

Sri Chandrasekharendra Saraswathi Viswa MahaVidyalaya

Declared as Deemed to be university U/s 3 of UGC Act 1956 Accredited with "A" Grade by NAAC Approved by AICTE, New Delhi | Enathur, kanchipuram-631561 www.kanchiuniv.ac.in

Department of Electronics and Communication Engineering

CURRICULUM & SYLLABUS

B.E. Electronics and Communication Engineering SECOND YEAR

(Choice Based Credit System)

(With effect from AY 2024-25)

SEMESTER - III

S.No	Course Code	Course Name	Category	Hou	rs per w	reek	С	IA	EA	TM
	Code			L	Т	P				
1.		Probability And Statistics	BSC	2	1	0	3	40	60	100
2.		Electronic Devices	PCC	3	0	0	3	40	60	100
3.		Digital System Design	PCC	3	0	0	3	40	60	100
4.		Signals And Systems	PCC	3	0	0	3	40	60	100
5.		Network Theory	PCC	3	0	0	3	40	60	100
6.		Object Oriented Programming using C++[T&P]	ESC	2	0	1	3	40	60	100
7.		Electronic Devices Laboratory	PCC	0	0	2	1	40	60	100
8.		Digital System Design Laboratory	PCC	0	0	2	1	40	60	100
9.		Ability Enhancement Course1*	AEC - I	_	0	0	1*	-	-	100
10.		Vocational Skill Enhancement Course*	VSEC - III	0	0	2	1*	ı	-	100
11.		Skill Development Course *	SEC - III	-	0	0	1*	-		100
			Total	16	1	7	20	-	-	

SEMESTER - IV

S.No	Course	Course Name	Category	Hou	rs per v	veek	С	IA	EA	TM
	Code			L	Т	P				
1.		Mathematics-IV (Calculus, Special Functions and Design of Experiments)	BSC	3	0	0	3	40	60	100
2.		Analog Electronics	PCC	3	0	0	3	40	60	100
3.		Analog And Digital Communication	PCC	3	0	0	3	40	60	100
4.		Microprocessor And Microcontrollers	PCC	3	0	0	3	40	60	100
5.		Data Structure [T&P]	PCC	2	0	1	3	40	60	100
6.		Electromagnetic Fields And Waveguides	PCC	3	0	0	3	40	60	100
7.		AnalogElectronics Laboratory	PCC	0	0	2	1	40	60	100
8.		Analog And Digital Communication Laboratory	PCC	0	0	2	1	40	60	100
9.		Microprocessor andMicrocontrollers Laboratory	PCC	0	0	2	1	40	60	100
10.		Micro Project	DIY - II	0	0	2	1*	40	60	100
11.		Sanskrit And Indian Culture *	MC*	1	0	0	1*	40	60	100
12.		Programming With MATLAB *	AEC - II	0	0	2	1*	-	-	100
13.		Summer Training Internship *	VSEC - IV	0	0	0	1*	_	_	100
			Total	18	0	11	21	-	-	

 $[\]textbf{L}\text{ -Lecture, }\textbf{T}\text{-}\text{ Theory, }\textbf{P}\text{-}\text{Practical, }\textbf{C}\text{-}\text{Credit, }\textbf{IA}\text{-}\text{ Internal Assessment, }\textbf{EA}\text{-}\text{ External Assessment, }\textbf{TM}\text{-}\text{Total Mark}]$

SEMESTER - III

Course Code		L	Т	P	С	IA	EA	TM
Course Name	PROBABILITY AND STATISTICS	3	1	0	4	40	60	100
Course Category	BASIC SCIENCE COURSE		Syllal	ous Rev	ision			
Pre-requisite	Collection of data, Counting Te	chniq	ues,P	ermuta	tion a	and co	mbina	ition

Course Objectives:

The course should enable the students

- To introduce fundamental concepts of probability theory, including conditional probability, Bayes' theorem, and random variables.
- To familiarize students with discrete and continuous probability distributions and their applications.
- To develop an understanding of statistical measures such as central tendency, dispersion, correlation, and regression.
- 4. To equip students with techniques for curve fitting and conducting large sample hypothesis testing.
- **5.** To enable students to perform small sample hypothesis tests using t, F, and chi-square distributions.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Apply basic concepts of probability, including Bayes' theorem and moment generating functions, to analyze random events.	K1
CO2	Use standard discrete and continuous probability distributions to model and solve real-world problems.	КЗ
CO3	Compute and interpret statistical measures such as mean, variance, correlation, regression, skewness, and kurtosis.	КЗ
CO4	Perform curve fitting using least squares and conduct large-sample hypothesis testing.	K4
CO5	Apply small-sample tests such as t-test, F-test, and chi-square test for inference and decision-making.	K5

COs				P	rogra	mOut	comes	s(POs)							pecific (PSOs)
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	3
CO1	S	S	S	S	M	M	M	_	M	M	M	M	M	-	S
CO2	S	S	S	S	M	M	M	-	M	M	M	M	M	-	S

CO3	S	S	S	S	M	M	M	ı	M	M	M	L	L	-	S
CO4	S	S	S	S	M	M	M	1	M	M	M	L	L	ı	S
CO5	S	S	S	S	M	M	M	ı	M	M	M	L	M	M	S

UNIT-I Probability 12Hours

Introduction to Probability, Probability spaces, conditional probability, Bayes' Theorem, Discrete and Continuous one dimensional random variables - Expectations, Moments, Variance of a sum, Moment generating function, Tchebyshev's Inequality.

UNIT-II Probability Distributions

12Hours

Discrete Distributions – Binomial, Poisson and Negative Binomial distributions, Continuous Distributions - Normal, Exponential and Gamma distributions.

UNIT-III Statistics

12Hours

Measures of Central tendency, Measures of dispersion, co efficient of variation, Moments, Skewness and Kurtosis, Correlation, Rank Correlation and Regression (Bivariate)

UNIT-IV

Testing of Hypothesis-I

12Hours

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

UNIT-V

Testing of Hypothesis-II

12Hours

Test for single mean, difference of means and correlation coefficients, test for ratio of variances Chi-square test for goodness of fit and independence of attributes.

	Total Hours 60Hours
Text Book(s	
1.	T. Veerarajan, Probability, Statistics and Random Processes, Third edition, Tata
	McGraw-Hill, NewDelhi, 2010.
2	S.P. Gupta, Statistical Methods, 31st edition, Sultan chand and sons, New Delhi,
	2002.
Reference B	Book(s)
1.	Loeve, M. (2012). Probability Theory I. United States: Springer New York.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	ELECTRONIC DEVICES	3	0	0	3	40	60	100
Course Category	PROGRAMME CORE COURSE		Sylla	bus Rev	vision			
Pre-requisite	Basic Electrical Engineering							

Course Objectives:

The course should enable the students:

- 1. To know about semiconductor materials and their types.
- 2. To design and construct diode circuits.
- 3. To learn fundamentals of transistor and its variants.
- 4. To study frequency response of amplifiers under small signal conditions.
- 5. To understand construction and characteristics of JFET and MOSFET.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Characterize the types of semiconductors.	K1
CO2	Design and construct circuitsusing various diodes.	K2
CO3	Design and construct circuits using BJT.	K2
CO4	Design and construct transistor amplifiers using h-parameters.	K4
CO5	Understand the characteristics of JFET and MOSFET.	K2

COs					Progra	ım Ou	tcomes	s (POs))				_	am Sp omes (1	
	РО	РО	РО	PO	РО	РО	РО	PO	РО	РО	РО	РО	PSO	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2	3
CO1	S	S	-	-	-	-	-	-	-	-	-	L	-	-	-
CO2	S	S	S	M	-	-	-	-	-	-	-	L	L	L	S
CO3	S	S	-	L	-	-	-	-	-	-	-	L	M	-	S
CO4	S	S	S	M	-	-	-	-	-	-	-	L	M	M	S
CO5	S	S	-	-	-	-	-	-	-	-	-	L	-	-	S

SCSUMV	B.E. (Electronics and Communication Engineering)	
UNIT-I	SEMICONDUCTOR DIODE	9 Hours
-	ound semiconductor materials , Bonding forces and Energy bands in	
	Charge carrier in semiconductors, carrier concentration, Junction	
-	on, biased junction, Steady state condition, breakdown mechanism (Recti	
	al Semiconductor Junction. Special diodes: Tunnel diodes, Varactor diod	des, Schottky
diode, Photo diodes,	Photo detector, LED, Solar cell.	
UNIT-II	DIODE CIRCUITS	9 Hours
Ideal and Practical	diode, Clipper, Clamper. Power Supply: Rectifiers-Halfwave, Full	wave, Bridg
	rcuits, Voltage regulation using shunt & series regulatorcircu	-
regulationusingIC7		, ,
UNIT-III	BIPOLAR DEVICES	9 Hours
Construction, basic of	operation, current components and equations, CB, CE and CC configurat	ion, input an
	cs, Early effect, Region of operations: active, cut-off and saturation reg	-
-	h - Photo transistor, Uni-junction Transistor (UJT) and Thyristors: UJI	
_	istics, UJT relaxation oscillator	1
1		
UNIT-IV	SMALL SIGNAL ANALYSIS OF BJT	9 Hours
Small signal Ampli	fier, Amplifier Bandwidth, Hybrid model, analysis of transistor ampl	ifier using l
parameter, Multistag	ge Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington	amplifier ar
-	Coupling methods in multistage amplifier, Low and high frequency response	_
model, Current Miri	or circuits.	·
UNIT-V	FET & IC	9 Hours
IFET Construction.	n-channel and p-channel, transfer and drain characteristics, paramete	rs, Equivale
	goin analysis of EET in CC CS and CD configuration. Enhancement	-

JFET Construction, n-channel and p-channel, transfer and drain characteristics, parameters, Equivalent model and voltage gain, analysis of FET in CG, CS and CD configuration. Enhancement and Depletion MOSFET drain and transfer Characteristics.

Integrated Circuit Fabrication Process: oxidation, diffusion, ion implantation, photolithography, etching, chemical vapor deposition, sputtering, twin-tub CMOS process

	Total Hours 45 Hours
Text Book(s)	
1.	Donald .A. Neamen, Electronic Circuit Analysis and Design –2 nd Edition, Tata Mc Graw Hill, 2009.
2.	David A. Bell, "Electronic Devices and Circuits", Oxford Higher Education press, 5 th
	Edition, 2010.
Reference Boo	k(s)
1.	Salivahanan, Kumar & Vallavaraj, "Electronic Devices and Circuits", TMH, 2016.
2.	Theodore F. Bogart, Jeffrey S. Beasley, "Guillermo Rico Electronic Devices & Circuits",
	PHI, 2014.
3.	Millman & Halkias, "Electronic Devices and Circuits", TMH, 2013.

Course Code		L	T	P	С	IA	EA	TM
Course Name	DIGITAL SYSTEM DESIGN	3 0 0 3 40						100
Course Category	PROGRAMME CORE	Syllabus Revision						
	COURSE							
Pre-requisite	Basic electronics, Boolean algebra and Number systems.							

- 1. The course should enable the students –
- 2. To introduce basic postulates of Boolean algebra and shows the correlation between Boolean expressions.
- 3. To introduce the methods for simplifying Boolean expressions.
- 4. To outline the formal procedures for the analysis and design of combinational circuits and Sequential circuits.
- 5. To introduce the concept of memories and programmable logic devices.
- 6. To illustrate the concept of synchronous and asynchronous sequential circuits.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Explain the basic theorems and properties of Boolean algebra.	К3
CO2	Utilize K- Map for gate level minimization of the given Boolean function	K5
CO3	Construct combinational logic circuits for the given requirement and determine their performance.	K5
CO4	Design synchronous and asynchronous sequential circuits using VERILOG.	К6
CO5	Illustrate the Classifications of memories and programmable logic devices.	К6

	Program Outcomes(POs)										Program Specific				
COs		r rogram Outcomes(rOs)										Outcomes(PSOs)			
COs	PO1	PO	PO	PO	РО	PO	PO	PO	РО	PO	PO	РО	PS	PS	PSO3
		2	3	4	5	6	7	8	9	10	11	12	O 1	O2	
CO1	S	M	M	M	-	-	-	-	-	-	S	S	S	S	M
CO2	S	S	S	S	1	ı	ı	-	-	ı	M	L	M	S	M
CO3	ı	S	S	M	ı	M	ı	-	-	ı	M	M	S	S	M
CO4	S	S	S	S	M	ı	ı	-	-	ı	S	M	M	S	L
CO5	S	S	S	S	S	ı	ı	-	-	ı	M	M	S	S	M

UNIT-I INTRODUCTION 9Hours

Minimization Techniques: Boolean postulates and laws – De-Morgan's Theorem - Principle of Duality - Boolean expression - Minimization of Boolean expressions — Minterm – Maxterm - Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine-McCluskey method of minimization.

Logic Gates: AND, OR, NOT, NAND, NOR, Exclusive–OR and Exclusive–NOR Implementations of Logic Functions using gates, NAND –NOR implementations – Multi level gate implementations-Multi output gate implementations. TTL and CMOS Logic and their

Characteristics-Tristate gates.

UNIT-II COMBINATIONAL CIRCUITS 9Hours

Design procedure—Half adder—Full Adder—Half subtractor—Full subtractor—Parallel binary adder, parallel binary Subtractor — Fast Adder — Carry Look Ahead adder — Serial Adder/Subtractor — BCD adder — Binary Multiplier — Binary Divider — Multiplexer/ Demultiplexer-decoder—parity checker—parity generators—code converters—Magnitude Comparator.

UNIT-III SEQUENTIAL CIRCUITS 9Hours

Latches, Flip-flops - SR, JK, D, T, and Master-Slave – Characteristic table and equation – Application table – Edge triggering – Level Triggering – Realization of one flip flop using other flip flops – serial adder/subtractor Asynchronous Ripple or serial counter – Asynchronous Up/Down counter - Synchronous counters – Synchronous Up/Down counters – Programmable counters – Design of Synchronous counters: state diagram- State table –State minimization –State assignment -Excitation table and maps-Circuit implementation - Modulo–n counter, Registers – shift registers - Universal shift registers – Shift register counters – Ring counter – Shift counters - Sequence generators.

UNIT-IV	SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL	9Hours
	CIRCUITS	

Synchronous Sequential Circuits: General Model – Classification – Design – Use of Algorithmic State Machine – Analysis of Synchronous Sequential Circuits Asynchronous Sequential Circuits: Design of fundamental mode and pulse mode circuits – Incompletely specified State Machines – Problems in Asynchronous Circuits – Design of Hazard Free Switching circuits. Design of Combinational and Sequential circuits using VERILOG.

UNIT-V	MEMORY DEVICES	9Hours

Classification of memories – ROM – ROM organization – PROM – EPROM – EPROM – EAPROM, RAM – RAM organization – Write operation – Read operation – Memory cycle – Timingwave forms – Memory decoding – memory expansion – Static RAM Cell- Bipolar RAM cell – MOSFET RAM cell – Dynamic RAM cell-Programmable Logic Devices – Programmable Logic Array (PLA)-Programmable Array Logic (PAL) – Field Programmable Gate Arrays(FPGA)-Implementation of combinational logic circuits using ROM,PLA,PAL

Text	Book(s)
1.	M.Morris Mano, "Digital Design", 4e, Prentice Hall of India Pvt. Ltd., 2008/
	Pearson Education (Singapore) Pvt.Ltd. NewDelhi, 2003.
2.	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications",6th
	Edition,TMH, 2006.
Refe	rence Book(s)
1.	John F.Wakerly, "Digital Design", Fourth Edition, Pearson / PHI, 2008.
2.	John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
3.	Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
4.	Thomas L.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011.
5.	Donald D.Givone, "Digital Principles and Design", TMH, 2003.
6.	A.AnandaKumar,Fundamentals of digital circuits,second edition,PHI learning private
	Limited, 2009.

Course Code		L	T	P	С	IA	EA	TM
Course Name	SIGNALS AND SYSTEMS	3	0	0	3	40	60	100
Course	PROGRAMME CORE	Syllabus Revision						
Category	COURSE							
Pre-requisite	Mathematics–I & II							

Course Objectives:

The course should enable the students-

- 1. To understand the properties and representation of discrete and continuous signals.
- 2. To analyze continuous time signals and system in the Fourier and Laplace domain.
- 3. To analyze discrete time signals and system in the Fourier and Z transform domain.
- 4. To development of the mathematical skills to solve problems involving convolution, filtering, modulation and sampling.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest Bloom's
outcomes		Taxonomy
CO1	Understand and classify systems based on the impulse response behavior of both continuous-time and discrete-time systems.	К2
CO2	Analyze and Evaluate the mathematical modeling of various signals and systems	K4
CO3	Analyze the Continuous time signals using Fourier series and Fourier Transforms.	КЗ
CO4	Examine the Continuous time LTI systems using Fourier series and Fourier Transforms.	K5
CO5	Analyze sampling process and sampling of discrete time signals.	К3

		Program Outcomes(POs)											Program Specific			
		Program Outcomes(POs)										Outcomes (PSOs)				
	PO	PO	РО	PO	РО	P	PO	PO	PO	PO	РО	РО	PS	PS	PSO3	
COs	1	2	3	4	5	O6	7	8	9	10	11	12	O1	O2		
CO1	S	S	-	M		-	-	-	-	-	-	L	M	-	S	
CO2	S	S	M	S	-	-	-	-	-	-	-	L	M	-	S	
CO3	S	S	M	M	-	-	-	-	-	-	-	L	L	-	S	
CO4	S	S	S	-	-	-	-	-	-	-	-	L	L	-	S	
CO5	S	S	M	M	-	-	-	-	-	-	-	L	M	M	S	

UNIT-I	CLASSIFICATION OF SIGNALS AND SYSTEMS	9Hours						
Continuous '	Γime Signals (CT signals), Discrete time signals (DT signals) step, r	amp, pulse, impulse,						
exponential, Classification of CT and DT signals-periodic, aperiodic, random signals-CT systems								
And DT syste	And DT systems, Basic properties of systems- Linear Time invariant systems and properties.							
UNIT-II	ANALYSIS OF CONTINUOUS TIME SIGNALS	9Hours						
Fourier Serie	es Analysis- Representation of periodic signals in trigonometric an	d exponential form,						
Spectrum of	CT signals-Fourier Transform and Laplace Transform in signal anal	ysis.						
UNIT-III	I INTE A D. TIME INTA DI ANTE. CONTEINI IOLIC TIME	OH						
UNII-III	LINEAR TIME INVARIANT—CONTINUOUS TIME SYSTEMS	9Hours						
IntegralFreq	Equation - Block diagram Representation, Impulse respuency response, Fourier and Laplace Transforms in analysis, State epresentation of systems.							
UNIT-IV	ANALYSIS OF DISCRETE TIME SYSTEMS	9Hours						
Sampling of transform	CT signals and aliasing, DTFT and properties, Z-transform a	nd properties of Z						
UNIT-V	LINEAR TIME INVARIANT – DISCRETE TIME SYSTEMS	9Hours						
	equations, Block Diagram representation, Impulse response, Conysis using DTFT and Z-transforms, State variable equations and m							
	Total Hours	45Hours						
Text Book(s)								
1. P.Ram	esh Babu & R.Anandanatarajan,signals and systems, $4^{ ext{th}}$ edition, Scite	ch Publication						
	e limited, 2009.							
	V.Oppenheim, S.Wilsky and S.H.Nawab, Signals and systems, Pears	son Education, 2007.						
Reference Bo	· · ·							
	A.Gabel and Richard A.Roberts, Signals & Linear Systems, John W	•						
2. Simon	2. Simon Haykins and Barry VanVeen, Signals and Systems, John Wiley & Sons, 2004.							

Course Code		L	T	P	С	IA	EA	TM
Course Name	NETWORK THEORY	3	0	0	3	40	60	100
Course	PROGRAMME CORE	Syllabus Revision						
Category	COURSE							
Pre-requisite								

Course Objectives:

The course should enable the students-

- 1. To introduce electric circuits and its analysis
- 2. To impart knowledge on solving circuits using network theorems
- 3. To introduce the phenomenon of resonance in coupled circuits.

Course Outcomes:

On completion of the course, the student will be able to

- Ability to analyze electric circuits
- Ability to apply circuit theorems
- Ability to analyze AC and DC Circuits

Course Outcomees	Description	Highest Bloom's Taxonomy
CO1	Concepts, Nodal, Mesh methods	K2
CO2	Sinusoidal Analysis, Resonance, three phase circuits	КЗ
CO3	Network Theorem and Application	КЗ
CO4	Circuit Response RLC, DC & AC Excitation	K2
CO5	Two Port Networks, synthesis Networks.	К3

		Program Outcomes (POs)											Program Specific			
		1 rogram Outcomes (1 Os)												Outcomes (PSOs)		
	РО	РО	РО	PO	РО	P	PO	РО	РО	РО	PO	PO	PS	PSO2	PSO3	
COs	1	2	3	4	5	O6	7	8	9	10	11	12	01			
CO1	S	S	S	S	M	L	-	-	M	L	-	S				
CO2	S	S	S	S	M	-	-	-	M	L	-	M				
CO3	S	S	M	M	M	M	-	-	M	L	-	S				
CO4	S	M	S	M	M	M	-	-	L	L	-	M				
CO5	S	S	S	S	M	L	-	_	L	L	-	S				
<u> </u>										l						

UNIT-I CIRCUIT CONCEPTS AND MESH & NODAL METHODS 9 Hours

Lumped circuits – Kirchhoff's Laws – Voltage - Current relationships of R, L and C – Independent sources Dependent sources –Simple resistive circuits – Network reduction – Voltage division – Current division –Source transformation. Formation of matrixequations and analysis of AC and DC circuits using mesh-current and nodal-voltage. Methods – Mutual inductance – Coefficient of Coupling – Ideal transformer.

UNIT-II SINUSOIDAL STEADY STATE ANALYSIS

9 Hours

Phasor – Sinusoidal steady state response – concepts of impedance and admittance- analysis of simple circuits – Power and Powerfactor – series resonance and parallel resonance – Bandwidth and Q factor Solution of three-phase balanced and unbalanced circuits.

UNIT-III NETWORK THEOREMS AND APPLICATIONS:

9 Hours

Superposition theorem – Reciprocity theorem – Compensation theorem – Substitution theorem – Maximum Power transfer theorem – Thevenin's theorem – Norton's theorem and Millman's theorem with applications.

UNIT-IV TRANSIENT ANALYSIS

9 Hours

Forced and free response of RL, RC and RLC circuits with D.C. and sinusoidal excitations.

UNIT-V TWO PORT NETWORKS AND SYNTHESIS

9 Hours

Characterization of two port networks in terms of Z,Y,H and T parameters – networks equivalents – relations between networkparameters – Analysis of T, Ladder ,Bridged – T and lattice networks – Characteristics Ideal filter - low pass and high pass filter.Reliability of one port network – Hurwitz polynomials and properties – P. R. functions and properties – synthesis of RL, RC and RLC one port networks.

Total Hours

45 Hours

Text Books:

- 1. Hyatt W.H. and Kemmerly, "Engineering Circuits Analysis", McGraw- Hill International 8th Edition 2011.
- 2. Kuo F.F., "Network Analysis and Synthesis", Wiley International Edition, 2nd Edition 2006.
- 3. Paranjothi S.R., "Electric Circuit Analysis", New Age International Ltd., Delhi, 2nd Edition. 2008.

References

- 1. Edminister J.A., "Theory and Problems of Electric Circuits", Schaum's outline series McGraw Hill Book Company, 4th Edition 2003.
- 2. Sudhakar A and Shyam Mohan S.P., "Circuits and Network Analysis and Synthesis", Tata McGraw Hill Publishing Ltd., New Delhi 5th Edition 2015.
- 3. Van Valkenburg M.E., "Network Analysis", Prentice Hall of India Private Ltd., New Delhi, Third Edition, 1974.

Course Code		L	T	P	С	IA	EA	TM
Course Name	OBJECT ORIENTED PROGRAMMING USING C++ (Theory and Practice)	2	0	1	3	40	60	100
Course Category	ENGINEERING SCIENCE COURSE (ESC)	Sy]	llabu	ıs Re	evisi	on		
Pre-Requisites	Basic Knowledge in Programming							

Course Objectives:

The course should enable the students

- 1. Introduce standard tools and techniques for software development
- 2. Automated build process, and an appropriate framework for automated unit.
- 3. To understand the concept of OOP as well as the purpose and usage principles of Inheritance, polymorphism, encapsulation and method overloading
- 4. To identify classes, objects, members of a class and the relationships among them needed for a specific problem.

Course Outcomes

On completion of the course, the student will be able to

Course Out comees	Description	Highest Bloom's Taxonomy
CO1	Articulate the principles of object-oriented simple abstract data types, control flow and design implementations, using abstraction functions to document them	КЗ
CO2	Outline the essential features of object-oriented programming such as encapsulation, polymorphism, inheritance, and composition of systems based on object identity using class and object.	К3
CO3	Apply the object using constructors and destructors and using the concept of polymorphism to implement compile time polymorphism in programs by using overloading methods and operators.	K4
CO4	Use the concept of inheritance to reduce the length of code and evaluate the usefulness.	K4
CO5	Apply the concept of run time polymorphism by using virtual functions, overriding functions and abstract class in programs.	K4

CO-		Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
COs	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PSO 01	PSO 02	PSO 03		
CO01	S	S											M	L	L		
CO02	L	M		S								M	M				
CO03		M	S										L				
CO04			M	S							S		L				
CO05				M	S								L				

UNIT-I	INTRODUCTION	6	Hours
Introduction	on to object oriented programming, Concepts of object oriented programming.	C++ prog	ramming
basics- Data	a types, Manipulators, Cin, Cout, Type conversion, arithmetic operators, Loops	and deci	sions.
UNIT-II	CLASS ,OBJECT, CONSTRUCTORS & DESTRUCTORS	(6 Hours
Class and o	bjects: Basics of class and objects, access specifiers, member functions defined	inside an	d outside
the class. (Constructors and its types, destructors, object as function arguments, Return	ning obj	ects from
Functions,	inline functions, static data and member function.		
UNIT-III	ARRAYS & INHERITANCE	6 Hours	
Arrays: De	fining &accessing Array elements, arrays as class member data, array of Obje	cts. Deri	ived class
and base cl	lass, Types of inheritance, derived class constructors, overriding member fund	ctions, P	ublic and
private inh	eritance, Class Hierarchies.		
UNIT-IV	POLYMORPHISM, FRIEND FUNCTION & FRIEND CLASS	6	Hours
Operator C	Overloading: Overloading Unary Operators, Operator Arguments, Return Va	lues, Ov	erloading
Binary Ope	erators–Arithmetic operators Friend functions, Friend Classes. Memory mana	gement	new and
delete oper	ator, string class using new.		
UNIT-V	VIRTUAL FUNCTION, TEMPLATES AND FEW ADVANCED TOPICS		6 Hours
Pointers- F	Pointers to Objects Referring to Members, Array of pointers to objects. Virtua	ıl Functi	ons, Pure
virtual fun	ctions, Late Binding, Abstract Classes, Abstract base class, Virtual base classes	, the thi	s pointer.
Templates-	function templates, class template.		
	Total F	Hours 3	30 Hours
TEXT BOO	KS		
1.	Object Oriented Programming in C++-Robert Lafore, Galgotia Publication.	n PvtLto	d, Third
2.	The Compete Reference C++, Herbert Schlitz, Fifth Edition, 2015.		
REFERENC	CES		
1.	Let us C++-Yaswant Kanitkar (for templates), BPB Publication		
2.	C++ and Object Oriented Programming Paradigm, PHI		
3.	C++: How to Program,9th Edition,Deitel and Deitel,PHI		
4.	Object Oriented Programming in C++- ,E.Balaguruswamy, Tata Mcgraw Hill,	2013	
WEB SOU	RCE REFERENCES		
1.	https://www.cse.iitb.ac.in/~cs101/2011.1/		
2.	https://onlinecourses.nptel.ac.in/noc21_cs02/preview		

LIST OF PROGRAMS (15 Hrs.)

- 1. Programs to implement control statements and loops
- 2. To demonstrate the use of Functions with default arguments and inline functions
- 3. Implement member function defined inside and outside the class with different access specifiers
- 4. To demonstrate the use of constructor with its types and destructor
- 5. Illustrate the use of Friend functions and static members
- 6. Illustrate the use of Arrays of objects and object as function argument
- 7. To implement the use of Single and multiple inheritance
- 8. To Implement the use of unary operator overloading
- 9. To Implement the use of Binary operator overloading
- 10. To implement the PureVirtual functions and runtime polymorphism
- 11. To implement the use of function Template
- 12. To implement the use of class Template

Course Code		L	Т	P	С	IA	EA	TM
Course Name	ELECTRONIC DEVICES	0	0	3	2	40	60	100
	LABORATORY			3		40	00	100
Course Category	PROGRAMME CORE		Sy	yllabus	Revisio	n		
	COURSE							
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To understand various tools used for designing circuits.
- 2. To analyze the characteristics of Semiconductor devices.
- 3. To construct semiconductor devices for practical applications.
- 4. To design of amplifiers and analyze their characteristics.
- 5. To analyze the frequency response characteristics of small signal amplifier.
- 6. To enable to students to work in a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Construct and evaluate the Performance characteristics of various	K2
	semiconductor devices.	
CO2	Integrate the semiconductor devices for Practical Application.	К3
CO3	Design amplifier circuit and analyze the design of frequency	К3
	response of the small Signal Amplifier.	
CO4	Design various circuits using software tools and integrate and	K4
	compare the findings in hardware implementation.	
CO5	Demonstrate capability to work in a team and to build circuits for	K4
	various applications.	

COs	Program Outcomes (POs) Program Specification Outcomes (PSC)								Program Outcomes (POs)										
COS	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PS	PSO2	PSO3				
	1	2	3	4	5	6	7	8	9	10	11	12	O1						
CO1	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M				
CO2	S	S	S	S	S	L	-	-	-	-	_	M	S	M	M				
CO3	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M				

CO4	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M
CO5	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M

LIST OF EXPERIMENTS

- 1. Study of Labview/Multisim/PSPICE/ELVIS
- 2. CRO Operation and its Measurements.
- 3. P-N Junction Diode Characteristics (Forward bias & Reverse bias)
- 4. Zener Diode Characteristics

PartA: V-I Characteristics

PartB: Zener Diode act as a Voltage Regulator

5. BJT Characteristics (CE Configuration)

PartA: Input Characteristics

PartB: Output Characteristics

6. FET Characteristics (CS Configuration)

PartA: Drain (Output) Characteristics

PartB: Transfer Characteristics

- 7. LED and PHOTO DIODE Characteristics
- 8. SCR Characteristics
- 9. UJT Characteristics
- 10. Clipper and Clamper Circuits
- 11. Design and Simulate basic Common Source / Common Gate / Common Drain Amplifier
- 12. BJT- CE Amplifier
- 13. FET- CS Amplifier

	Total Hours 45 Hours
Text B	ook(s)
1.	Donald .A. Neamen, Electronic Circuit Analysis and Design –2 nd Edition, Tata Mc Graw
	Hill, 2009.
2.	R.S.Sedha, "Text book of Applied Electronics", Second edition, S Chand publishing, 2008.
Refere	nce Book(s)
1.	R. A. Gayakwad, "Op-Amps And Linear Integrated Circuits", PHI, 2010.
2.	Schilling & Belove, "Electronic Circuits, Discrete & Integrated", TMH.2011.
3.	Boylestad & Neshelsky, "Electronic Devices & Circuits", PHI.2012.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	DIGITAL SYSTEM DESIGN	0	0	J	2	40	60	100
	LABORATORY	U	U	3	2	40	60	100
Course Category	PROGRAMME CORE		Sy	llabus	Revisi	on		
	COURSE							
Pre-requisite			•			•		•

Course Objectives:

The course should enable the students

- 1. To understand, the logical behaviors of digital circuits.
- 2. To design combinational circuit.
- 3. To analyze the operation of logic gates and flip-flops.
- 4. To Design and Construct Hazard Free digital circuits.
- 5. To enable to students to work in a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Verify the truth table for logic gates and Flip-flops.	K2
CO2	Design and test of combinational Circuits	К3
CO3	Design and test of Sequential Circuits.	К3
CO4	Design of Hazard Free Switching Devices and integrate high configuration digital circuits.	К3
CO5	Demonstrate capability to work in a team and to build circuits for	K4
	various applications.	

				-	Progra	m Out	comes	(POs)					Progra Outco	_	
COs	PO1	Program Outcomes(POs)									PS	PS	PS		
		2	3	4	5	6	7	8	9	10	11	12	01	O2	О3
CO1	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M
CO2	S	S	S	S	S	L	_	-	-	-	-	M	S	M	M
CO3	S	S	S	S	S	L	_	-	-	-	-	M	S	M	M
CO4	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M
CO5	S	S	S	S	S	L	_	-	-	-	-	M	S	M	M

	•	
		LIST OF EXPERIMENTS
	1.	Study of Multisim and LT spice.
	2.	Study of Gates & Flip-flops.
	3.	Half Adder and Full Adder.
	4.	Encoders and Decoders.
	5.	Multiplexer and De-multiplexer.
	6.	Magnitude Comparator (2-Bit) and Code Converter.
	7.	Synchronous Counters.
	8.	Ripple Counter and Mod–N Counter.
	9.	Shift Register–SISO/SIPO/PIPO/PISO
	10	. Design of Memory Devices
	11	Design of Hazard Free Switching circuits.
	12	Design of Mealy and Moore Circuits.
		Total Hours 45 Hours
Text	Book(s)	
1	M.Morris	Mano, "Digital Design", 4thedition, Prentice Hall of IndiaPvt.Ltd., 2008.
2	Thomas I	Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011.
Refe	rence Book	(s)
1	JohnYarb	rough, "Digital Logic Applications and Design", Thomson Learning, 2006.
2	CharlesH	Roth. "Fundamentals of Logic Design", 6thEdition, Thomson Learning, 2013.

SEMESTER - IV

Course Code		L	T	P	С	IA	EA	TM
Course Name	MATHEMATICS - IV							
	(CALCULUS, SPECIAL	2	1	0	4	40	(0	100
	FUNCTIONSANDDESIGN	3	1	0	4	40	60	100
	OF EXPERIMENTS)							
Course Category	BASIC SCIENCE COURSES		Syllabus Revision					
	(BSC)							
Pre-requisite	Knowledge of Mathematics–Iand Mathematics–II							

Course Objectives:

The course should enable the students

- 1. To understand the homogeneous functions for two variables and its total derivatives.
- 2. To understand the applications of vector products.
- 3. To analyze the solutions of a differential equation in terms of series.
- 4. To know about the special functions and its properties.
- 5. To investigate the experiments which are in terms of one, two and three factors.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Calculate the maximum and minimum values for functions of two variables and aware about the Lagrange multipliers.	КЗ
CO2	Identify the relation between the line integral, surface integral and volume integral.	КЗ
CO3	Find the series solution for Bessel function.	К3
CO4	Find the solutions for various problems by using recurrence relations	К3
CO5	Analyze the various factors and capable to conclude about the decisions.	K4

												Program Specific				
													Outcor	Outcomes(PSOs)		
		ProgramOutcomes(POs)														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3	
CO1	S	M	M	-	-	-	1	1	-	1	1	L	M	S	-	
CO2	M	S	L	_	-	-	-	-	_	-	-	L	L	M	S	
CO3	S	S	M	-	-	-	-	-	-	-	-	L	M	-	S	
CO4	M	L	S	-	-	-	ı	ı	-	ı	İ	L	M	S	S	
CO5	L	L	L	S	_	_	_	_	-	-	-	L	S	-	S	

UN	ПТ-І	CALCULUS	9Hours
Homog	geneous	Functions-Total derivative-Change of variables-Jacobian-Taylor's t	heorem for
functio	on of tw	vo variables-Maxima and Minima of functions of two variables-Lagrange	s method of
undern	nined m	aultipliers.	
UN.	IT-II	MULTIVARIABLE CALCULUS	9Hours
		erivatives-Gradient-curl and divergence-Problems on Green-Gauss a	
		hogonal curvilinear coordinates-Simple applications involving cubes,	sphere and
rectan	gular pa	arallelepipeds.	
UNI	T-III	SPECIAL FUNCTIONS-I	9Hours
Validit	v of se	ries solution - Series solution when $x=0$ is an ordinary point - Frobeniu	ıs method
	•	n when x=0 is a regular singularity) - Bessel's equation (Bessel's functions	
		nd) - Recurrence formulae for Jn(x) - Expansions for J0 and J1: Value	
	_	nction for Jn(x) - Equations reducible to Bessel's equation – Orthogonality	of Bessel
functio	ons.		
UNI	T-IV	SPECIAL FUNCTION-II	9Hours
		uation –Rodrigue's Formula – Legendre Polynomials – Generating Function	
_	_	ormula for Pn(x)-Orthogonality of Legendre Polynomials—Hermite	
		mulae-Rodrigue's formula-Orthogonality of Hermite polynomials.	/
UN	IT-V	DESIGN OF EXPERIMENT	9Hours
Design	of exp	eriments – Completely randomized design: Analysis of variance for or	ne factor of
		- Randomized block design: Analysis of variance for two factors ofclas	sification –
Latin s	square d	lesign.	
		Total Hours	45Hours
Text Be	ook(s)	Total Hours	45Hours
	• • •	B.S, "Higher Engineering Mathematics", 41st Edition, Khanna Publishers, N	Jew Delhi
		b.5, Trigher Engineering Wathematics, 113t Edition, Khaima I donsiters, I	New Denn,
	2011.		
2.	Gupta S	.P, "Statistical Methods", 28th Edition, Sultan Chand and Sons., New Delhi,	1997
	nce Boo	· · ·	
	Alan Jef	frey, "Advanced Engineering Mathematics", First Edition, Academic Press,	2001.
		C.F and Wheatley P.O, "Applied Numerical Analysis", Seventh Edition, Add Publishing Company, 2004.	lison
3.	Erwin K	Treyszig, "Advanced Engineering Mathematics", Tenth Edition, John Wiley	& Sons,
	2011.		

Course Code		L	T	P	С	IA	EA	TM
Course Name	ANALOG ELECTRONICS	3	0	0	3	40	60	100
Course Category	PROGRAMME CORE COURSE	Syllabus Revision						
Pre-requisite	Electronic Devices							

Course Objectives:

The course should enable the students

- 1. To develop fundamental knowledge about biasing and its various methods.
- 2. To analyze small signal equivalent circuits using BJT and JFET.
- 3. To understand methods of constructing feedback amplifiers, oscillators & tuned amplifiers.
- 4. To understand basic concepts of operational amplifier and its various applications.
- 5. To know about various analog switches, A/D and D/A convertors.

Course Outcomes:

On completion of the course, the student will beable to

Course	Description	Highest Bloom's
Outcomes		Taxonomy
CO1	Determine the configuration and apply the characteristics of diodes and transistors	К2
CO2	Design and construct various types of amplifier circuits.	K4
CO3	Design and construct sinusoidal and non-sinusoidal oscillators	K4
CO4	Characterize the functioning of OP-AMP and design application based circuits	К3
CO5	Design and construct ADC and DAC circuits	K4

COs	ProgramOutcomes(POs)									Ö	Program Specific Outcomes (PSOs)				
	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	S	S	M	1	-	1	-	1	-	-	-	L	S	-	M
CO2	S	S	S	M	-	1	-	-	-	-	-	M	S	-	S
CO3	S	S	M	L	-	-	-	-	-	-	-	L	M	-	S
CO4	S	M	S	-	-	-	-	-	-	-	-	M	S	L	S
CO5	S	M	S	L	-	-	-	-	-	-	-	L	M	-	S

UNIT-I	AMPLIFIER MODELS	9Hours

3

Syllabus (2024-25) B.E. (Electronics and Communication Engineering)

Voltage amplifier, Current amplifier, Trans-conductance amplifier and Trans-resistance amplifier. Biasing schemes for BJT and FET amplifiers, Bias stability, Various configurations (CE/CS, CB/CG, CC/CD) and their features, Small signal analysis, Estimation of voltage gain, input resistance, output resistance etc., Low frequency and High frequency transistor models, Design Procedure for particular specifications, Low frequency analysis of multistage amplifiers.

UNIT-II POWER & FEEDBACK AMPLIFIERS 9Hours

Frequency response of single stage and multistage amplifiers, Cascode amplifier. Various classes of operation (Class A, B, AB, C), their power efficiency and linearity issues - Feedback Topologies: Voltage series, Current series, Voltage shunt, Current shunt, Effect of feedback on gain and bandwidth, Calculation with practical circuits, Concept of stability, gain margin and phase margin.

UNIT-III OSCILLATORS & DIFFERENTIAL AMPLIFIERS 9Hours

Review of Basic Concept, Barkhausen criterion, RC oscillators (Phase shift, Wien Bridge), LC oscillators (Hartley, Colpitts, Clapp), Non- sinusoidal oscillators. Current mirror: Basic topology and its variants, V-I characteristics, output resistance, minimum sustainable voltage and maximum usable load. Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR. OP-AMP design: Design of differential amplifier for a given specification, Designof gain and output stages, compensation.

UNIT-IV OP-AMP APPLICATIONS 9Hours

Review of Inverting and Non-inverting amplifiers, Integrator and differentiator, Summing amplifier, Precision rectifier, Schmitt trigger and its applications- Active filters: Low pass, high pass, band pass and band stop, design guidelines.

UNIT-V DAC & ADC 9Hours

Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, Resistor string. Analog todigital converters (ADC): Single slope, Dual slope, Successive approximation, Flash type - Switched capacitor circuits: Basic concept, practical configurations, Application in amplifier, integrator, ADC etc.

Text Book(s) 1. Paul R.Gray and Robert G.Meyer, "Analysis and Design of Analog Integrated Circuits", John Wiley, 3rdEdition, 1992. 2 J.V.Wait, L.P.Huelsman and GA Korn, "Introduction to Operational Amplifier theory and applications", Mc Graw Hill, 1992 Reference Book(s) 1 A.S.Sedra and K.C.Smith, "MicroelectronicCircuits", Oxford University Press, 5th Edition, 2004. 2. P.Horowitz and W.Hill, "The Art of Electronics", Cambridge University Press, 2nd Edition, 1989.

J.Millman and A.Grabel, "Microelectronics", Mc Graw Hill, Second Edition, 1988.

Course Code		L	T	P	С	IA	EA	TM	
Course Name	ANALOG AND DIGITAL	3 0 0			3	40	60	100	
	COMMUNICATION								
Course Category	PROGRAMME CORE COURSE	Syllabus Revision							
Pre-requisite	Electronic Devices, Digital System Design, Signals &Systems								

Course Objectives:

The course should enable the students:

- 1. To analyze and compare different analog modulation schemes.
- 2. To analyze the behavior of communication systems in the presence of noise.
- 3. To investigate pulse modulation systems and analyze their system performance.
- 4. To analyze different modulation schemes and compute bit error performance.
- 5. To study demodulation of digital signals.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Compare different analog modulation schemes for their efficiency and bandwidth.	K2
CO2	Analyze the behavior of communication systems in the presence of noise.	K4
CO3	Investigate pulse modulation systems and analyze their system performance	K4
CO4	Compute bit error performance of various modulation schemes.	КЗ
CO5	Gain knowledge on demodulation of digital signals.	K2

													Program Specific				
COs		Program Outcomes(POs)													Outcomes (PSOs)		
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	О3		
CO1	S	S	S	M	M	-	-	-	-	-	-	L	S	S	M		
CO2	S	S	S	M	M	-	-	-	-	-	-	L	S	S	M		
CO3	S	S	S	M	M	-	-	-	-	-	-	L	S	S	M		
CO4	S	S	S	L	M	-	-	-	-	-	-	L	S	S	M		
CO5	S	S	M	L	L	-	ı	-	-	ı	ı	L	S	S	M		

UNIT-I	AMPLITUDE AND ANGLE MODULATION	9 Hours

Review of signals and systems-Frequency domain representation of signals - Amplitude modulation systems-DSB-SC, SSB and VSB modulation - Superhetrodyne Receiver - Angle modulationRepresentation of FM and PM signals-Relationship between FM and PM-Narrow band and widebandFM-Transmission bandwidth of FM wave- Generation and detection of FM wave.

UNIT-II INFORMATION THEORYAND NOISE

9 Hours

9 Hours

9 Hours

Entropy – Discrete memory less channels – Channel capacity – Hartley Shannon Law – Source Coding theorem – Huffman & Shannon- Fano codes - Noise in amplitude and frequency modulation systems- Pre-emphasis and De-emphasis-White noise – Narrowband noise - Threshold effect in angle modulation.

UNIT-III PULSE MODULATION

Sampling process -Pulse Amplitude Modulation (PAM)-Pulse Position Modulation (PPM) - Quantization Process-Pulse Code Modulation (PCM) - Delta Modulation - Differential Pulse Code Modulation-Line codes-Noise consideration in PCM-Time Division Multiplexing-Digital Multiplexers.

UNIT-IV BASEBAND MODULATION TECHNIQUES

Baseband transmission of digital data-Inter Symbol interference(ISI) problem - Nyquist channelBinary Amplitude shift keying(ASK)-Phase-Shift Keying(PSK) - Frequency Shift Keying(FSK)- Quadrature Amplitude Modulation(QAM)-Continuous phase modulation and Minimum shift keyingElements of detection theory-optimum detection of signals in noise-coherent communication with waveform-Probability of error calculation.

UNIT-V DEMODULATION OF DIGITAL SIGNALS

9 Hours

Digital Modulation tradeoffs-optimum demodulation of digital signal over band limited channelsMaximum likelihood sequence detection (Viterbi receiver)-Equalization techniques-Synchronization and carrier recovery of digital modulation.

	Total Hours 45 Hours									
Text / Reference Book(s)										
1.	Dr.Sanjay Sharma,"Analog and Digital Communication",SK Kataria & Son's publication, Seventh Edition,2017.									
2.	Haykin.S and Michel Moher,"Introduction to Analog and Digital Communication", John Wiley, Second Edition, 2012.									
3.	Taub Hand Schilling D.L., "Principles of Communication Systems", Tata McGraw Hill, 4 TH Edition 2017.									
4.	Prokis. J.G.,"Digital Communications", Tata McGraw Hill, Fourth Edition, 2017.									

Course Code		L	T	P	С	IA	EA	TM		
Course Name	MICROPROCESSOR AND	3 0 0 3 40 60 100								
	MICROCONTROLLERS									
Course Category	PROGRAMME CORE COURSE	Syllabus Revision								
Pre-requisite	Electronic Devices, Digital System Design									

Course Objectives:

The course should enable the students

- 1. To study architecture of 8085 Microprocessor and its instruction set.
- 2. To study architecture of 8086 Microprocessor and its instruction set.
- 3. To learn design aspects of I/O and Memory interfacing circuits.
- 4. To study architecture of 8051 microcontroller and its applications.
- 5. To know about RSIC processors and design ARM processor-based systems.

Course Outcomes:

On completion of the course, the student will be able to

on completion of the course, the student will be use to										
Course	Description	Highest								
Outcomes		Bloom's								
		Taxonomy								
CO1	Execute programs using assembly language of 8085 Microprocessor.	К3								
CO2	Execute programs using assembly language of 8086 Microprocessor.	КЗ								
CO3	Design interfacing circuits using I/O and Memory devices.	КЗ								
CO4	Develop systems using different microcontrollers.	K4								
CO5	Design ARM microcontroller based systems.	КЗ								

Official	Correlation between Course Outcomes (Cos) and Frogram Outcomes (Fos).																
													Program Specific				
COs				Outcomes (PSOs)													
COS	PO 1	PO2	РО	PO	PO	PO	РО	PO	PO	PO	PO	PO	PS	PS	PS		
			3	4	5	6	7	8	9	10	11	12	O1	O2	O3		
CO1	S	S	S	M	-	-	-	_	-	_	-	L	M	M	-		
CO2	S	S	S	M	-	-	-	-	-	-	ı	L	M	M	-		
CO3	S	S	S	M	-	_	-	-	-	-	_	L	M	L	S		
CO4	S	S	S	M	M	-	-	-	-	-	ı	L	M	S	S		
CO5	S	S	S	M	M	_	-	_	-	ı	ı	L	-	M	M		

UNIT-I	8085 MICROPROCESSOR	9Hours
01411-1	6065 WICKOT ROCESSOR	9110u13

Microprocessor architecture and its operation, memory, I/O devices, 8085 microprocessor – Core architecture - Various registers- Bus Timings, Multiplexing and De-multiplexing of Address Bus, Decoding and Execution, Instruction set – Classification, Instruction Format, Addressing Modes, 8085 Interrupt Process, Hardware and Software Interrupts.

UNIT-II 8086 MICROPROCESSOR 9Hours

Core Architecture of the 8086 - Memory Segmentation, Minimum mode Operation and Maximum Mode Operation, Instruction Set of the 8086 processor- Classification - Instruction Format Addressing modes, Simple Assembly Language Programs - Arithmetic operations, Data transfer, String Manipulation, Searching and Sorting.

UNIT-III I/O INTERFACING 9Hours

Memory Interfacing and I/O interfacing - Parallel communication interface - Serial Communication interface - D/A and A/D Interface - Timer - Keyboard /display controller - Interrupt controller - DMA controller - Programming and applications Case studies: TrafficLight control, LED display , LCD display, Keyboard display interface and Alarm Controller.

UNIT-IV MICROCONTROLLER 9Hours

Architecture of 8051 – Special Function Registers (SFRs) - I/O Pins Ports and Circuits – Instruction set- Addressing modes - Assembly language programming - Programming 8051Timers, Serial Port Programming - Interrupts Programming – LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation.

UNIT-V ADVANCED MICROPROCESSOR & MICROCONTROLLER 9Hours

Advanced Microprocessor Architectures - 286, 486, Pentium - RISC Processors - RISC Vs CISC, RISC properties and evolution - ARM Processor - CPU: programming input and output supervisor mode, exceptions and traps - Co-processors - Memory system mechanisms - CPU performance - CPU power consumption.

	m 177 4077									
	Total Hours 45Hours									
Text Boo	ok(s)									
1	R.S.Gaonkar, "Microprocessor Architecture: Programming and Applications with the									
	085/8080A", Penram International Publishing, Third Edition, 1996.									
2	D A Patterson and J H Hennessy, "Computer Organization and Design of hard ware and									
	Software interface"Morgan Kaufman Publishers, Fourth Edition, 2011.									
Referen	ce Book(s)									
1	Douglas Hall, "The Microprocessors and its Interfacing", Tata McGraw Hill, Third Edition,									
	2012.									
2	Kenneth J.Ayala, "The 8051 Microcontroller: Architecture Programming & Applications",									
	Penram International Publishing, Second Edition, 1996.									

Course Code		L	T	P	С	IA	EA	TM
Course Name	DATA STRUCTURES AND	2	0	0	2	40	60	100
	ALGORITHMS	3	U	U	3	40	60	100
Course Category	PROGRAMME CORE		Syllabus Revision					
	COURSE							
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. Learn linear data structures list, stack, and queue.
- 2. Learn Nonlinear data Structures-Trees and Graphs.
- 3. Be exposed to sorting, searching and hashing algorithms.

Course Outcomes:

On completion of the course, thes tudent will beable to

- Implement application of linear and nonlinear data structures.
- Apply the different linear data structures to solve problems.
- Implement the various algorithms.

Course	Description	Highest				
Outcomes		Bloom's				
		Taxonomy				
CO1	Select appropriate data structures as applied to specified	K2				
	Problem definition.					
CO2	Implement operations like searching, insertion, and deletion,	K5				
	Traversing mechanism etc. on various data structures.	K.				
CO3	Students will be able to implement Linear and Non-Linear data	K5				
	Structures.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
CO4	Implement appropriate sorting/searching technique for given	К6				
	Problem.	VO				
CO5	Determine and analyse the complexity of given Algorithms	К6				

		ProgramOutcomes(POs)													Program Specific			
CO-					Outcomes(PSOs)													
COs	PO1	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PSO3			
		2	3	4	5	6	7	8	9	10	11	12	01	O2				
CO1	S	S	S	S	S	M	-	-	S	M	L	S						
CO2	M	S	M	S	S	M	-	-	S	M	L	S						
CO3	M	M	M	M	S	M	-	-	S	M	L	S						
CO4	M	S	M	S	S	M			S	M	M	M						
CO5	M	S	M	S	S	M	-	-	S	M	M	M						

UNIT-I INTRODUCTION 9 Hours

Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, time-Space trade off. Searching: LinearSearch and Binary Search Techniques and their complexity analysis

UNIT-II STACKS AND QUEUES 9 Hours

ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation—corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each Type of Queues: Algorithms and their analysis.

UNIT-III LINKED LISTS 9 Hours

Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doublylinked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.

UNIT-IV TREES & GRAPH 9 Hours

Trees - Basic Tree Terminologies, Different types of Trees: Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of BinaryTrees. B Tree: definitions, algorithms and analysis. Graph - Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.

UNIT-V SORTING AND HASHING 9 Hours

Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, QuickSort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing.

Total Hours 45 Hours

Text Books:

- 1. "Fundamentals of Data Structures", Illustrated Edition by Ellis Horowitz, Sartaj Sahni, Computer Science Press
- 2. Seymour Lipschutz "Theory and Problems of Data Structures". (AVL Trees, B-Trees), Edition 2006, Tata mcgraw Hill, 12th Edition 2011.
- 3. Ellis Horowitz & Sartaj Sahani "Fundamentals of Data Structures in C" W.H. Freeman and Co., 2nd Edition, 2007.

References:

PCSVNV

Syllabus (2024-25) B.E. (Electronics and Communication Engineering)

1. Hand book of Data Structures and Applications, Dinesh P Mehta, Sartaj Sahni, CRC Press, 2018

DATA STRUCTURES LAB LIST OF PROGRAMS

- 1. Write simple program to implement Array data structure with all possible manipulation such asinsertion, deletion, find & replace, accepting array values from command line arguments
- 2. Write simple programs to implement structures with all possible manipulations such as passingstructures and returning from functions, pointer to the structure, members as pointers in thestructure and self-referential structure.
- 3. Write simple programs to implement pointers with all manipulations such as pointer to arrays, pointer arithmetic, pointer to pointer, passing pointers to functions and returning from functions.
- 4. Implementation of Single Linked List
- 5. Implementation of Stack
- 6. Implementation of Queue
- 7. Sort the Given Numbers using
 - i) Bubble sort
 - ii) Selection Sort.
 - iii) Insertion Sort
- 8.Implement linear and Binary Search algorithm

CourseCode		L	T	P	С	IA	EA	TM
Course Name	ELECTRO MAGNETIC FIELDS AND	2	0	0	2	40	60	100
	WAVE GUIDES	3	U	U	3	40	00	100
Course	PROGRAMME CORE COURSE		Syllabus Revision					
Category			•					
Pre-requisite	Physics and Mathematics			•		•	•	

Course Objectives:

The course should enable the students

- 1. To study the basics of Electromagnetic.
- 2. To understand the propagation and polarization of Electro magnetic waves.
- 3. To analyze wave propagation in Transmission Lines and its applications.
- 4. To analyze wave propagation in metallic wave guides.
- 5. To know the radiation characteristics of an antenna.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Gain knowledge on basics of Electro- magnetic.	K1
CO2	Understand the propagation of Electromagnetic Waves.	K2
CO3	Determine the characteristics and wave propagation on transmission lines.	К3
CO4	Analyze wave propagation on metallic wave guides.	K4
CO5	Determine the radiation and radiation characteristics of an antenna.	K2

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

	Program Outcomes(POs) Program S Outcomes														pecific (PSOs)		
COs	P	P	P	P	P	P	P	P	P	P	P	РО	PSO	PS	PSO3		
	0	0	0	0	0	0	0	0	0	0	0	12	1	0			
	1	2	3	4	5	6	7	8	9	10	11			2			
CO1	S	S	S	-	-	-	-	-	-	-	-	L	S	1	-		
CO2	S	S	S	-	-	-	-	-	-	-	-	L	-	-	S		
CO3	S	S	S	-	-	-	-	-	-	-	-	L	M	-	S		
CO4	S	S	S	-	-	-	-	-	-	-	-	L	M	S	S		
CO5	S	S	S	-	-	-	-	-	-	-	-	L	M	S	-		

UNIT-I	BASICS OF ELECTRO MAGNETICS	9Hours
OTATI-I		2110u12

Vector algebra-Coordinate Systems-Vector differential operator-Gradient-Divergence-Curl- Divergence Theorem-Stokes theorem-Coulombs law-Electric field intensity-Electric flux density- Gauss lawand its applications-Biot Savart Law-Ampere's law-Faradays law- Maxwell's Equations In Integral and differential form-Electric and magnetic boundary conditions at the mediainterface.

limited, 2011.

Syllabus (2024-25) B.E. (Electronics and Communication Engineering)

			T
UNI	IT-II	ELECTRO MAGNETIC WAVES	9Hours
Unif	orm P	Plane Waves-Uniform plane wave propagation-Wave pr	opagation in
cond	ucting	medium- Wave Polarization-Reflection by perfect conductor	(normal and
obliq	ue inc	idence)- Reflection by perfect insulator(normal and obliqu	e incidence)-
plane	e wave	s in arbitrary direction-Brewster angles- Total internal reflect	tion-poynting
vecto	or and j	power flow-Power loss inplane conductor.	
			T 077
	T-III	TRANSMISSION LINES	9Hours
_		of Voltage and Current on TX line- Propagation constant-	
_		reflection phenomenon-standing waves-Input impedance	_
		nission line-open and short circuited line- power and	-
		nt on TXline- $\lambda/8, \lambda/4 \& \lambda/2$ line- $\lambda/4$ Impedance transformer-Sm	ith chart and
its ap	plicati	ons-single and double stub matching	
TINIT	T 137	CHIDED MANGE AND MANG CHIDES	OHerry
	T-IV	GUIDED WAVES AND WAVE GUIDES	9Hours
		ween parallel planes-TEwaves-TMwaves-Characteristic of	
		waves-Velocities of propagation-Attenuation in parallel p	
	_	wave guide-TE and TM wave sin rectangular wave guide-In	npossibility of
1 E IVI	wave	in rectangular wave guide.	
UNI	T-V	RADIATION	9Hours
		r potential functions-Radiation from oscillating dipole-Powe	
		dipole-antenna parameters-Gain-directivity-Effective aper	•
	O	Band width- Beam width-Input impedance-Matching Baluns-I	
	le antei		r
- I			
		Total Hours 45	Hours
	`) and Reference Books	N. D. 11.
1		MH,"Principles of Electromagnetics", Oxford University Press In econd Edition, Prentice Hall of India, 1968.	c, New Delhi,
2	E.C.Jor	dan & K.G.Balmain, "Electromagnetic Waves & Radiating Systems	s",
3	John D	Ryder,"Network lines and fields", Prentice Hall of India, NewDe	lhi, 2005.
4	David I India, 1	K.Cheng, "Field and Wave Electro magnetics", Second Edition, 1989.	Prentice Hall of
5	·	p Wali,"Electromagnetic theory", first edition, Macmillan Publishe	ers Private
		- · · · · · · · · · · · · · · · · · · ·	

Course Code		L	Т	P	С	IA	EA	TM
Course Name	ANALOG ELECTRONICS	0	0	3	2	40	60	100
	LABORATORY							
Course	PROGRAMME CORE		Sy					
Category	COURSE		•					
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To understand the basics of linear integrated circuits and available ICs
- 2. To understand characteristics of operational amplifier.
- 3. To apply operational amplifiers in linear and nonlinear applications.
- 4. To analyze the frequency response characteristics of Amplifiers.
- 5. To enable to students to work in a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest Bloom's
Outcomes		Taxonomy
CO1	Design oscillators and amplifiers using operational amplifiers.	K2
CO2	Design filters using Op-amp and perform experiment on frequency	K2
	response.	
CO3	Analyze the working of PLL and use PLL as frequency multiplier	К3
CO4	Analyze the performance of oscillators and Multi-vibrators.	КЗ
CO5	Demonstrate capability to work in a team and to build circuits for	K4
	various applications.	

				Program Specific Out comes(PSOs)											
COs	PO 1	PO 2	PO 3	PO 4	PO 5	P O6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PSO3
CO1	S	S	S	L	-	-	-	-	-	-	-	L	L	-	M
CO2	S	S	S	M	-	-	-	-	1	-	-	M	S	-	S
CO3	S	S	S	S	-	-	-	-	-	-	-	L	M	-	S
CO4	S	M	S	M	-	-	-	-	-	-	-	M	S	-	L
CO5	S	M	S	S	-	-	-	-	1	-	-	L	M	-	S

LIST OF EXPERIMENTS

•

- 1. Characteristics of Opamp–IC741.
- 2. Inverting and Non-inverting amplifier using IC741.
- 3. Measurement of op-amp characteristics.
- 4. Instrumentation amplifier and Differential Amplifier using IC741.
- 5. Integrator and Differentiator using IC741.
- 6. Schmitt Trigger using IC741.
- 7. ADC/DAC using IC741.
- 8. Astable & Monostable Multi-vibrator using IC555.
- 9. RC Phase shift oscillator and Wien bridge oscillator using BJT.
- 10. Hartley & Colpitts oscillator using BJT.
- 11. Frequency Response of Class B Push Pull Amplifier using BJT.
- 12. Frequency Response of Voltage Series Feedback Amplifier using BJT.
- 13. Phase Locked Loop (PLL)

Total Hours	45 Hours

Text Book(s)

- 1. J.V. Wait, L.P. Huelsman & GA Korn, "Introduction to Operational Amplifier theory and applications", McGraw Hill, 1992
- 2. J. Millman and A. Grabel, "Microelectronics", 2nd edition, McGraw Hill, 1988
- 3. P. Horowitz and W. Hill, "The Art of Electronics", 2nd edition, Cambridge University Press, 1989.

Reference Book(s)

- 1. A.S. Sedra and K.C. Smith, "Microelectronic Circuits", Oxford University Press, V Edition, 2004.
- 2. Paul R. Gray and Robert G.Meyer, "Analysis and Design of Analog Integrated Circuits", John Wiley, 3rd Edition, 1992.

Course Code		L	T	P	С	IA	EA	TM
Course Name	ANALOG AND DIGITAL COMMUNICATION LABORATORY	0	0	3	2	40	60	100
Course Category	PROGRAMME CORE COURSE	Syllabus Revision						
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To construct basic circuits of Analog communication system.
- 2. To construct basic circuits of Digital communication system.
- 3. To Design and construct experiments for performing modulation and sampling.
- 4. To analyze the Performance characteristics of analog and Digital Communication Systems.
- 5. To enable to students to work in a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Apply the practical knowledge to construct Analog communication circuits.	КЗ
CO2	Apply the practical knowledge to construct Digital communication circuits	КЗ
CO3	Evaluate Analog and Digital modulated wave form in time /frequency domain.	К3
CO4	Analyze and evaluate the performance of Analog and Digital communication systems.	K5
CO5	Demonstrate capability to work in a team and to build circuits for various applications.	K4

COs		Program Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	РО	PS	PS	PS
										10	0	12	O1	O2	O3
											11				
CO1	S	S	S	S	S	-	-	-	M	-	-	-	S	S	-
CO2	S	S	S	S	S	-	-	-	M	-	-	-	S	S	-
CO3	S	S	S	S	S	-	-	-	M	ı	-	ı	S	S	-
CO4	S	S	S	S	S	-	-	-	M	-	-	-	S	S	-
CO5	S	S	S	S	S	-	-	-	M	-	-	-	S	S	-

LISTOF EXPERIMENTS

- 1. Study of Multisim, VisSim and MATLAB.
- 2. AM modulator and Demodulator.
- 3. DSB-SC modulator and Demodulator.
- 4. SSB modulator and Demodulator.
- 5. FM modulator and Demodulator.
- 6. PAM modulator and Demodulator.
- 7. PPM & PWM Modulator.
- 8. Pre-emphasis and De-emphasis in FM.
- 9. Signal Sampling and Reconstruction (Sampling Theorem).
- 10. Pulse Code Modulation and Demodulation.
- 11. Delta modulation and Adaptive Delta modulation.
- 12. Amplitude Shift Keying (ASK) and Frequency Shift Keying (FSK) modulator and Demodulator.
- 13. Phase Shift keying (PSK) and Binary Phase Shift Keying (BPSK) Modulator and Demodulator

	Total Hours 45Hours
Tex	t Book(s)
1.	Haykin.S and Michel Moher," Introduction to Analog and Digital communication", Second edition, John
	Wiley and sons Inc, 2012.
2.	Prokis J.G.," Digital communications", 4th edition, Tata McGraw Hill, 2000.
Ref	erence Book(s)
1.	Taub H and Schilling D.L., "Principles of Communication systems", Tata McGraw Hill, 2001
2.	Dr.Sanjay Sharma, "Analog and Digital communication", seventh edition, K KATARIA & amp; SON'S
	publication, 2017.

Course Code		L	T	P	С	IA	EA	TM
Course Name	MICROPROCESSOR AND	0	0	3	2	40	60	100
	MICROCONTROLLER							
	LABORATORY							
Course Category	PROGRAMME CORE COURSE	Syllabus Revision						
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To study architecture of 8086 microprocessor and perform various arithmetic &logical operations.
- 2. To learn the design aspects of I/O and Memory Interfacing circuits.
- 3. To analyze the communication between Peripherals and bus interfacing.
- 4. To Execute Programs using 8051 Microcontroller.
- 5. To enable to students to working a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest					
Outcomes	comes						
		Taxonomy					
CO1	Design and implement programs on 8086Microprocessor.	К3					
CO2	Design I/O circuits and analyze the performance.	К3					
CO3	Design Memory Interfacing circuits.	К3					
CO4	Integrate Microprocessor and Microcontroller and Peripherals for Various Applications.	K5					
CO5	Demonstrate capability to working a team and to build circuits for various applications.	K4					

COs	Program Outcomes (POs)											S _I	Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	P	РО	PS	PS	PS
										10	0	12	O1	O2	O3
											11				
CO1	S	S	S	S	S	M			M			L	S	S	L
CO2	S	S	S	S	S	M			M			L	S	S	L
CO3	S	S	S	S	S	M			M			L	S	S	S
CO4	S	S	S	S	S	M			M			L	S	S	S
CO5	S	S	S	S	S	M			M			L	S	S	S

LISTOF EXPERIMENTS

8086 Microprocessor Experiments

- 1. Basic Arithmetic and Logical operations using 8086.
- 2. Code conversion, decimal arithmetic and Matrix operations.
- 3. Floating-point operations, string manipulations, sorting and searching.
- 4. Counters and Time delay.
- 5. Password Checking, Print RAM size and System Date.

8086 Microprocessor-Peripherals and Interfacing Experiments

- 6. Traffic Light Control and Stepper Motor Control.
- 7. Digital Clock.
- 8. Keyboard and Display.
- 9. Serial and Parallel Interface.
- 10. A/D and D/A Interface and Waveform Generation.

8051 Microcontroller Experiments - Hardware / Simulation

- 11. Basic Arithmetic and Logical Operations.
- 12. Square program, Cube program and Finding 2's complement of a number.
- 13. Unpacked BCD to ASCII.
- 14. A/D and D/A Interface and Waveform Generation.
- 15. Interfacing LCD to 8051

	<u> </u>
	Total Hours 45Hours
Tex	t Book(s)
1.	R. S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085/8080A",
	Penram International Publishing, Third Edition, 1996.
2.	D A Patterson and J H Hennessy, "Computer Organization and Design The hardware and software
	interface" Morgan Kaufman Publishers, Fourth Edition, 2011.
Refe	erence Book(s)
1.	Douglas Hall, "The Microprocessors and its Interfacing", Tata McGraw Hill, Third Edition, 2012.
2.	Kenneth J. Ayala, "The 8051 Microcontroller: Architecture Programming & Applications", Penram
	International Publishing, Second Edition, 1996.