   x, y  ∈  S, we have 

xac bcy  =  xa cbc y  =  xab cbc y  =  x a 

(bc)2 y  =  xabcy                                                                                               

( by the definition of  S)                                                                                     

=   xab c y = xacy                                                        

and   

x bc ac y   =  x b cac y  =  x ba cac y  =  xb 

(ac)2 y  =  x b ac y                                                                         

(by the definition of  S)                                                                            

= x ba c y                                                         

=  x bc y                                                                              

Leading to    ac  λ  bc   for all c  ∈  S, Hence   

λ   is a right congruence on   S.    

   Dually,  ρ   is a left congruence relation 

on  S. 

We now consider the composition of the 

two relations   λ   and  ρ  and prove that .      

λ   ◦  ρ  =  ρ  ◦  λ. 

Lemma:  

 If   S   is a   near- idempotent semi group,   

then    λ  ◦  ρ  =  ρ  ◦  λ  in  S. 

Proof : 

We first prove that   λ ◦ ρ  ⊂  ρ ◦ λ .   

 Let   a  λ  ◦  ρ  b.  

Then there exists   c ∈ S   such that   a  λ  c  

and   c  ρ  b. 

a  λ  c  ⇒   xacy =  xay  and  xcay  =  xcy  

for all  x, y  ∈  S.c  ρ  b   ⇒   xcby  =  xby  

and  xbcy  =  xcy  for all  x, y  ∈  S.   

Choose   d   =   acb.  

Then for all  x, y  in  S,  
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xady  =  x a acb y  =  x a2 cb y  =  x a cb y  

=  x acb y  =  xdy 

xday  =  x acb ay  =  x ac bay   

                             =   x a b ay  

                       =   xab a y          

                       =   xab ac y  

                       =    xacy (since  ρ   is a left 

congruence  ab  ρ  ac) 

 But  xacy = xay,   

so that  finally we get  xday = xay                                                                      

Therefore    a  ρ  d 

Similarly, 

 xdby   =   xacbby   =  xacb2y  =  xacby  =  

xdy   for all  x, y  in  S. 

xbdy  =  x b acb y   =  xba cb y  =  xba b y  

=   x b aby                                                               =   

x cb aby                                                                       =   

xcby  

    ( since   is a right congruence ab   cb) 

But  xcby  =  xby,   

so that we get  xbdy = xby 

Hence    d   b 

Thus   a   d,   d   b  so that   a      b 

This gives   λ  ∘  ρ     ρ  ∘  λ 

By a similar argument,  

We can prove  that     

 ρ  ∘  λ        λ ∘  ρ    Thus we get   λ ∘    

=    ∘  λ  

We now define  the relation  δ  on  S  as 

follows 

Definition:  

Let  S  be a near- idempotent semigroup.  

Let  a, b ∈ S.   we define  δ  =  λ  ∘  ρ. In 

other words,  a  δ  b if and only if there exists  

c ∈ S  Such that  a  λ  c  and  c  ρ  b.  

We have already proved that    λ  ∘  ρ  =  ρ  ∘  λ.  Hence w e can write  a  λ  ∘  ρ  b  or  a 

ρ  ∘  λ b instead of   a  δ  b. 

We now prove that  δ  is an equivalence 

relation on the near – idempotent 

semigroup S. 

Lemma 

 Let  S  be a near idempotent semigroup.    

is an equivalence relation on S. 

Proof:    

For all  a  in  S,  a λ a  and   a   a  since  λ   

and     are reflexive,  

 so that  a λ  ∘    a,   which means a   a.   

   Hence      is reflexive. 

a   b    a   ∘   b    

There exists  u ∈  S  such that  a   u  and  

u    b  

There exists   u ∈  S  such that   b   u  and  

u   a  since    and    are symmetric 

   b   ∘    a      b   a   

( since  ∘   =   ∘  λ  =   ) 

   Hence       is symmetric. 

 

a   b,  b   c  
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  There exist  u, v  ∈  S  such that     a   

u  and  u   b;     b   v   and v   c 

Since   u   b    and    b λ v    

we have     u  ∘  v 

We have   u  ∘   v   since   ∘    =    ∘    

Thus there exists   w ∈  S   such that   u   

w   and  w   v 

a   u   and   u     w    so that   a     w;   

w   v   and   v   c   so that    w   c 

Therefore   a   ∘   c       

            i.e,   a   c.     Thus      is transitive. 

Hence       is an equivalence relation on 

the   near- idempotent semigroup  S. 

Conclusion 

We demonstrate that the relations π  and δ  

coincide on the near-idempotent semigroup 

S by defining the relation π  on S in a 

manner similar to David McLean's relation 

P defined on a band[22]. In contrast to 

Green's, our relationship is more unique.  
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