

Sri Chandrasekharendra Saraswathi Viswa MahaVidyalaya

Declared as Deemed to be university U/s 3 of UGC Act 1956 Accredited with "A" Grade by NAAC Approved by AICTE, New Delhi | Enathur, kanchipuram-631561 www.kanchiuniv.ac.in

Department of Electronics and Communication Engineering

CURRICULUM & SYLLABUS FOR PART TIME

B.E. Electronics and Communication Engineering

(Choice Based Credit System)

(With effect from AY 2025-26)

Semester-I

Sl.N	Course Code	Course Name	Category	Hou	s per w	eek	С	IA	EA	TM
0	3040			L	T	P				
1.		Probability andStatistics	BSC	2	1	0	3	40	60	100
2.		Electronic Devices	PCC	3	0	0	3	40	60	100
3.		Digital System Design	PCC	3	0	0	3	40	60	100
4.		Signals And Systems	PCC	3	0	0	3	40	60	100
5.		Network Theory	PCC	3	0	0	3	40	60	100
6.		Electronic Devices Laboratory	PCC	0	0	2	1	40	60	100
7.		Digital System Design Laboratory	PCC	0	0	2	1	40	60	100
			Total	14	1	4	17	-	-	

Semester-II

Sl.N	Course Code	Course Name	Category	Hours	per v	veek	С	IA	EA	TM
0	Code			L	Т	P				
1.		Analog Electronics	PCC	3	0	0	3	40	60	100
2.		Analog And Digital Communication	PCC	3	0	0	3	40	60	100
3.		Microprocessor And Microcontrollers	PCC	3	0	0	3	40	60	100
4.		Measurements and Instrumentation	ECS	3	0	0	3	40	60	100
5.		Electromagnetic Fields and waveguides	PCC	3	0	0	3	40	60	100
6.		AnalogElectronics Laboratory	PCC	0	0	2	1	40	60	100
7.		Analog And Digital Communication Laboratory	PCC	0	0	2	1	40	60	100
8.		Microprocessor and Microcontrollers Laboratory	PCC	0	0	2	1	40	60	100
			Total	15	0	6	18	-	-	

Semester-III

Sl.N	Course	Course Name		Hours	per we	ek				
0	Code		Category	L	Т	P	C	IA	EA	TM
1.		Microwave Engineering	PCC	3	0	0	3	40	60	100
2.		Digital Signal Processing	PCC	3	0	0	3	40	60	100
3.		Computer Aided System Design	PCC	3	0	0	3	40	60	100
4.		Professional Elective Course -I	PEC	3	0	0	3	40	60	100
5.		Open Elective Course-I	OEC	3	0	0	3	40	60	100
6.		Electromagnetic Fields and Microwave Laboratory	PCC	0	0	2	1	40	60	100
7.		Digital Signal Processing Laboratory	PCC	0	0	2	1	40	60	100
8.		Computer Aided System Design Laboratory	PCC	0	0	2	1	40	60	100
				15	0	6	18	-	-	

Semester-IV

Sl.N	Subject Code	Subject Name	Category	Hour	s per we	eek	С	IA	EA	TM
0	3040			L	Т	P				
1.		Control Systems	PCC	3	0	0	3	40	60	100
2.		Computer Networks	PCC	3	0	0	3	40	60	100
3.		Professional Elective Course -II	PEC	3	0	0	3	40	60	100
4.		Embedded Systems	PCC	3	0	0	3	40	60	100
5.		Principles of Management and Professional Ethics	HSMC	3	0	0	3	40	60	100
6.		Computer Networks Lab	PCC	0	0	2	1	40	60	100
7.		Embedded Systems Design Laboratory	PCC	0	0	2	1	40	60	100
8.		VLSI Design Lab	PCC	0	0	2	1	40	60	100
			Total	15	0	6	18	-	-	

Semester-V

Sl.N	Course Code	Course Name	Category	Hou	rs per w	veek	C	IA	EA	TM
0	Code			L	T	P				
1.		Professional Elective Course -III	PEC	3	0	0	3	40	60	100
2.		Professional Elective Course- IV	PEC	3	0	0	3	40	60	100
3.		Computer Architecture	PCC	3	0	0	2	40	60	100
4.		Open Elective Course - II	OEC	3	0	0	3	40	60	100
5.		Optical Communication	PEC	3	0	0	3	40	60	100
6.		Optical Communication Laboratory	PCC	0	0	2	1	40	60	100
	<u> </u>	<u> </u>	Total	15	0	2	15			

Semester-VI

Sl.N	Course	Course Name	Category	Hours	s per we	eek	C	IA	EA	TM
0	Code			L	T	P				
1.		Professional Elective Course V	PEC	3	0	0	3	40	60	100
2.		Professional Elective Course VI	PEC	3	0	0	3	40	60	100
3.		Industrial IOT	PEC	3	0	0	3	40	60	100
4.		Open Elective Course III	OEC	3	0	0	3	40	60	100
5.		Mini Project/Project Work [Phase 1]	PII	0	0	0	3	40	60	100
	<u> </u>	<u> </u>	Total	12	0	0	15	•	-	

Semester-VII

Sl.N o	Course Code	Course Name	Category	Hours per week		С	IA	EA	TM	
				L	Т	P				
1.		Professional Elective Course VII	PEC	3	0	0	3	40	60	100
2.		Project Work - Phase2	PII	0	0	0	15	40	60	100
			Total	3	0	0	18	-	-	

Total: 120 Credits

LIST OF PROFESSIONAL ELECTIVES COURSES [PEC]

	Professional Elective Course–I								
Sl.No	Course Code	Course Name							
1.		Antennas and Propagation							
2.		Information Theory and Coding							
3.		Introduction to MEMS							

	Professional Elective Course–II							
Sl.No	Course Code	Course Name						
1.		VLSI Design						
2.		Multimedia Compression Techniques						
3.		Nano Electronics						

	Professional Elective Course–III						
Sl.No	Course Code	Course Name					
1.		Digital Image and Video Processing					
2.		Wireless Sensor Networks					
3.		ASIC design					
4.		Advanced Microcontrollers					

	Professional Elective Course–IV							
Sl.No	Course Code	Course Name						
1.		Mobile Communication and Networks						
2.		CMOSIC Design						
3.		Speech and Audio Processing						
4.		High Speed Electronics						

	Professional Elective Course–V							
Sl.No	Course Code	Course Name						
1.		Bio-Medical Electronics						
2.		Mixed Signal Design						
3.		Adaptive Signal Processing						
4.		RF Design						

Professional Elective Course–VI								
Sl.No	Course Code Course Name							
1.		Neural Networks and Fuzzy Logic						
2.		4G LTE Cellular Systems						
3.		Error Correcting Codes						
4.		VLSI Testing						

Professional Elective Course-VII							
Sl.No	Course Code	Course Name					
1.		Satellite Communication					
2.		Radar and Navigational Aids					
3.		Wavelets and itsA pplications					
4.		Software Defined Radio					

LIST OF OPEN ELECTIVES COURSES [OEC]

Open Elective Course–I							
Sl.No	Course Course Name Code						
1.		Disaster Management					
2.		Cryptography & Network Security					
3.		PLC & Data Acquisition Systems					
4.		Nano science					
5.		Autotronics					

Open Elective Course-II							
Sl.No	Course Code	Course Name					
1		Remote Sensing & GIS					
2		Big data Analytics					
3		Computer Integrated Manufacturing					
4		Operational Research					
5		3D Printers & Applications					

Open Elective Course–III							
Sl.No	Course Code						
1		Sensors & Actuators					
2		ADHOC Networks					
3		Artificial Intelligence					
4		Total Quality Management					
5		Global Positioning Systems					

SEMESTER - I

Course Code		L	T	P	С	IA	EA	TM
Course Name	PROBABILITY AND STATISTICS	3	1	0	4	40	60	100
Course Category	BASIC SCIENCE COURSE		Syllal	ous Rev	ision			
Pre-requisite	Collection of data, Counting Te	chniq	ues,P	ermuta	tion	and co	mbina	tion

Course Objectives:

The course should enable the students

- To introduce fundamental concepts of probability theory, including conditional probability, Bayes' theorem, and random variables.
- To familiarize students with discrete and continuous probability distributions and their applications.
- 3. To develop an understanding of statistical measures such as central tendency, dispersion, correlation, and regression.
- 4. To equip students with techniques for curve fitting and conducting large sample hypothesis testing.
- 5. To enable students to perform small sample hypothesis tests using t, F, and chi-square distributions.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Apply basic concepts of probability, including Bayes' theorem and moment generating functions, to analyze random events.	K1
CO2	Use standard discrete and continuous probability distributions to model and solve real-world problems.	КЗ
CO3	Compute and interpret statistical measures such as mean, variance, correlation, regression, skewness, and kurtosis.	КЗ
CO4	Perform curve fitting using least squares and conduct large-sample hypothesis testing.	K4
CO5	Apply small-sample tests such as t-test, F-test, and chi-square test for inference and decision-making.	K5

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

COs		ProgramOutcomes(POs)											pecific (PSOs)		
	PO	РО	PO	PO	РО	PO	PS	PS	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	3
CO1	S	S	S	S	M	M	M	-	M	M	M	M	M	-	S
CO2	S	S	S	S	M	M	M	-	M	M	M	M	M	-	S

CO3	S	S	S	S	M	M	M	_	M	M	M	L	L	-	S
CO4	S	S	S	S	M	M	M	-	M	M	M	L	L	1	S
CO5	S	S	S	S	M	M	M	-	M	M	M	L	M	M	S

UNIT-I	Probability	12Hours

Introduction to Probability, Probability spaces, conditional probability, Bayes' Theorem, Discrete and Continuous one dimensional random variables - Expectations, Moments, Variance of a sum, Moment generating function, Tchebyshev's Inequality.

UNIT-II Probability Distributions 12Hours

Discrete Distributions – Binomial, Poisson and Negative Binomial distributions, Continuous Distributions - Normal, Exponential and Gamma distributions.

UNIT-III Statistics 12Hours

Measures of Central tendency, Measures of dispersion, co efficient of variation, Moments, Skewness and Kurtosis, Correlation, Rank Correlation and Regression (Bivariate)

UNIT-IV Testing of Hypothesis-I 12Hours

Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.

UNIT-V	Testing of Hypothesis-II	12Hours
--------	--------------------------	---------

Test for single mean, difference of means and correlation coefficients, test for ratio of variances Chi-square test for goodness of fit and independence of attributes.

	Total Hours 60Hours
Text Book(s	
1.	T. Veerarajan, Probability, Statistics and Random Processes, Third edition, Tata
	McGraw-Hill, NewDelhi, 2010.
2	S.P. Gupta, Statistical Methods, 31st edition, Sultan chand and sons, New Delhi, 2002.
Reference E	Book(s)
1.	Loeve, M. (2012). Probability Theory I. United States: Springer New York.

Course Code		L	T	P	С	IA	EA	TM
Course Name	ELECTRONIC DEVICES	3	0	0	3	40	60	100
Course Category	PROGRAMME CORE COURSE	Syllabus Revision						
Pre-requisite	BasicElectrical Engineering							

Course Objectives:

The course should enable the students:

- 1. To know about semiconductor materials and their types.
- 2. To design and construct diode circuits.
- 3. To learn fundamentals of transistor and its variants.
- 4. To study frequency response of amplifiers under small signal conditions.
- 5. To understand construction and characteristics of JFET and MOSFET.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Characterize the types of semiconductors.	K1
CO2	Design and construct circuitsusing various diodes.	K2
CO3	Design and construct circuits using BJT.	K2
CO4	Design and construct transistor amplifiers using h-parameters.	K4
CO5	Understand the characteristics of JFET and MOSFET.	K2

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

Program Outcomes (POs) COs										Program Specific Outcomes (PSOs)					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS O2	PSO 3
CO1	S	S	-	-	-	-	-	-	-	-	-	L	-	-	-
CO2	S	S	S	M	-	-	-	-	-	-	-	L	L	-	S
CO3	S	S	-	L	-	-	-	-	-	-	-	L	M	-	S
CO4	S	S	S	M	-	-	-	-	-	-	-	L	M	M	S
CO5	S	S	-	1	-	-	-	1	-	-	-	L	-	ı	S

Reference Book(s)

PHI, 2014.

1.

2.

3.

Part Time- B.E. (Electronics and Communication Engineering) Curriculum (2025-26) onwards

SCSVM		Curriculum (2025-26) onwards						
UNIT-I		SEMICONDUCTOR MATERIALS	9 Hours					
Elemental & co	ompo	und semiconductor materials, Bonding forces and Energy bands in	intrinsic and					
	_	harge carrier in semiconductors, carrier concentration, Junction						
		n, biased junction, Steady state condition, breakdown mechanism (Recti						
Zener Diodes),	Meta	l Semiconductor Junction. Special diodes: Tunnel diodes, Varactor diod	des, Schottky					
diode, Photo dio	odes, l	Photo detector, LED, Solar cell.						
UNIT-II		DIODE CIRCUITS	9 Hours					
Ideal and Pract	tical	diode, Clipper, Clamper. Power Supply: Rectifiers-Halfwave, Full	wave, Bridge					
rectifier, filter	r cir	cuits, Voltage regulation using shunt & series regulatorcircu	iits, Voltage					
regulationusing	gIC72	23						
UNIT-III		FUNDAMENTALS OF BJT	9 Hours					
Construction, ba	asic o	peration, current components and equations, CB, CE and CC configurat	ion, input and					
output characteristics, Early effect, Region of operations: active, cut-off and saturation region. BJT as an								
output characte	eristic	s, Early effect, Region of operations: active, cut-off and saturation reg	ion. BJT as an					
		s, Early effect, Region of operations: active, cut-off and saturation reg a - Photo transistor, Uni-junction Transistor (UJT) and Thyristors: UJT						
amplifier and sv	witch							
amplifier and sv	witch	- Photo transistor, Uni-junction Transistor (UJT) and Thyristors: UJT						
amplifier and sv	witch	- Photo transistor, Uni-junction Transistor (UJT) and Thyristors: UJT						
amplifier and swoperation, chara	witch acteris	- Photo transistor, Uni-junction Transistor (UJT) and Thyristors: UJT stics, UJT relaxation oscillator	Γ: Principle of 9 Hours					
amplifier and sy operation, chara UNIT-IV Small signal Ar	witch acteris	- Photo transistor, Uni-junction Transistor (UJT) and Thyristors: UJT stics, UJT relaxation oscillator SMALL SIGNAL ANALYSIS	Γ: Principle of9 Hoursifier using h-					
unit-iv Small signal Ar	mplifi	stics, UJT relaxation oscillator SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ampli	9 Hours lifier using hamplifier and					
unit-iv Small signal Ar	mplifitistagier, Co	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response circuits.	9 Hours lifier using hamplifier and					
unit-iv Small signal Ar parameter, Multi-Cascode amplifi	mplifitistagier, Co	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response.	Γ: Principle of9 Hourslifier using h-amplifier and					
UNIT-IV Small signal Ar parameter, Multi-Cascode amplifit model, Current UNIT-V JFET Construction	mplifitistage Mirro	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response circuits. FETCONSTRUCTION n-channel and p-channel, transfer and drain characteristics, paramete	9 Hours lifier using hamplifier and onse, Hybrid π 9 Hours rs, Equivalent					
UNIT-IV Small signal Ar parameter, Multi-Cascode amplifi model, Current UNIT-V JFET Construction model and voltage of the second contraction of the	mplifitistage ier, Co	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response circuits. FETCONSTRUCTION n-channel and p-channel, transfer and drain characteristics, parameter asin, analysis of FET in CG, CS and CD configuration. Enhancement as	9 Hours lifier using hamplifier and onse, Hybrid π 9 Hours rs, Equivalent					
UNIT-IV Small signal An parameter, Multi-Cascode amplifit model, Current UNIT-V JFET Construction model and volta MOSFET drain a	mplifitistage ier, Co	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response circuits. FETCONSTRUCTION n-channel and p-channel, transfer and drain characteristics, parameter and analysis of FET in CG, CS and CD configuration. Enhancement a transfer Characteristics.	9 Hours lifier using hamplifier and onse, Hybrid π 9 Hours rs, Equivalent and Depletion					
UNIT-IV Small signal Ar parameter, Multi Cascode amplification model, Current UNIT-V JFET Construction model and volta MOSFET drain a Integrated Circumstant of the control	mplificitistage ier, Co	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response circuits. FETCONSTRUCTION n-channel and p-channel, transfer and drain characteristics, parameter ain, analysis of FET in CG, CS and CD configuration. Enhancement a transfer Characteristics. Fabrication Process: oxidation, diffusion, ion implantation, photographics.	9 Hours lifier using hamplifier and onse, Hybrid π 9 Hours rs, Equivalent and Depletion					
UNIT-IV Small signal Ar parameter, Multi Cascode amplification model, Current UNIT-V JFET Construction model and volta MOSFET drain a Integrated Circumstant of the control	mplificitistage ier, Co	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response circuits. FETCONSTRUCTION n-channel and p-channel, transfer and drain characteristics, parameter ain, analysis of FET in CG, CS and CD configuration. Enhancement a transfer Characteristics. Fabrication Process: oxidation, diffusion, ion implantation, photographical process.	9 Hours ifier using hamplifier and onse, Hybrid π 9 Hours rs, Equivalent and Depletion tolithography,					
UNIT-IV Small signal Ar parameter, Multi Cascode amplification model, Current UNIT-V JFET Construction model and volta MOSFET drain a Integrated Circle etching, chemical	mplificitistage ier, Co	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response circuits. FETCONSTRUCTION n-channel and p-channel, transfer and drain characteristics, parameter ain, analysis of FET in CG, CS and CD configuration. Enhancement a transfer Characteristics. Fabrication Process: oxidation, diffusion, ion implantation, photographics.	9 Hours lifier using hamplifier and onse, Hybrid π 9 Hours rs, Equivalent and Depletion					
UNIT-IV Small signal An parameter, Multi-Cascode amplification model, Current UNIT-V JFET Construction model and volta MOSFET drain a Integrated Circulation etching, chemication and the control of the	mplification, 1 cage g and treation al vap	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response circuits. FETCONSTRUCTION n-channel and p-channel, transfer and drain characteristics, paramete ain, analysis of FET in CG, CS and CD configuration. Enhancement a transfer Characteristics. Fabrication Process: oxidation, diffusion, ion implantation, photor deposition, sputtering, twin-tub CMOS process Total Hours	9 Hours lifier using hamplifier and onse, Hybrid π 9 Hours rs, Equivalent and Depletion tolithography, 45 Hours					
UNIT-IV Small signal Ar parameter, Multi Cascode amplifit model, Current UNIT-V JFET Construction model and volta MOSFET drain a Integrated Circle etching, chemical Text Book(s) 1.	mplification, 1 cage g and treation al vap	SMALL SIGNAL ANALYSIS ier, Amplifier Bandwidth, Hybrid model, analysis of transistor ample Amplifier: Cascading amplifier, Boot-strapping Technique, Darlington oupling methods in multistage amplifier, Low and high frequency response or circuits. FETCONSTRUCTION n-channel and p-channel, transfer and drain characteristics, parameter ain, analysis of FET in CG, CS and CD configuration. Enhancement a transfer Characteristics. Fabrication Process: oxidation, diffusion, ion implantation, photor deposition, sputtering, twin-tub CMOS process Total Hours Id .A. Neamen, Electronic Circuit Analysis and Design –2 nd Edition, Technology (Control of Control of	9 Hours lifier using hamplifier and onse, Hybrid π 9 Hours rs, Equivalent and Depletion tolithography, 45 Hours					

Salivahanan, Kumar & Vallavaraj, "Electronic Devices and Circuits", TMH, 2016.

Millman & Halkias, "Electronic Devices and Circuits", TMH, 2013.

Theodore F. Bogart, Jeffrey S. Beasley, "Guillermo Rico Electronic Devices & Circuits",

Course Code		L	T	P	С	IA	EA	TM
Course Name	DIGITAL SYSTEM DESIGN	3	0	0	3	40	60	100
Course Category	PROGRAMMECORE	Syllabus Revision						
	COURSE							
Pre-requisite	Basic electronics, Boolean algebra and Number systems.							

- 1. The course should enable the students –
- 2. To introduce basic postulates of Boolean algebra and shows the correlation between Boolean expressions.
- 3. To introduce the methods for simplifying Boolean expressions.
- 4. To outline the formal procedures for the analysis and design of combinational circuits and Sequential circuits.
- 5. To introduce the concept of memories and programmable logic devices.
- 6. To illustrate the concept of synchronous and asynchronous sequential circuits.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Explain the basic theorems and properties of Boolean algebra.	К3
CO2	Utilize K- Map for gate level minimization of the given Boolean function	K5
CO3	Construct combinational logic circuits for the given requirement and determine their performance.	K5
CO4	Design synchronous and asynchronous sequential circuits using VERILOG.	К6
CO5	Illustrate the Classifications of memories and programmable logic devices.	К6

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

	Program Outcomes(POs)												Program Specific		
COs		1 rogram Outcomes(1 Os)											Outcomes(PSOs)		
COS	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PSO3
		2	3	4	5	6	7	8	9	10	11	12	O 1	O2	
CO1	S	M	M	M	1	-	-	-	-	-	S	S	S	S	M
CO2	S	S	S	S	1	1	1	-	-	-	M	L	M	S	M
CO3	-	S	S	M	1	M	1	-	-	-	M	M	S	S	M
CO4	S	S	S	S	M	ı	ı	-	-	-	S	M	M	S	L
CO5	S	S	S	S	S	1	1	_	-	-	M	M	S	S	M
	·												•		

UNIT-I MINIMIZATION TECHNIQUES AND LOGIC GATES 9Hours

Minimization Techniques: Boolean postulates and laws – De-Morgan's Theorem - Principle of Duality - Boolean expression - Minimization of Boolean expressions — Minterm – Maxterm -Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions –Quine-McCluskey method of minimization.

Logic Gates: AND, OR, NOT, NAND, NOR, Exclusive—OR and Exclusive—NORImplementationsofLogic Functionsusing gates, NAND –NOR implementations – Multilevelgate implementations-Multioutputgateimplementations. TTL and CMOSLogicand their

Characteristics-Tristate gates.

UNIT-II COMBINATIONAL CIRCUITS 9Hours

Designprocedure—Halfadder—FullAdder—Halfsubtractor—Fullsubtractor—Parallel binary adder, parallel binary Subtractor – Fast Adder - Carry Look Ahead adder – Serial Adder/Subtractor - BCD adder – Binary Multiplier – Binary Divider - Multiplexer/ Demultiplexer-decoder-encoder—paritychecker—paritygenerators—codeconverters-

MagnitudeComparator.

UNIT-III SEQUENTIAL CIRCUITS 9Hours

Latches, Flip-flops - SR, JK, D, T, and Master-Slave - Characteristic table and equation - Application table - Edge triggering - Level Triggering - Realization of one flip flop using other flip flops - serial adder/subtractor Asynchronous Ripple or serial counter - Asynchronous Up/Down counter - Synchronous counters - Synchronous Up/Down counters - Programmable counters - Design of Synchronous counters: state diagram- State table - State minimization - State assignment - Excitation table and maps-Circuit implementation - Modulo-n counter, Registers - shift registers - Universal shift registers - Shift register counters - Ring counter - Shift counters - Sequence generators.

UNIT-IV MEMORY DEVICES 9Hours

Classification of memories – ROM – ROM organization – PROM – EPROM – EPROM – EAPROM, RAM – RAM organization – Write operation – Read operation – Memory cycle - Timingwave forms – Memory decoding – memory expansion – Static RAM Cell- Bipolar RAM cell – MOSFET RAM cell – Dynamic RAM cell-ProgrammableLogicDevices – Programmable Logic Array (PLA)-Programmable Array Logic (PAL) – FieldProgrammableGateArrays(FPGA)-Implementationofcombinationallogiccircuitsusing ROM,PLA,PAL

UNIT-V	SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL	9Hours
	CIRCUITS	

Synchronous Sequential Circuits: General Model – Classification – Design – Use of Algorithmic State Machine – Analysis of Synchronous Sequential Circuits Asynchronous Sequential Circuits: Design of fundamental mode and pulse mode circuits – Incompletely specified State Machines – Problems in Asynchronous Circuits – Design of Hazard Free Switching circuits. Design of Combinational and Sequential circuits using VERILOG

1	8		
		Total Hours	45Hours

Text	Book(s)								
1.	M.Morris Mano, "Digital Design", 4e, Prentice Hall of India Pvt. Ltd., 2008/								
	Pearson Education (Singapore) Pvt.Ltd. NewDelhi, 2003.								
Refe	Reference Book(s)								
1.	JohnF.Wakerly, "Digital Design", Fourth Edition, Pearson / PHI,2008.								
2.	JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.								
3.	CharlesH.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.								
4.	DonaldP.Leachand Albert Paul Malvino, "Digital Principles and Applications", 6th Edition,								
	TMH, 2006.								
5.	ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc,2011.								
6.	DonaldD.Givone, "Digital Principles and Design", TMH, 2003.								
7.	A.AnandaKumar,Fundamentals of digital circuits,second edition,PHI learning private								
	Limited, 2009.								

Course Code		L	T	P	С	IA	EA	TM
Course Name	SIGNALS AND SYSTEMS	3	0	0	3	40	60	100
Course	PROGRAMME CORE		Syllabus Revision					
Category	COURSE							
Pre-requisite	Mathematics-I&II							

Course Objectives:

The course should enable the students-

- 1. To understand the properties and representation of discrete and continuous signals.
- 2. To analyze continuous time signals and system in the Fourier and Laplace domain.
- 3. To analyze discrete time signals and system in the Fourier and Z transform domain.
- 4. To development of the mathematical skills to solve problems involving convolution, filtering, modulation and sampling.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest Bloom's
outcomes		Taxonomy
CO1	Understand and classify systems based on the impulse response behavior of both continuous-time and discrete-time systems.	K2
CO2	Analyze and Evaluate the mathematical modeling of various signals and systems	K4
CO3	Analyze the Continuous time signals using Fourier series and Fourier Transforms.	КЗ
CO4	Examine the Continuous time LTI systems using Fourier series and Fourier Transforms.	K5
CO5	Analyze sampling process and sampling of discrete time signals.	КЗ

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

					Drogs	•omΩ•	ıtcom	oo/DO	رم) اما				Program Specific			
		ProgramOutcomes(POs)											Outcomes(PSOs)			
	PO	РО	РО	PO	PO	P	PO	РО	РО	PO	РО	РО	PS	PS	PSO3	
COs	1	2	3	4	5	O6	7	8	9	10	11	12	O1	O2		
CO1	S	S	-	M		-	-	-	-	-	-	L	M	-	S	
CO2	S	S	M	S	-	-	-	-	-	-	-	L	M	-	S	
CO3	S	S	M	M	-	-	-	-	-	-	-	L	L	-	S	
CO4	S	S	S	-	-	-	-	-	-	-	-	L	L	-	S	
CO5	S	S	M	M	-	-	-	-	-	-	-	L	M	M	S	

UNIT-I	CLASSIFICATION OF SIGNALS AND SYSTEMS	9Hours
Continuous '	Γime Signals (CT signals), Discrete time signals (DT signals) step, r	amp, pulse, impulse,
exponential,	Classification of CT and DT signals-periodic, aperiodic, random sign	nals-CT systems
	ems, Basic properties of systems- Linear Time invariant systems and	•
UNIT-II	ANALYSIS OF CONTINUOUS TIME SIGNALS	9Hours
	es Analysis- Representation of periodic signals in trigonometric an CT signals-Fourier Transform and Laplace Transform in signal analy	-
UNIT-III	LINEAR TIME INVARIANT–CONTINUOUS TIME SYSTEMS	9Hours
	Equation - Block diagram Representation, Impulse respuency response, Fourier and Laplace Transforms in analysis, State epresentation of systems.	
UNIT-IV	ANALYSIS OF DISCRETE TIME SYSTEMS	9Hours
Sampling of transform	CT signals and aliasing, DTFT and properties, Z-transform a	nd properties of Z
UNIT-V	LINEAR TIME INVARIANT – DISCRETE TIME SYSTEMS	9Hours
	equations, Block Diagram representation, Impulse response, Conysis using DTFT and Z-transforms, State variable equations and m	
	Total Hours	45Hours
Text Book(s)		
1. P.Ram	eshBabu & R.Anandanatarajan, signals and systems, $4^{ ext{th}}$ edition, Scite	ch Publication
	e limited, 2009.	
l .	7.Oppenheim, S.WilskyandS.H.Nawab, Signals and systems, Pearson	n Education, 2007.
Reference Bo		
	A.Gabeland RichardA.Roberts, Signals & LinearSystems, John Wile	·
2. Simon	Haykinsand Barry VanVeen, Signals and Systems, John Wiley& Soi	ns, 2004.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	NETWORK THEORY	3	0	0	3	40	60	100
Course	PROGRAMME CORE		Syllal	ous Rev	ision			
Category	COURSE							
Pre-requisite								

Course Objectives:

The course should enable the students-

- 1. To introduce electric circuits and its analysis
- 2. To impart knowledge on solving circuits using network theorems
- 3. To introduce the phenomenon of resonance in coupled circuits.

Course Outcomes:

On completion of the course, the student will be able to

- Ability to analyze electric circuits
- Ability to apply circuit theorems
- Ability to analyze AC and DC Circuits

Course	Description	Highest Bloom's
Outcomees		Taxonomy
CO1	Concepts, Nodal, Mesh methods	K2
CO2	Sinusoidal Analysis, Resonance, three phase circuits	К3
CO3	Network Theorem and Application	К3
CO4	Circuit Response RLC, DC & AC Excitation	K2
CO5	Two Port Networks, synthesis Networks.	К3

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

		Program Outcomes (POs)											F	rogram S	Specific
													Outcomes (PSOs)		
	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PO	PS	PSO2	PSO3
COs	1	2	3	4	5	O6	7	8	9	10	11	12	01		
CO1	S	S	S	S	M	L	-	-	M	L	-	S			
CO2	S	S	S	S	M	-	-	-	M	L	-	M			
CO3	S	S	M	M	M	M	-	-	M	L	-	S			
CO4	S	M	S	M	M	M	-	-	L	L	-	M			
CO5	S	S	S	S	M	L	-	-	L	L	-	S			

UNIT-I CIRCUIT CONCEPTS AND MESH & NODAL METHODS 9 Hours

Lumped circuits – Kirchhoff's Laws – Voltage - Current relationships of R, L and C – Independent sources Dependent sources –Simple resistive circuits – Network reduction – Voltage division – Current division –Source transformation. Formation of matrixequations and analysis of AC and DC circuits using mesh-current and nodal-voltage. Methods – Mutual inductance – Coefficient of coupling – Ideal transformer.

UNIT-II SINUSOIDAL STEADY STATE ANALYSIS 9 Hours

Phasor – Sinusoidal steady state response – concepts of impedance and admittance- analysis of simple circuits – Power and Powerfactor – series resonance and parallel resonance – Bandwidth and Q factor Solution of three-phase balanced and unbalancedcircuits.

UNIT-III NETWORK THEOREMS AND APPLICATIONS: 9 Hours

Superposition theorem – Reciprocity theorem – Compensation theorem – Substitution theorem – Maximum Power transfer theorem – Thevenin's theorem – Norton's theorem and Millman's theorem with applications.

UNIT-IV TRANSIENT ANALYSIS 9 Hours

Forced and free response of RL, RC and RLC circuits with D.C. and sinusoidal excitations.

UNIT-V TWO PORT NETWORKS AND SYNTHESIS 9 Hours

Characterization of two port networks in terms of Z,Y,H and T parameters – networks equivalents – relations between networkparameters – Analysis of T, Ladder ,Bridged – T and lattice networks – Characteristics Ideal filter - low pass and high pass filter.Reliability of one port network – Hurwitz polynomials and properties – P. R. functions and properties – synthesis of RL, RC and LCone port networks.

Total Hours 45 Hours

Text Books:

- 1. Hyatt W.H. and Kemmerly, "Engineering Circuits Analysis", McGraw-Hill International 8th Edition 2011.
- 2. Kuo F.F., "Network Analysis and Synthesis", Wiley International Edition, 2nd Edition 2006.
- 3. ParanjothiS.R., "Electric Circuit Analysis", New Age International Ltd., Delhi, 2nd Edition. 2008.

References

- 1. Edminister J.A., "Theory and Problems of Electric Circuits", Schaum's outline series McGraw HillBook Company, 4th Edition 2003.
- 2. Sudhakar A and Shyam Mohan S.P., "Circuits and Network Analysis and Synthesis", Tata McGraw Hill Publishing Ltd., New Delhi 5th Edition 2015.
- 3. Van Valkenburg M.E., "Network Analysis", Prentice Hall of India Private Ltd., New Delhi, Third Edition, 1974.

Online resources:

- 1. www.nptl.co.in
- 2. www.electrical4u.com

Course Code		L	Т	P	С	IA	EA	TM
Course Name	ELECTRONIC DEVICES	0	0	3	2	40	60	100
	LABORATORY	U	U	3	2	40	00	100
Course	PROGRAMME CORE		Sy	llabus	Revisio	on		V.1.0
Category	COURSE							
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To understand various tools used for designing circuits.
- 2. To analyze the characteristics of Semiconductor devices.
- 3. To construct semiconductor devices for practical applications.
- 4. To design of amplifiers and analyze their characteristics.
- 5. To analyze the frequency response characteristics of small signal amplifier.
- 6. To enable to students to work in a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Construct and evaluate the Performance characteristics of various semiconductor devices.	K2
CO2	Integrate the semiconductor devices for Practical Application.	КЗ
CO3	Design amplifier circuit and analyze the design of frequency response of the small Signal Amplifier.	К3
CO4	Design various circuits using software tools and integrate and compare the findings in hardware implementation.	K4
CO5	Demonstrate capability to work in a team and to build circuits for various applications.	K4

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

		Program Outcomes (POs)												Program Specific			
COs		1 Togram Outcomes (1 Os)											Outcomes (PSOs)				
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PSO2	PSO3		
	1	2	3	4	5	6	7	8	9	10	11	12	O1				
CO1	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M		
CO2	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M		
CO3	S	S	S	S	S	L	-	-	-	_	-	M	S	M	M		

CO4	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M
CO5	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M

LIST OF EXPERIMENTS

- 1. Study of Labview/Multisim/PSPICE/ELVIS
- 2. CRO Operation and its Measurements.
- 3. P-N Junction Diode Characteristics (Forward bias & Reverse bias)
- 4. Zener Diode Characteristics

PartA: V-I Characteristics

PartB: Zener Diode act as a Voltage Regulator

5. BJT Characteristics (CE Configuration)

PartA: Input Characteristics

PartB: Output Characteristics

6. FET Characteristics (CS Configuration)

PartA: Drain (Output) Characteristics

PartB: Transfer Characteristics

- 7. LED and PHOTO DIODE Characteristics
- 8. SCR Characteristics
- 9. UJT Characteristics
- 10. Clipper and Clamper Circuits
- 11. Design and Simulate basic Common Source / Common Gate / Common Drain Amplifier
- 12. BJT- CE Amplifier
- 13. FET- CS Amplifier

	Total Hours 45 Hours
Text I	Book(s)
1.	Donald .A. Neamen, Electronic Circuit Analysis and Design –2 nd Edition, Tata Mc Graw
	Hill, 2009.
2.	R.S.Sedha, "Text book of Applied Electronics", Second edition, S Chand publishing, 2008.
Refere	ence Book(s)
1.	R. A. Gayakwad, "Op-Amps And Linear Integrated Circuits", PHI, 2010.
2.	Schilling & Belove, "Electronic Circuits, Discrete & Integrated", TMH.2011.
3.	Boylestad & Neshelsky, "Electronic Devices & Circuits", PHI.2012.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	DIGITAL SYSTEM DESIGN	0	0		2	40	(0	100
	LABORATORY	U	U	3	2	40	60	100
Course Category	PROGRAMME CORE		Sy	llabus	Revisi	on		
	COURSE							
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To understand, the logical behaviors of digital circuits.
- 2. To design combinational circuit.
- 3. To analyze the operation of logic gates and flip-flops.
- 4. To Design and Construct Hazard Free digital circuits.
- 5. To enable to students to work in a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Verify the truth table for logic gates and Flip-flops.	K2
CO2	Design and test of combinational Circuits	К3
CO3	Design and test of Sequential Circuits.	К3
CO4	Design of Hazard Free Switching Devices and integrate high configuration digital circuits.	К3
CO5	Demonstrate capability to work in a team and to build circuits for various applications.	K4

Correlationbetween CourseOutcomes(COs)andProgram Outcomes(POs):

														Program				
	ProgramOutcomes(POs)												Specific					
COs	rrogramOutcomes(POs)										Outcomes							
COS													((PSOs))			
	PO1	РО	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	PS	PS	PS			
		2	3	4	5	6	7	8	9	10	11	12	O 1	O2	O3			
CO1	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M			
CO2	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M			
CO3	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M			

LIST OF EXPERIMENTS

CO4	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M
CO5	S	S	S	S	S	L	-	-	-	-	-	M	S	M	M

1. Study of Multisim and LT spice. 2. Study of Gates & Flip-flops. 3. Half Adder and Full Adder. 4. Encoders and Decoders. 5. Multiplexer and De-multiplexer. 6. Magnitude Comparator (2-Bit) and Code Converter. 7. Synchronous Counters. 8. Ripple Counter and Mod-N Counter. 9. Shift Register-SISO/SIPO/PIPO/PISO 10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours 45 Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006. 2 CharlesH.Roth."Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.		
3. Half Adder and Full Adder. 4. Encoders and Decoders. 5. Multiplexer and De-multiplexer. 6. Magnitude Comparator (2-Bit) and Code Converter. 7. Synchronous Counters. 8. Ripple Counter and Mod-N Counter. 9. Shift Register—SISO/SIPO/PIPO/PISO 10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		1. Study of Multisim and LT spice.
4. Encoders and Decoders. 5. Multiplexer and De-multiplexer. 6. Magnitude Comparator (2-Bit) and Code Converter. 7. Synchronous Counters. 8. Ripple Counter and Mod–N Counter. 9. Shift Register–SISO/SIPO/PIPO/PISO 10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		2. Study of Gates & Flip-flops.
5. Multiplexer and De-multiplexer. 6. Magnitude Comparator (2-Bit) and Code Converter. 7. Synchronous Counters. 8. Ripple Counter and Mod–N Counter. 9. Shift Register–SISO/SIPO/PIPO/PISO 10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours 45 Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		3. Half Adder and Full Adder.
6. Magnitude Comparator (2-Bit) and Code Converter. 7. Synchronous Counters. 8. Ripple Counter and Mod–N Counter. 9. Shift Register–SISO/SIPO/PIPO/PISO 10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours 45 Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		4. Encoders and Decoders.
7. Synchronous Counters. 8. Ripple Counter and Mod–N Counter. 9. Shift Register–SISO/SIPO/PIPO/PISO 10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours 45 Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		5. Multiplexer and De-multiplexer.
8. Ripple Counter and Mod–N Counter. 9. Shift Register–SISO/SIPO/PIPO/PISO 10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours 45 Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		6. Magnitude Comparator (2-Bit) and Code Converter.
9. Shift Register–SISO/SIPO/PIPO/PISO 10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		7. Synchronous Counters.
10. Design of Memory Devices 11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours 45 Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		8. Ripple Counter and Mod–N Counter.
11. Design of Hazard Free Switching circuits. 12. Design of Mealy and Moore Circuits. Total Hours 45 Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		9. Shift Register–SISO/SIPO/PIPO/PISO
12. Design of Mealy and Moore Circuits. Total Hours Total Hours 45 Hours M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		10. Design of Memory Devices
Total Hours Text Book(s) 1 M.Morris Mano, "Digital Design", 4 th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		11. Design of Hazard Free Switching circuits.
Text Book(s) 1 M.Morris Mano, "Digital Design", 4 th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		12. Design of Mealy and Moore Circuits.
Text Book(s) 1 M.Morris Mano, "Digital Design", 4 th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		Total Hours 45 Hours
1 M.Morris Mano, "Digital Design", 4th edition, Prentice Hall of IndiaPvt.Ltd., 2008. 2 ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011. Reference Book(s) 1 John Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.	Text	
Reference Book(s) 1 JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.		
1 JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.	2	ThomasL.Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011.
	Refe	rence Book(s)
2 CharlesH.Roth."Fundamentals of Logic Design", 6thEdition, Thomson Learning, 2013.	1	JohnYarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
	2	Charles H. Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.

SEMESTER - II

Course Code		L	T	P	С	IA	EA	TM		
Carres Name	ANALOG ELECTRONICS	2	0	0	2	40	60	100		
Course Name	ANALOG ELECTRONICS	3	U	U	3	40	60	100		
Course Category	PROGRAMME CORE COURSE	ROGRAMME CORE COURSE Syllabus Revision						V.1.0		
Pre-requisite	Electronic Devices									

Course Objectives:

The course should enable the students

- 1. To develop fundamental knowledge about biasing and its various methods.
- 2. To analyze small signal equivalent circuits using BJT and JFET.
- 3. To understand methods of constructing feedback amplifiers, oscillators & tuned amplifiers.
- 4. To understand basic concepts of operational amplifier and its various applications.
- 5. To know about various analog switches, A/D and D/A convertors.

Course Outcomes:

On completion of the course, the student will beable to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Determine the configuration and apply the characteristics of diodes and	К2
	transistors	132
CO2	Design and construct various types of amplifier circuits.	K4
CO3	Design and construct sinusoidal and non-sinusoidal oscillators	K4
CO4	Characterize the functioning of OP-AMP and design application based	К3
	circuits	777
CO5	Design and construct ADC and DAC circuits	K4

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

						•	8						Progr	ram			
		ProgramOutcomes(POs)												Specific			
COs		r rogramOutcomes(rOs)											Outcomes				
COS														(PSOs			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3		
CO1	S	S	M	-	-	-	-	-	-	1	-	L	S	-	M		
CO2	S	S	S	M	-	-	-	-	-	-	-	M	S	-	S		
CO3	S	S	M	L	-	-	-	-	-	ı	ī	L	M	-	S		
CO4	S	M	S	-	-	-	-	-	-	-	-	M	S	L	S		
CO5	S	S M S L 1												-	S		
TINTT	гт	T AMPLIEUD MODELO													ATT		

UNIT-I AMPLIFIER MODELS 9Hours

Voltage amplifier, Current amplifier, Trans-conductance amplifier and Trans-resistance amplifier. Biasing schemes for BJT and FET amplifiers, Bias stability, Various configurations (CE/CS, CB/CG, CC/CD) and their features, Small signal analysis, Estimation of voltage gain, input resistance, output resistance etc., Low frequency and High frequency transistor models, Design Procedure for particular specifications, Low frequency analysis of multistage amplifiers.

UNIT-II POWER & FEEDBACK AMPLIFIERS 9Hours

Frequency response of single stage and multistage amplifiers, Cascode amplifier. Various classes of operation (Class A, B, AB, C), their power efficiency and linearity issues - Feedback Topologies: Voltage series, Current series, Voltage shunt, Current shunt, Effect of feedback on gain and bandwidth, Calculation with practical circuits, Concept of stability, gain margin and phase margin.

UNIT-III OSCILLATORS & DIFFERENTIAL AMPLIFIERS 9Hours

Review of Basic Concept, Barkhausen criterion, RC oscillators (Phase shift, Wien Bridge), LC oscillators (Hartley, Colpitts, Clapp), Non- sinusoidal oscillators. Current mirror: Basic topology and its variants, V-I characteristics, output resistance, minimum sustainable voltage and maximum usable load. Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR. OP-AMP design: Design of differential amplifier for a given specification, Designof gain and output stages, compensation.

UNIT-IV OP-AMP APPLICATIONS 9Hours

Review of Inverting and Non-inverting amplifiers, Integrator and differentiator, Summing amplifier, Precision rectifier, Schmitt trigger and its applications- Active filters: Low pass, high pass, band pass and band stop, design guidelines.

UNIT-V DAC & ADC 9Hours

Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, Resistor string. Analog todigital converters (ADC): Single slope, Dual slope, Successive approximation, Flash type - Switched capacitor circuits: Basic concept, practical configurations, Application in amplifier, integrator, ADC etc.

	Total Hours 45Hours									
Text I	Book(s)									
1.	Paul R. Gray and Robert G. Meyer, ``Analysis and Design of Analog Integrated Circuits",									
	JohnWiley, 3 rd Edition,1992.									
2	J.V. Wait, L.P. Huelsman and GAK orn, ``Introduction to Operational Amplifier theory and the control of the c									
	applications",McGrawHill,1992									
Refere	ence Book(s)									
1	A.S.SedraandK.C.Smith, "MicroelectronicCircuits", OxfordUniversityPress, 5th Edition,									
	2004.									
2.	P.HorowitzandW.Hill, "The Artof Electronics", Cambridge University Press, 2 nd Edition,									
	1989.									
3	3 J.MillmanandA.Grabel, "Microelectronics", McGrawHill, SecondEdition, 1988.									
	Course Code L T P C IA EA TM									

Course Name	ANALOG AND DIGITAL	3 0 0 3 40 60 10						100	
	COMMUNICATION								
Course Category	PROGRAMME CORE	Syllabus Revision V.2.0					V.2.0		
	COURSE	OURSE							
Pre-requisite	Electronic Devices, Digital System Design, Signals &Systems								

Course Objectives:

The course should enable the students:

- 1. To analyze and compare different analog modulation schemes.
- 2. To analyze the behavior of communication systems in the presence of noise.
- 3. To investigate pulse modulation systems and analyze their system performance.
- 4. To analyze different modulation schemes and compute bit error performance.
- 5. To study demodulation of digital signals.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Compare different analog modulation schemes for their efficiency and bandwidth.	K2
CO2	Analyze the behavior of communication systems in the presence of noise.	K4
CO3	Investigate pulse modulation systems and analyze their system performance	K4
CO4	Compute bit error performance of various modulation schemes.	К3
CO5	Gain knowledge on demodulation of digital signals.	K2

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

														rogra					
		Program Outcomes(POs)												Specific					
COs	r rogram Outcomes(FOs)											Outcomes							
COS														(PSOs	3)				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PS	PS	PS				
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3				
CO1	S	S	S	M	M	-	-	-	-	-	-	L	S	S	M				
CO2	S	S	S	M	M	-	-	-	-	-	-	L	S	S	M				
CO3	S	S	S	M	M	-	-	-	-	-	-	L	S	S	M				
CO4	S	S	S	L	M	-	-	-	-	-	-	L	S	S	M				
CO5	S S M L L L											L	S	S	M				

UNIT-I		AMPLITUDE AND ANGLE MC	DULATION	9 Hours
modulation modulation	systems-D Representat	nd systems-Frequency domain SB-SC, SSB and VSB modulatition of FM and PM signals-Relations bandwidth of FM wave-	on - Superhetrodyne onship between FM and	Receiver - Angle PM-Narrow band
UNIT-II		INFORMATION THEORYAL	ND NOISE	9 Hours
Entropy – I	Discrete mei	nory less channels – Channel capa	acity – Hartley Shannon	Law – Source
Coding the	orem – Huff	man & Shannon- Fano codes - No	oise in amplitude and fre	quency
modulation	systems- P	re-emphasis and De-emphasis-Wh	nite noise – Narrowband	noise -Threshold
	gle modulat			
UNIT-III		PULSE MODULATIO)N	9 Hours
Modulation Multiplexer		es-Noise consideration in PC	CM-Time Division Mu	ultiplexing-Digital
UNIT-IV				
		BASEBAND MODULATION TI		9 Hours
Baseband t channelBina Keying(FSK Minimum	transmission ary Ampli ()- Quadra shift keyin	BASEBAND MODULATION TI n of digital data-Inter Symbotude shift keying(ASK)-Phase- ture Amplitude Modulation(QA gElements of detection theory- on with waveform-Probability of o	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of	oblem - Nyquist Frequency Shift modulation and
Baseband t channelBina Keying(FSK Minimum	transmission ary Ampli ()- Quadra shift keyin	n of digital data-Inter Symbo tude shift keying(ASK)-Phase- ture Amplitude Modulation(QA gElements of detection theory-	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation.	oblem - Nyquist Frequency Shift modulation and
Baseband to channelBing Keying(FSK Minimum coherent co	transmission ary Ampli (i)- Quadra shift keyin ommunicatio	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of o	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation.	oblem - Nyquist Frequency Shift modulation and signals in noise-
Baseband of channelBina Keying(FSK Minimum coherent co UNIT-V Digital Mod	transmission ary Ampli ary Ampli by Quadra shift keyin dismmunication dulation trac	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of ODEMODULATION OF DIGITA	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band leading	oblem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited
Baseband of channelBins Keying(FSK Minimum coherent country) UNIT-V Digital ModehannelsMa	transmission ary Ampli ary Ampli by Quadra shift keyin dy mmunication dulation trac aximum like	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of ODEMODULATION OF DIGITAGEOFFS-optimum demodulation of Control	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band lead in receiver)-Equalization	oblem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited
Baseband of channelBins Keying(FSK Minimum coherent country) UNIT-V Digital ModechannelsMa	transmission ary Ampli ary Ampli by Quadra shift keyin dy mmunication dulation trac aximum like	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of the DEMODULATION OF DIGITATION of Digital deoffs-optimum demodulation of delihood sequence detection (Viterland)	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band lead in receiver)-Equalization	blem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited techniques-
Baseband of channelBins Keying(FSK) Minimum coherent co UNIT-V Digital ModehannelsMa	transmission ary Ampli ary Ampli a)- Quadra shift keyin ammunication mmunication lulation trac aximum like ation and ca	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of the DEMODULATION OF DIGITATION of Digital deoffs-optimum demodulation of delihood sequence detection (Viterland)	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band leading to receiver)-Equalization on.	blem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited techniques-
Baseband to channelBing Keying(FSK Minimum coherent component comp	transmission ary Ampli (a)- Quadratishift keying the shift keying the shif	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of a DEMODULATION OF DIGITATION of DIGITATION of Sequence detection (Viteriarrier recovery of digital modulation of digital communication digital communication of digital communication digi	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band lead receiver)-Equalization on. Total Hours	poblem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited techniques-
Baseband to channelBing Keying(FSK Minimum coherent component control of the channels Machannels Ma	transmission ary Amplically Amplically Amplically Amplically and calculation tracelly attion and calculation a	of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of a DEMODULATION OF DIGITAGE deoffs-optimum demodulation of a clihood sequence detection (Viterlarrier recovery of digital modulation of decomposition) and Digital Communication of the decomposition of the decomposition of digital modulation of decomposition of de	ol interference(ISI) pro-Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band libit receiver)-Equalization on. Total Hours ation",SKKataria&Son's	poblem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited techniques- 45 Hours spublication,
Baseband of channelBins Keying(FSK Minimum coherent control of the coherent control of the channels Massynchronization of	transmission ary Amplitary	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of a DEMODULATION OF DIGITATION OF DIGITATION of Sequence detection (Viteral Arrier recovery of digital modulation of a digital modulation of digital modulation d	ol interference(ISI) pro-Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band libit receiver)-Equalization on. Total Hours ation",SKKataria&Son's	poblem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited techniques- 45 Hours spublication,
Baseband of channelBins Keying(FSK Minimum coherent control of the Coherent Co	transmission ary Amplically Amplically Amplication shift keying munication tracelly attended to the second Education and calcally and Michael Second Education Educati	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of a DEMODULATION OF DIGITATION OF DIGITATION of Sequence detection (Viterlarrier recovery of digital modulation digital modulati	ol interference(ISI) pro-Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band libit receiver)-Equalization on. Total Hours ation",SKKataria&Son's	poblem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited techniques- 45 Hours spublication, ication", John
Baseband of channelBins Keying(FSK Minimum coherent composite of the coherent composite of the channels Massynchronization of the channels Massynchronizatio	transmission ary Amplitary	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of a DEMODULATION OF DIGITATION OF DIGITATION of DIGITATION of Sequence detection (Viterbarrier recovery of digital modulation of a digital modulation of Carrier recovery of digital Communication of Carrier recovery of Carrier recovery of Communication of Carrier recovery of Carrier recov	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band less receiver)-Equalization on. Total Hours ation", SKKataria&Son's log and Digital ommunication Systems", Tata Market Station of the systems of th	poblem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited techniques- 45 Hours spublication, ication", John Mc Graw Hill, 4 TH
Baseband to channelBins Keying(FSK Minimum coherent composerent control of the channels Massynchronization of the channel	transmission ary Amplitary	n of digital data-Inter Symbotude shift keying(ASK)-Phase-ture Amplitude Modulation(QAgElements of detection theory-on with waveform-Probability of a DEMODULATION OF DIGITATION OF DIGITATION of Sequence detection (Viterlarrier recovery of digital modulation digital modulati	ol interference(ISI) pro- Shift Keying(PSK) - AM)-Continuous phase optimum detection of error calculation. ALSIGNALS digital signal over band less receiver)-Equalization on. Total Hours ation", SKKataria&Son's log and Digital ommunication Systems", Tata Market Station of the systems of th	poblem - Nyquist Frequency Shift modulation and signals in noise- 9 Hours imited techniques- 45 Hours publication, ication", John Ic Graw Hill, 4 TH 17.

Course Name	MICROPROCESSOR AND	3	0	0	3	40	60	100	
	MICROCONTROLLERS	CROCONTROLLERS							
Course Category	PROGRAMME CORE COURSE	Syllabus Revision							
Pre-requisite	Electronic Devices, Digital System Design								

Course Objectives:

The course should enable the students

- 1. To study architecture of 8085 Microprocessor and its instruction set.
- 2. To study architecture of 8086 Microprocessor and its instruction set.
- 3. To learn design aspects of I/O and Memory interfacing circuits.
- 4. To study architecture of 8051 microcontroller and its applications.
- 5. To know about RSIC processors and design ARM processor-based systems.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Execute programs using assembly language of 8085 Microprocessor.	КЗ
CO2	Execute programs using assembly language of 8086 Microprocessor.	КЗ
CO3	Design interfacing circuits using I/O and Memory devices.	КЗ
CO4	Develop systems using different microcontrollers.	K4
CO5	Design ARM microcontroller based systems.	КЗ

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

COs	ProgramOutcomes(POs)												ProgramOutcomes(POs) Specification Outcomes							Program Specific Outcon (PSOs	e nes
	PO1	PO2	PO	PO	PO	РО	PO	РО	РО	РО	PO	PO	PS	PS	PS						
			3	4	5	6	7	8	9	10	11	12	O1	O2	O3						
CO1	S	S	S	M	-	-	-	-	-	-	-	L	M	M	-						
CO2	S	S	S	M	-	-	-	-	_	_	-	L	M	M	-						
CO3	S	S	S	M	_	-	-	-	-	_	_	L	M	L	S						
CO4	S	S	S	M	M	-	-	-	-	-	-	L	M	S	S						
CO5	S	S	S	M	M	_	-	-	_	_	-	L	-	M	M						

UNIT - I	8085 MICROPROCESSOR	9Hours
01111 1	oos maker kealbook	JIIOUIS

Microprocessor architecture and its operation, memory, I/O devices, 8085 microprocessor — Core architecture - Various registers- Bus Timings, Multiplexing and De-multiplexing of Address Bus, Decoding and Execution, Instruction set — Classification, Instruction Format, Addressing Modes, 8085 Interrupt Process, Hardware and Software Interrupts.

UNIT-II 8086 MICROPROCESSOR 9Hours

Core Architecture of the 8086 - Memory Segmentation, Minimum mode Operation and Maximum Mode Operation, Instruction Set of the 8086 processor- Classification - Instruction Format Addressing modes, Simple Assembly Language Programs - Arithmetic operations, Data transfer, String Manipulation, Searching and Sorting.

UNIT-III I/O INTERFACING 9Hours

Memory Interfacing and I/O interfacing - Parallel communication interface - Serial Communication interface - D/A and A/D Interface - Timer - Keyboard /display controller - Interrupt controller - DMA controller - Programming and applications Case studies: TrafficLight control, LED display , LCD display, Keyboard display interface and Alarm Controller.

UNIT-IV MICROCONTROLLER 9Hours

Architecture of 8051 – Special Function Registers (SFRs) - I/O Pins Ports and Circuits – Instruction set- Addressing modes - Assembly language programming - Programming 8051Timers, Serial Port Programming - Interrupts Programming – LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External Memory Interface- Stepper Motor and Waveform generation.

UNIT-V ADVANCED MICROPROCESSOR & MICROCONTROLLER 9Hours

Advanced Microprocessor Architectures- 286, 486, Pentium - RISC Processors- RISC Vs CISC, RISC properties and evolution- ARM Processor - CPU: programming input and output supervisor mode, exceptions and traps - Co-processors- Memory system mechanisms - CPUperformance- CPU power consumption.

	Total Hours 45Hours							
Text Boo	ok(s)							
1	R.S.Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085/8080A", Penram International Publishing, ThirdEdition, 1996.							
2	DAPattersonandJ HHennessy, "Computer Organization and DesignThe hard ware and Software interface" Morgan Kaufman Publishers, Fourth Edition, 2011.							
Referen	ce Book(s)							
1	DouglasHall, "TheMicroprocessors and its Interfacing", Tata McGrawHill, ThirdEdition, 2012.							
2	KennethJ.Ayala, "The 8051 Microcontroller: Architecture Programming & Applications", Penram International Publishing, Second Edition, 1996.							

Course Code		L	T	P	С	IA	EA	TM
Course Name	MEASUREMENTS & INSTRUMENTATION	3	0	0	3	40	60	100
Course Category	PROGRAMME CORE COURSE	Syllabus Revision V.2.0						V.2.0
Pre-requisite	Basic Knowledge of Electrical and Electronics Engineering							

Course Objectives:

The course should enable the students:

- 1. To introduce the basic functional elements of Instrumentation
- 2. To introduce the fundamentals of Electrical and Electronic Instruments.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Use various types of Electrical Instruments	K1
CO2	Use various types of Electrical Instruments	К2

Correlation be	etween Course (Dutcomes(COs)	and Program	Outcomes (POs):
COLLETATION DO	CLWCCH VJUHSC V	. /UILLUHIII (SIL A /S/	and it iteration	COULOUICS U CAL

													F	rograi	n				
	Program Outcomes(POs)													Specific					
COs		1 Togram Outcomes(1 Os)													Outcomes				
COS													(PSOs)						
	PO	PO	РО	РО	РО	РО	РО	РО	PO	PO	PO	PO	PS	PS	PS				
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3				
CO1	S	S	S	M	-	-	-	-	-	-	ı	L	S	-	-				
CO2	S	S	S	M	_	-	-	_	_	_	-	L	M	_	S				

UNIT-I BASIC MEASUREMENTS CONCEPTS AND ERRORS 9 Hours Measurements Systems – Static and dynamic Characteristics – Units and standards of Measurements Systems - Types of Errors, Accuracy, Precision, Reproducibility, Repeatability and Noise, Analog Instruments Galvano Meter, D'Arsonaval Galvanometer, Moving Coil Instruments, PMMC - Ammeter, Voltmeter& Ohm Meter, Moving Iron Instruments, Electrodynamometer. UNIT-II 9 Hours DATA DISPLAY AND RECORDING SYSTEMS Oscilloscope: CRO – CRT, Deflection System, Specifications, Controls, Storage Oscilloscope, DigitalStorage, Sampling Oscilloscope. Graphic Recording Instruments: Strip Chart Recorders, X_Y Recorder, Plotters. UNIT-III DIGITAL INSTRUMENTS AND SIGNAL GENERATORS 9 Hours Digital Voltmeter system, Digital Multi meter, Digital Frequency Meter System- SIGNAL GENERATORS: LF Signal Generators, Function Generators, Pulse Generators, RF Signal Generators, Sweep Signal Generators, Sweep Frequency Generators, Frequency Synthesizers UNIT-IV WAVEFORM ANALYSERS AND RADIO RECEIVERS 9 Hours Distortion Meter, Spectrum Analyzer, Digital Spectrum Analyzer - Radio Receiver Measurement: Receiver Basics and Parameters, Measuring Sensitivity, Selectivity and Image Response **UNIT-V TRANSDUCERS** 9 Hours Classification of Transducers- Resistance – Potentiometer, Strain gauges, Resistance Thermometers, Thermistor. Inductive Transducers: LVDT, RVDT. Capacitive Transducers: Piezoelectric, Photoelectric transducers, Digital Transducers – Encoder, Shaft Encoder, Optical Encoder. Total Hours | 45 Hours Text/Reference Book(s) 1. A.K. Sawhney: "A Course in Electrical and Electronic Measurements and Instrumentation", 18thEdition, Dhanpat Rai Publications, 2001. 2 David A Bell, "Electronic Instrumentation and Measurements", Second Edition, PHI, 2003 Joseph J.Carr, Elements of Electronics Instrumentation and Measurement, Third Edition, PearsonEducation, 2003 Albert D. Helfrick and William D.Cooper "Modern Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 2007. James W. Dally, William F. Riley, Kenneth G. McConnell, "Instrumentation for Engineering

Doeblin: "Measurement Systems - Application and Design", IV Edition, McGraw-Hill, 1990.

Measurements", 2nd Edition, John Wiley, 2003.

Course Code		L	T	P	С	IA	EA	TM
Course Name	ELECTRO MAGNETIC FIELDS AND	3 0 0 3 40 60						
	WAVEGUIDES							
Course	PROGRAMME CORE COURSE	Syllabus Revision						
Category			•					
Pre-requisite	Physics and Mathematics							

Course Objectives:

The course should enable the students

- 1. Tostudythebasics of Electromagnetic.
- 2. TounderstandthepropagationandpolarizationofElectromagnetic waves.
- $3. \quad To analyze wave propagation in Transmission Lines and its applications.$
- 4. Toanalyzewavepropagationinmetallicwaveguides.
- 5. To knowthe radiationcharacteristicsofanantenna.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Gain knowledge on basics of Electro- magnetic.	K1
CO2	Understand the propagation of Electromagnetic Waves.	K2
CO3	Determine the characteristics and wave propagation on transmission lines.	К3
CO4	Analyze wave propagation on metallic wave guides.	K4
CO5	Determine the radiation and radiation characteristics of an antenna.	K2

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

	ProgramOutcomes(POs)												Program Specific Outcomes(PSOs)			
COs	PO	РО	РО	PO	РО	РО	РО	РО	РО	PO	P	РО	PSO	PS	PSO3	
	1	2	3	4	5	6	7	8	9	10	0 11	12	1	O2		
CO1	S	S	S	-	-	-	-	-	-	_	-	L	S	-	-	
CO2	S	S	S	-	-	-	-	-	-	-	-	L	-	-	S	
CO3	S	S	S	-	-	-	-	-	-	-	-	L	M	-	S	
CO4	S	S	S	-	-	-	-	-	-	-	-	L	M	S	S	
CO5	S	S	S	-	-	-	-	-	-	-	-	L	M	S	-	

UNIT-I	BASICS OF ELECTRO MAGNETICS	9Hours
OINII-I		7110u19

Vector algebra-Coordinate Systems-Vector differential operator-Gradient-Divergence-Curl-Divergence Theorem-Stokes theorem-Coulombs law-Electric field intensity-Electric flux density- Gauss lawand its applications-Biot Savart Law-Ampere's law-Faradays law- Maxwell's Equations In Integral and differential form-Electric and magnetic boundary conditions at the mediainterface.

3

4

5

Part Time- B.E. (Electronics and Communication Engineering) Curriculum (2025-26) onwards

CSVM		
UNIT-II	ELECTRO MAGNETIC WAVES	9Hours
Uniform Pla	ne Waves-Uniform plane wave propagation-Wave propagation in	conducting medium-
	ization-Reflection by perfect conductor (normal and oblique incident	
perfect insul	ator(normal and oblique incidence)-plane waves in arbitrary directi	on-Brewster angles-
Total interna	al reflection-poynting vector and power flow-Power loss inplane co	nductor.
UNIT-III	TRANSMISSION LINES	9Hours
Equations of	of Voltage and Current on TX line- Propagation constant-char	acteristic impedance-
_	nenomenon-standing waves-Input impedance of dissipation less to	_
	uitedline-powerandimpedancemeasurementonTXline- $\lambda/8, \lambda/4 \& \lambda/21i$	
Impedance t	ransformer-Smithchart and its applications-single and double stub r	natching.
UNIT-IV	GUIDED WAVES AND WAVE GUIDES	9Hours
	een parallel planes-TEwaves-TMwaves-Characteristic of TE and TM	
	cities of propagation-Attenuation in parallel plane Guides-Rectangu	•
and TM way	ve sin rectangular wave guide-Impossibility of TEM wave in rectang	gular wave guide.
UNIT-V	RADIATION	9Hours
	potential functions-Radiation from oscillating dipole-Power radiate	
-	na parameters-Gain-directivity-Effective aperture-Radiation Resistant	
Beam width	-Input impedance-Matching Baluns-Mono pole and dipole antenna.	
	Total Hours	45Hours
) and Reference Books	
	MH,"Principles of Electromagnetics",Oxford University PressInc,New	Delhi,2009.
	l Edition, Prentice Hall of India, 1968.	
2 E.C.Jo	rdan & K.G.Balmain, "Electromagnetic Waves & Radiating Systems",	

John DRyder,"Network lines and fields", Prentice Hall of India, NewDelhi, 2005.

DavidK.Cheng, "Fieldand Wave Electro magnetics", Second Edition, PrenticeHall of India,

SandeepWali,"Electromagnetic theory", first edition, Macmillan Publishers Private limited, 2011.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	ANALOG ELECTRONICS	0	0	3	2	40	60	100
	LABORATORY							
Course	PROGRAMME CORE	Syllabus Revision				V.1.0		
Category	COURSE		·					
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To understand the basics of linear integrated circuits and available ICs
- 2. To understand characteristics of operational amplifier.
- 3. To apply operational amplifiers in linear and nonlinear applications.
- 4. To analyze the frequency response characteristics of Amplifiers.
- 5. To enable to students to work in a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	HighestBloom's Taxonomy
CO1	Design oscillators and amplifiers using operational amplifiers.	K2
CO2	Design filters using Op-amp and perform experiment on frequency	K2
COR	response.	7/0
CO3	Analyze the working of PLL and use PLL as frequency multiplier	К3
CO4	Analyze the performance of oscillators and Multi-vibrators.	К3
CO5	Demonstrate capability to work in a team and to build circuits for various applications.	K4

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

COs					Prog	gramC	Outcor	nes(P					ProgramSpec ific Outcomes(PS Os)			
	PO	PO	PO	PO	PO	P	PO	PO	PO	PO	PO	PO	PS	PS	PSO3	
	1	2	3	4	5	O6	7	8	9	10	11	12	O1	02		
CO1	S	S	S	L	-	-	-	-	-	-	-	L	L	-	M	
CO2	S	S	S	M	-	-	-	-	-	-	-	M	S	-	S	
CO3	S	S	S	S	-	-	-	-	-	-	-	L	M	-	S	
CO4	S	M	S	M	-	-	-	-	-	-	-	M	S	-	L	
CO5	S	M	S	S	-	-	-	-	-	-	-	L	M	-	S	

LISTOF EXPERIMENTS

1. Characteristics of Opamp-IC741.

- 2. Inverting and Non-inverting amplifier using IC741.
- 3. Measurement of op-amp characteristics.
- 4. Instrumentation amplifier and Differential Amplifier using IC741.
- 5. Integrator and Differentiator using IC741.
- 6. Schmitt Trigger using IC741.
- 7. ADC/DAC using IC741.
- 8. Astable & Monostable Multi-vibrator using IC555.
- 9. RC Phase shift oscillator and Wien bridge oscillator using BJT.
- 10. Hartley & Colpitts oscillator using BJT.
- 11. Frequency Response of Class B Push Pull Amplifier using BJT.
- 12. Frequency Response of Voltage Series Feedback Amplifier using BJT.
- 13. Phase Locked Loop (PLL)

Total Hours	45 Hours
m n 1/)	

Text Book(s)

- J.V. Wait, L.P. Huelsman & GA Korn, "Introduction to Operational Amplifier theory and applications", McGraw Hill, 1992
- 2. J. Millman and A. Grabel, "Microelectronics", 2nd edition, McGraw Hill, 1988
- 3. P. Horowitz and W. Hill, "The Art of Electronics", 2nd edition, Cambridge University Press, 1989.

Reference Book(s)

- 1. A.S. Sedra and K.C. Smith, "Microelectronic Circuits", Oxford University Press, V Edition, 2004.
- 2. Paul R. Gray and Robert G.Meyer, "Analysis and Design of Analog Integrated Circuits", John Wiley, 3rd Edition, 1992.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	ANALOG AND DIGITAL COMMUNICATION LABORATORY	0	0	3	2	40	60	100
Course Category	PROGRAMMECORE COURSE	Syllabus Revision						
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To construct basic circuits of Analog communication system.
- 2. To construct basic circuits of Digital communication system.
- 3. To Design and construct experiments for performing modulation and sampling.
- 4. To analyze the Performance characteristics of analog and Digital Communication Systems.
- 5. To enable to students to work in a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Apply the practical knowledge to construct Analog communication circuits.	К3
CO2	Apply the practical knowledge to construct Digital communication circuits	К3
CO3	Evaluate Analog and Digital modulated wave form in time /frequency domain .	К3
CO4	Analyze and evaluate the performance of Analog and Digital communication systems.	K5
CO5	Demonstrate capability to work in a team and to build circuits for various applications.	K4

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

COs	Program Outcomes (POs)													Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	РО	PS	PS	PS	
										10	0 11	12	O1	O2	O3	
CO1	S	S	S	S	S	-	-	_	M	-	-	-	S	S	-	
CO2	S	S	S	S	S	-	-	_	M	-	-	-	S	S	-	
CO3	S	S	S	S	S	-	-	-	M	-	-	=	S	S	-	
CO4	S	S	S	S	S	-	-	-	M	-	_	-	S	S	-	
CO5	S	S	S	S	S	-	-	_	M	-	-	-	S	S	-	

LISTOF EXPERIMENTS

- 1. Study of Multisim, VisSim and MATLAB.
- 2. AM modulator and Demodulator.
- 3. DSB-SC modulator and Demodulator.
- 4. SSB modulator and Demodulator.
- 5. FM modulator and Demodulator.
- 6. PAM modulator and Demodulator.
- 7. PPM & PWM Modulator.
- 8. Pre-emphasis and De-emphasis in FM.
- 9. Signal Sampling and Reconstruction (Sampling Theorem).
- 10. Pulse Code Modulation and Demodulation.
- 11. Delta modulation and Adaptive Delta modulation.
- 12. Amplitude Shift Keying (ASK) and Frequency Shift Keying (FSK) modulator and Demodulator.
- 13. Phase Shift keying (PSK) and Binary Phase Shift Keying (BPSK) Modulator and Demodulator

	Total Hours 45Hours
Tex	t Book(s)
1.	Haykin.S and Michel Moher," Introduction to Analog and Digital communication", Second edition, John
	Wiley and sons Inc, 2012.
2.	Prokis J.G.," Digital communications", 4th edition, Tata McGraw Hill, 2000.
Refe	erence Book(s)
1.	Taub H and Schilling D.L., "Principles of Communication systems", Tata McGraw Hill, 2001
2.	Dr.Sanjay Sharma, "Analog and Digital communication", seventh edition, K KATARIA & amp; SON'S
	publication, 2017.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	MICROPROCESSOR AND	0	0	3	2	40	60	100
	MICROCONTROLLER							
	LABORATORY							
Course Category	PROGRAMME CORE COURSE	Syllabus Revision						
Pre-requisite		_	-					

Course Objectives:

The course should enable the students

- 1. To study architecture of 8086 microprocessor and perform various arithmetic &logical operations.
- 2. To learn the design aspects of I/O and Memory Interfacing circuits.
- 3. To analyze the communication between Peripherals and bus interfacing.
- 4. To Execute Programs using 8051 Microcontroller.
- 5. To enable to students to working a team and build applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Design and implement programs on 8086Microprocessor.	К3
CO2	Design I/O circuits and analyze the performance.	К3
CO3	Design Memory Interfacing circuits.	К3
CO4	Integrate Microprocessor and Microcontroller and Peripherals for Various Applications.	K5
CO5	Demonstrate capability to working a team and to build circuits for various applications.	K4

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

COs	Program Outcomes (POs)													Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	PO	PS	PS	PS	
										10	0 11	12	O1	O2	О3	
CO1	S	S	S	S	S	M			M			L	S	S	L	
CO2	S	S	S	S	S	M			M			L	S	S	L	
CO3	S	S	S	S	S	M			M			L	S	S	S	
CO4	S	S	S	S	S	M			M			L	S	S	S	
CO5	S	S	S	S	S	M			M			L	S	S	S	

LISTOF EXPERIMENTS

8086 Microprocessor Experiments

- 1. Basic Arithmetic and Logical operations using 8086.
- 2. Code conversion, decimal arithmetic and Matrix operations.
- 3. Floating-point operations, string manipulations, sorting and searching.
- 4. Counters and Time delay.
- 5. Password Checking, Print RAM size and System Date.

8086 Microprocessor-Peripherals and Interfacing Experiments

- 6. Traffic Light Control and Stepper Motor Control.
- 7. Digital Clock.
- 8. Keyboard and Display.
- 9. Serial and Parallel Interface.
- 10. A/D and D/A Interface and Waveform Generation.

8051 Microcontroller Experiments - Hardware / Simulation

- 11. Basic Arithmetic and Logical Operations.
- 12. Square program, Cube program and Finding 2's complement of a number.

Total Hours | 45Hours

- 13. Unpacked BCD to ASCII.
- 14. A/D and D/A Interface and Waveform Generation.
- 15. Interfacing LCD to 8051

Tex	t Book(s)
1.	R. S. Gaonkar, "Microprocessor Architecture: Programming and Applications with the 8085/8080A",
	Penram International Publishing, Third Edition, 1996.
2.	D A Patterson and J H Hennessy, "Computer Organization and Design The hardware and software
	interface" Morgan Kaufman Publishers, Fourth Edition, 2011.
Ref	erence Book(s)
1.	Douglas Hall, "The Microprocessors and its Interfacing", Tata McGraw Hill, Third Edition, 2012.
2.	Kenneth J. Ayala, "The 8051 Microcontroller: Architecture Programming & Applications", Penram
	International Publishing, Second Edition, 1996.

SEMESTER - III

Course Code		L	T	P	С	IA	EA	TM		
Course Name	MICROWAVE ENGINEERING	3	0	0	3	40	60	100		
Course Category	PROGRAMME CORE COURSE	Syllabus Revision								
Pre-requisite	Electromagnetic Fields and Waveguides, Network Theory									

Course Objectives:

The course should enable the students

- 1. To inculcate the basics and representation of RF and microwave networks.
- 2. To instill knowledge on the properties of various microwave components.
- 3. To deal with the principles of microwave system design
- 4. To deal with the microwave measurement techniques
- 5. To introduce the application areas of microwave Systems

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	At the end of the course, students will demonstrate the ability to:	K2
CO2	Illustrate the concepts of propagation and analysis in RF and Microwave networks	K2
CO3	Understand various microwave system components and their properties.	К3
CO4	Analyze / synthesis the microwave systems	К3
CO5	Appreciate that during measurements of microwave systems, the different mathematicaltreatment is required compared to general circuit analysis	К3

COs				Prog Outo (PSC	omes	Specific									
GOS	PO 1	PO2	РО	PO	PO	PO	PO	PO	PO	PO	РО	РО	PS	PS	PS
			3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	S	S	L	L	-	L	-	-	-	-	L	L	S	M	L
CO2	S	M	-	L	-	L	-	-	-	-	L	L	S	M	L
CO3	S	S	M	L	-	-	-	-	-	-	L	L	S	M	L
CO4	L	L	M	M	-	L	-	-	-	-	L	L	S	M	L
CO5	L	L	S	L	-	-	-	-	-	-	L	L	S	M	L

4.

Part Time- B.E. (Electronics and Communication Engineering) Curriculum (2025-26) onwards

UNIT-I	INTRODUCTION TO MICROWAVES	9Hours

History of microwaves, Microwave frequency bands; Applications of microwaves: Civil and Military, Medical, EMI/ EMC. Mathematical model of microwave transmission-Concept of mode, Features of TEM, TE and TM modes, Losses associated with microwave transmission, Concept of impedance inmicrowave transmission. Analysis of RF and microwave transmission lines- Coaxial line, Rectangular waveguide, Circular waveguide, Strip line, Microwave network analysis- Equivalent voltages and currents for non-TEM lines, Network parameters for microwave circuits, Scattering parameters, Properties of S parameters

UNIT-II PASSIVE AND ACTIVE MICROWAVE DEVICES 9Hours

Microwave passive components: Terminations- Variable short circuit, Attenuator, Phase shifters, Directional coupler, Magic Tee, Power divider, Resonator. Microwave active components and circuits: Diodes, Transistors, Oscillators, Mixers. Microwave semiconductor devices: Gunn diodes, IMPATT diodes, Schottky barrier diodes, PIN diodes. Microwave tubes: Klystron, TWT, Magnetron.

UNIT-III MICROWAVE DESIGN PRINCIPLES 9Hours

Impedance transformation, Impedance matching, Microwave filter design, RF and Microwave amplifier design, Microwave power amplifier design, Low noise amplifier design, Microwave mixer design, Microwave oscillator design. Microwave antennas- Antenna parameters, Antenna for groundbased systems, Antennas for airborne and satellite borne systems, Planar antennas.

UNIT-IV MICROWAVE MEASUREMENTS 9Hours

Power, frequency and impedance measurement at microwave frequency, Network analyzer and measurement of scattering parameters, Spectrum analyzer and measurement of spectrum of a microwave signal, Noise at microwave frequency and measurement of noise figure. Measurement of microwave antenna parameters

UNIT-V MICROWAVE SYSTEMS 9Hours

Radar, Terrestrial and Satellite communication, Radio aids to navigation, RFID, GPS. Modern trends in microwaves engineering- Effect of microwaves on human body, Medical and Civil applications of microwaves, Electromagnetic interference and Electromagnetic compatibility (EMI & EMC), Monolithic microwave ICs, RFMEMS for microwave components, Microwave imaging

	Total Hours 45Hours										
Text 1	Text Book(s)										
1.	R.E. Collins, "Foundations for microwave engineering", Second edition, Wiley-IEEE press,2001 (Units I,										
	II and III)										
2.	Annapurna Das and Sisir K Das, "Microwave engineering", Tata McGraw-Hill Pub.Co. Ltd.,2017. (Units										
	III, IV and V)										
Refer	ence Book(s)										
1.	David M. Pozar, "Microwave engineering," John Wiley and sons, Fourth edition, 2011.										
2.	Gupta K.C. and Bahl I.J., "Microwave circuits," Artech house										
3.	Samuel. Y. Liao, "Microwave circuit analysis and amplifier design", Third edition, Pearson, 2003.										

. Gentili C., "Microwave amplifiers and oscillators", North oxford academic, 1986.

Course Code		L	T	P	С	IA	EA	TM		
Course Name	DIGITAL SIGNAL PROCESSING	2	1	0	3	40	60	100		
Course Category	PROGRAMMECORE	Syllabus Revision V.1.0					V.1.0			
	COURSE	·								
Pre-requisite	Signal & Systems, Digital System Design									

Course Objectives:

The course should enable the students

- 1. To learn discrete Fourier transforms, properties of DFT and its application to linear filtering.
- 2. To understand the characteristics of digital filters, design digital FIR filters and apply these filters to filter undesirable signals in various frequency bands.
- 3. To design digital IIR filters and apply these filters to filter undesirable signals in various frequency bands.
- 4. To understand the effects of finite precision representation on digital filters.
- 5. To understand the fundamental concepts of multi-rate signal processing and its applications.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
Outcomes		Taxonomy
CO1	Apply DFT and FFT algorithms for the analysis of digital signals and systems.	К3
CO2	Design FIR filters for various applications.	К3
CO3	Design IIR filters for various applications.	К3
CO4	Characterize the effects of finite precision representation on digital filters.	К3
CO5	Design multi-rate filters.	К3

													Progr	am S	pecific			
		ProgramOutcomes(POs)													Outcomes (PSOs)			
COs	COs PO									PS	PS	PS						
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	О3			
CO1	S	M	L	L	S	-	-	-	L	-	-	L	S	S	L			
CO2	S	M	M	S	M	M	-	-	L	-	-	M	S	S	L			
CO3	S	S	M	M	M	-	-	-	L	-	-	M	S	S	L			
CO4	S	S	M	M	M	M	-	-	-	-	-	M	S	S	L			
CO5	S	S	M	M	M	-	-	-	L	-	-	L	S	S	L			

UNIT-I DISCRETE FOURIER TRANSFORM 9Hours

Review of discrete-time signals and systems – Discrete Fourier Transform (DFT) and its properties, Circular convolution, Linear filtering using DFT, Filtering long data sequences - overlap-savemethods - Overlap-add, Fast Fourier Transform (FFT) algorithms – Fast computation of DFT –Radix-2 decimation in time FFT – Decimation in frequency FFT – Linear filtering using FFT.

UNIT-II DESIGN OF FINITE IMPULSE RESPONSE FILTERS 9Hours

Structures for FIR systems – Transversal and Linear phase structures, Design of FIR filters – Symmetric and Antisymmetric FIR filters, Design of linear phase FIR filters using Windows(Rectangular, Hamming and Hanning windows) and Frequency sampling methods

UNIT-III DESIGN OF INFINITE IMPULSE RESPONSE FILTERS 9Hours

Structures for IIR systems – direct, cascade, parallel forms, Comparison of FIR and IIR, Analog filters – Butterworth filters – Chebyshev type – I filters (upto 3rd order), Analog transformation of prototypeLPF to BPF/BSF/HPF, Transformation of analog filters into equivalent digital filters using Impulse invariant method and Bilinear Z-transform method.

UNIT-IV FINITE WORD LENGTH EFFECTS 9Hours

Representation of fixed and floating point numbers, ADC quantization -truncation and rounding -quantization noise, Coefficient quantization Error – Product quantization error – Overflow error - Round-off noise power, Limit cycle oscillation due to product round-off error- Limit cycle oscillation due to overflow in digital filters – Principle of scaling

UNIT-V MULTI-RATE SIGNAL PROCESSING 9Hours

Introduction to multi-rate signal processing – Decimation – Interpolation- Sampling rate conversion by a rational factor - Polyphase decomposition of FIR filter – Multistage implementation of samplingrate conversion – Design of narrow band filters–Applications of multi-rate signal processing

Total Hours | 45Hours

Text Book(s)

1. John G.Proakis and Dimitris G. Manolakis, "Digital signal processing - Principles, algorithms and applications", Pearson education / Prentice hall, Fourth edition, 2007.

Reference Book(s)

- 1. Sanjay K.Mithra, "Digital signal processing A Computer based approach", Tata McGraw-Hill, 2007
- 2. M.H.Hayes, "Digital signal processing", Schum's outlines, Tata McGraw Hill, 2007.
- 3. A.V.Oppenheim, R. W. Schafer and J. R. Buck, "Discrete-time signal processing", Pearson, 2004.
- 4. I.C.Ifeachor and B.W.Jervis, "Digital signal processing A practical approach", Pearson 2002
- 5. L.R. Rabiner and B. Gold, "Theory and application of digital signal processing", Prentice Hall, 1992.

Course Code		L	T	P	С	IA	EA	TM				
Course Name	COMPUTER AIDED SYSTEM DESIGN	2	1	0	3	40	60	100				
Course Category	PROGRAMME CORE	Syllabus Revision V.1.					V.1.0					
	COURSE											
Pre-requisite	Network Theory, Electronic Devices,	Network Theory, Electronic Devices, Analog Electronics and Digital System Design										

Course Objectives:

The course should enable the students

- 1. To learn electronic design automation techniques for designing analog circuits at circuit levelusing PSPICE.
- 2. To understand the concept of Analog and digital modelling in time and frequency domain in PSPICE.
- 3. To introduce electronic design automation (EDA) techniques for designing digital circuits at gatelevel using VHDL.
- 4. To study EDA techniques for designing digital circuits at gate level using Verilog HDL.
- 5. To learn EDA techniques for designing digital circuits at switch level using Verilog HDL and synthesis concepts

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest Bloom's
Outcomes		Taxonomy
CO1	Understand the concepts of the simulation components and analysis for electronic devices and components in PSPICE.	К3
CO2	Develop the analog and digital modelling concepts in frequency and time domains in PSPICE.	К3
CO3	Develop programs for combinational and sequential logic circuits by identifying the differentabstraction and delay models for digital circuits in VHDL	К3
CO4	Develop programs for combinational and sequential logic circuits by applying the differentabstraction and delay models for digital circuits in Verilog HDL.	К3
CO5	Develop programs for combinational and sequential logic circuits at switch level in VerilogHDL and understand Verilog synthesis flow.	К3

													Progr	am S	pecific
				Outcomes											
				(PSOs)											
COs	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	S	S	S	M	S	-	-	-	L	-	-	M	S	S	M
CO2	S	S	S	M	S	-	-	-	L	-	-	M	S	S	M
CO3	S	S	S	M	S	-	-	-	L	-	-	M	S	S	M
CO4	S	S	S	M	S	-	-	-	L	-	-	M	S	S	M
CO5	S	S	S	M	S	-	-	-	L	-	-	M	S	S	M

UNIT-I	OVERVIEW OF EDA AND PSPICE	9Hours

Evolution of EDA tools, typical design flow of VLSI IC circuits (ASIC Flow), Design capture and design verification tools, Analog Circuit Techniques: Overview of PSPICE, Types of simulation - DC, AC, Transient, Monte Carlo, Parametric and others, Simulation devices- Laplace devices, Energysources, Passive components, Semi-conductors, ICs, Special devices – voltage markers, Initialconditions, etc.

UNIT-II MODELING FOR SIMULATION IN PSPICE 9Hours

Modelling of digital circuits in SPICE, Analog modelling in the frequency domain and time domain, Models for RLC, Diode, BJT, JFET and MOSFET.

UNIT-III VHDL 9Hours

Introduction to VHDL – Entities and architectures, Behavioural modelling – Concurrent and sequential processing – if, case, loops, next, exit, wait, and assert statements, Structural modelling – Port map, components and generics. Delay models –Inertial, transport and delta delays. Data types- Variables, signals, constants, arrays, VHDL operators, Functions, Procedures, Packages, Libraries and Configurations, Simple programming examples of combinational and sequential circuits

UNIT-IV VERILOG HDL 9Hours

Introduction to Verilog - Modules and module instances, design blocks and stimulus blocks, Data types and operators, Modelling - Gate level (Structural) modelling, Dataflow modelling- continuousassignments, Behavioural modelling- initial, always, blocking and non-blocking statements. System tasks -display, monitor, time and stop. Tasks and functions, Simple programming examples of combinational and sequential circuits

UNIT-V ADVANCED TOPICS IN VERILOG HDL AND SYNTHESIS 9Hours

Delay modelling- distributed, lumped, and pin-to-pin, rise / fall / turn-off, min / typical / max delays.Switch level modelling – PMOS, NMOS and CMOS. Simple programming examples of switch levelmodelling- CMOS Inverter, CMOS Nand, CMOS Nor gates, CMOS Multiplexers and CMOS latches.Introduction to Verilog synthesis flow: Definition of terms – Technology mapping, Library cells, and Technology libraries.

Total Hours | 45Hours

Text Book(s)

- 1. Muhammad Rashid, "Introduction to PSPICE using Orcad for circuits and electronics", Thirdedition, Pearson education, 2003.
 - Douglas L. Perry, "VHDL –Programming by Example", Fourth edition, TMH, 2002
 - Samir Palnitkar, "Verilog HDL –A guide to Digital Design and Synthesis", Second edition, Pearson Education, 2004

Reference Book(s)

- 1. Neil Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", Second edition, Addison Wesley,
- 2. Charles H Roth, Jr., "Digital Systems Design using VHDL", Second edition, ThomsonLearning, 2008.
- 3. Joseph Cavanagh, "Verilog HDL-Digital design and modelling", CRC press, 2007

Course Code		L	T	P	С	IA	EA	TM
Course Name	ELECTROMAGNETIC FIELDS & MICROWAVE LABORATORY	0	0	3	2	40	60	100
Course Category	PROGRAMMECORE COURSE		Syllab	ous Revis	sion			
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To understand the principle of Electric field and Magnetic field on various conductors.
- 2. To understand the working Principle of various type of Microwave Oscillators.
- 3. To know the behavior of microwave components and parameters.
- 4. To practice microwave measurement procedures

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Understand the working principle of microwave components	K2
CO2	Know about the behaviour of microwave components	K2
CO3	Learn about the characteristics and measurements of E and H Fields	К3

					D	O4		(DO-)						rogran ecific	
COs					Progra	m Out	comes	(POS)					o	utcom (PSOs)	.es
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	PO	PS	PS	PS
										10	0	12	01	O2	O3
											11				
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO3	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S

LISTOF EXPERIMENTS

- 1. Determination of Electric Field Pattern Between Two Circular Electrodes
- 2. Determination of Electric Field between Parallel Conductors
- 3. Measurement of Electric Field and Potential Inside the Parallel Plate Capacitor
- 4. Measurement of Capacitance and Inductance of Transmission Lines
- 5. Determination of Magnetic Field Outside A Straight Conductor
- 6. Determination of Magnetic Field of Coils
- 7. Verification of Faraday's law of Magnetic Induction.
- 8. Determination of Velocity of electromagnetic waves for the given Co-axial Cable.
- 9. Reflex klystron or Gunn diode characteristics and basic microwave parameter measurementsuch as VSWR, frequency, wavelength.
- 10. Directional Coupler Characteristics.
- 11. Radiation Pattern of Horn Antenna.
- 12. S-parameter Measurement of the following microwave components (Isolator, Circulator, EPlane Tee, H Plane Tee, Magic Tee)
- 13. Attenuation and Power Measurement

Course Code		L	T	P	С	IA	EA	TM
Course Name	DIGITAL SIGNAL PROCESSING LABORATORY	0	0	3	2	40	60	100
Course Category	PROGRAMME CORE COURSE		Syllab	ous Revis	sion			
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To implement Linear and Circular Convolution.
- 2. To implement FIR and IIR filters.
- 3. To study the architecture of DSP processor
- 4. To demonstrate Finite word length effect

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Students will be able to carry out simulation of DSP systems	К3
CO2	Students will be able to analyze Finite word length effect on DSP systems	К3
CO3	Students will be able to demonstrate the applications of FFT to DSP	К3
CO4	Students will be able to implement adaptive filters for various applications of	K4
	DSP	

COs					Progra	m Out	comes	(POs)					S _I O	rogran pecific utcom (PSOs)	es
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	PO	PS	PS	PS
										10	0	12	01	O2	O3
											11				
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO3	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO4	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S

LISTOF EXPERIMENTS

MATLAB / EQUIVALENT SOFTWARE PACKAGE

- 1. Generation of sequences (functional & random) & correlation.
- 2. Linear and Circular Convolutions.
- 3. Spectrum Analysis using DFT.
- 4. FIR filters design.
- 5. IIR filters design.
- 6. Multi-rate Filters.
- 7. Equalization Techniques.

DSP PROCESSOR BASED IMPLEMENTATION

- 8. Study of architecture of Digital Signal Processor.
- 9. MAC operation using various addressing modes.
- 10. Linear Convolution.
- 11. Circular Convolution.
- 12. FFT Implementation.
- 13. Waveform generation.
- 14. IIR and FIR Implementation.
- 15. Finite Word Length Effect.

Course Code		L	T	P	С	IA	EA	TM
Course Name	COMPUTER AIDED SYSTEM DESIGN LABORATOTY	0	0	3	2	40	60	100
Course Category	PROGRAMME CORE COURSE		Syllab	ous Revis	sion			
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To Construct RC circuits, OPAMPS, Combinational and Sequential circuitsUsing PSICE
- 2. To Simulate and Implement sequential and combinational digital circuits using HDL

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Construct Analog and Digital circuits and study their characteristics using PSPICE.	КЗ
CO2	Implement digital circuits using HDL	К3

COs					Progra	m Out	comes	(POs)					О	rogran pecific utcom (PSOs)	es
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	P	PO 12	PS O1	PS O2	PS O3
										10	11	12	01	02	03
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S

LISTOF EXPERIMENTS

PSPICE:

(Modelling, Design, Simulation and Analysis using Schematic / Circuit file / both)

- 1. Study of PSPICE
- 2. RC circuits Transient and AC analysis
- 3. MOS Device Characterization and CMOS Inverter Characteristics DC analysis
- 4. Diode based circuits (like, Rectifiers, Clampers, etc.,) Transient, Worst-case, MC, Sensitivity, etc. analysis
- 5. Amplifiers and Current mirrors using BJT/MOSFET
- 6. Op-Amp based Wein Bridge Oscillator and DAC using sub-circuit and Analog behaviouralmodelling
- 7. Digital Circuits Logic switches / Multiplexer / Counter

HDL: (Logic Design and Simulation of Digital Circuits using VHDL / Verilog HDL /Both)

- 8. Study of VHDL and Verilog
- 9. Full Adder and Multiplexer using different Modelling / Descriptions and Concurrent and

SEQUENTIAL EXECUTION IN VHDL:

- 10. 8-bit Adder / Multiplier (min 4-bit) Port Map, Generics, Technology Mapping in VHDL
- 11. 8-bit Counter Bottom up approach design and Test vector generation in Verilog HDL
- 12. NAND / NOR / Transmission gates using Switch level modelling in Verilog HDL
- 13. Design of simple sequential and combinational circuits
- 14. Design of ALU
- 15. Design of FSM and Control Unit
- 16. FPGA real time programming and I/O Interfacing- Waveform generation / Traffic lightcontroller

SEMESTER - IV

Course Code		L	T	P	С	IA	EA	TM
Course Name	CONTROL SYSTEMS	3	0	0	3	40	60	100
Course	PROGRAMME CORE		Syllal	ous Rev	ision			
Category	COURSE							
Pre-requisite	Basic knowledge of Circuit	Theo	ry					

Course Objectives:

The course should enable the students-

- 1. To introduce the elements of control system and various representations.
- 2. To provide knowledge on the time response and stability of systems
- 3. To introduce the various frequencies response plots and analyzes the stability of systems.
- 4. To introduce state variable representation of physical systems and study the effect of statefeedback.
- 5. To design various types of compensators.

Course Outcomes:

On completion of the course, the studentwill be able to

Course	Description	HighestBloom's
outcomes		Taxonomy
CO1	Represent a control system and thereby to obtain the mathematical model	К3
CO2	Perform time domain analysis of control systems	K4
CO3	Perform frequency domain analysis of control systems.	К3
CO4	Design compensators that can be used to design control systems with required specifications	K4
CO5	Understand the state variable analysis of systems	K5

		ProgramOutcomes(POs)												ogramS	Specific	
	ProgramOutcomes(POs)													Outcomes(PSOs)		
	PO										PS	PS	PSO3			
COs	1	2	3	4	5	O6	7	8	9	10	11	12	O1	O2		
CO1	S	S	S	M	-	L	L	L	L	L	L	L	S	L	M	
CO2	S	S	S	M	-	M	L	L	L	M	L	M	S	L	M	
CO3	S	S	S	M	-	M	L	L	L	L	L	M	M	L	M	
CO4	S	S	S	M	-	M	M	L	L	L	L	M	S	L	M	
CO5	S	S	S	M	-	M	L	L	L	M	L	M	S	L	M	
											•	·	·	·		

3.

4.

Part Time- B.E. (Electronics and Communication Engineering) Curriculum (2025-26) onwards

SCSVNV	Curriculum (2025-26) onwards	
UNIT-I	CONTROL SYSTEM MODELING & SYSTEM REPRESENTATION	9Hours
Basic Elements	of Control System - Open loop and Closed loop systems - Differential equation	on - Transfer
function, Mode	eling of Electric systems, and Translational and Rotational mechanical system	ns – Transfer
function – AC &	& DC Servomotor and Synchros -Block diagram reduction Techniques - Signal flow	w graph.
UNIT-II	TIME RESPONSE AND STABILITY ANALYSIS	9Hours
_	nalysis - First Order Systems - Impulse and Step Response analysis of Second order	•
l	rs- Concepts of Stability-Routh-Hurwitz Criterion-Root Locus Technique-Application	ation of Root
Locus Diagram-	Relative Stability.	
UNIT-III	FREQUENCY RESPONSE AND STABILITY ANALYSIS	9Hours
Frequency resp	oonse – Frequency domain specifications - Correlation between frequency dor	nain andtime
domain specific	eations – Stability analysis - Bode plot – Polar plot - Nyquist Stability criterion	
		T
UNIT-IV	STATE VARIABLE ANALYSIS	9Hours
	oresentation of Continuous Time systems – State equations – Transfer functions entation – Solutions of the state equations - Concepts of Controllability and Obse	
UNIT-V	COMPENSATOR DESIGN	9Hours
Compensators -	- Effect of adding poles and zeros - Lag, lead and lag-lead compensators design us	ing Bode Plot
_	e feedback controller - P, PI, PD and PID Controller.	
	Total Hours	45Hours
Text Book(s)	Total Hours	43110013
	I.J. and Gopal M., "Control Systems Engineering", New Age International Publish	ers.2017
	S Nise, "Control Systems Engineering", 7th Edition, Wiley, 2015	
	C. Kuo, "Automatic Control systems", Wiley, 2014	
Reference Boo		

M. Gopal, "Control Systems, Principles and Design", 4th Edition, Tata McGraw Hill, New Delhi,2012.

S.K.Bhattacharya, "Control System Engineering", 3rd Edition, Pearson, 2013

K. Ogata, "Modern Control Engineering", 5th edition, PHI, 2012

Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", Prentice Hall, 2012.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	COMPUTER NETWORKS	3	0	0	3	40	60	100
Course	PROGRAMME CORE		Syllal	ous Rev	ision			
Category	COURSE							
Pre-requisite	Basic knowledge of Digital System	n Desig	gn, Sig	nals & S	ysten	ns and l	Digital	Communication

Course Objectives:

The course should enable the students-

- 1. Understand the concepts of network architecture and transmission medium
- 2. Perform and understand methods for error detection and correction of data
- 3. Be exposed to various addressing schemes and routing protocols.
- 4. Learn the flow control and congestion control algorithms
- 5. Be familiar with real time applications of networks

Course Outcomes:

On completion of the course, the studentwill be able to

Course	Description	HighestBloom's
outcomes		Taxonomy
CO1	Choose the required functionality at each layer for given application	К3
CO2	Detect and Correct the error in the frame	K 4
CO3	Apply the knowledge of addressing scheme and various routing protocols in datacommunication to select optimal path.	K4
CO4	Trace the flow of information from one node to another node in the network	К3
CO5	Develop real time applications of networks	K5

		Program Outcomes (POs)												ogramS	pecific	
	ProgramOutcomes(POs)													Outcomes(PSOs)		
	PO										PS	PS	PSO3			
COs	1	2	3	4	5	O6	7	8	9	10	11	12	O1	O2		
CO1	S	S	M	L	-	M	M	-	M	S	S	S	S	L	M	
CO2	S	S	M	M	-	M	M	L	S	S	S	S	S	M	M	
CO3	S	S	S	M	-	L	M	-	S	S	S	S	S	L	M	
CO4	S	M	S	M	-	M	M	L	L	M	L	M	S	M	M	
CO5	S	S M S S - M S L S S S										S	S	L	M	
	·											·	·	·		

UNIT-I	FUNDAMENTALS & SIGNAL TRANSMISSION	9Hours
Fundamentals	: Building a network - Requirements - Layering and protocols - OSI Mod	el - Interne

Architecture – Performance - Network Topology; Physical Layer: Data and Signals - Digital Transmission - Analog Transmission - Multiplexing and Spread Spectrum - Transmission Media..

UNIT-II MEDIA ACCESS & LOGICAL LINK CONTROL 9Hours

Framing - Error Detection and Correction - Media access control - Ethernet (802.3) - Wireless LANs – 802.11 – Bluetooth - Switching and bridging - Flow control.

UNIT-III ROUTING & ADDRESSING SCHEMES 9Hours

Basic Internetworking (IP, CIDR, ARP, DHCP, ICMP) - Routing (RIP, OSPF, metrics) - Switch basics - Global Internet (Areas, BGP, IPv6), Multicast - addresses - multicast routing (DVMRP, PIM)

UNIT-IV END TO END COMMUNICATION 9Hours

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission - Queueing Disciplines - TCP Congestion control - Congestion avoidance (DECbit, RED)

UNIT-V APPLICATION LAYER PROTOCOLS 9Hours

Electronic Mail (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS - SNMP Multimediaapplications

Total Hours | 45Hours

Text Book(s)

- 1. Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", FifthEdition, Morgan Kaufmann Publishers, 2011.
- 2. Behrouz A. Forouzan, "Data Communications and Networking", Fourth Edition, McGrawHill, 2011.

Reference Book(s)

- 1. James F. Kurose, Keith W. Ross, "Computer Networking A Top-Down Approach Featuringthe Internet", Fifth Edition, Pearson Education, 2009
- 2. Nader. F. Mir, "Computer and Communication Networks", Pearson/Prentice Hall Publishers, 2010
- 3. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks An Open SourceApproach, First Edition, McGraw Hill, 2011.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	EMBEDDED SYSTEMS	3	0	0	3	40	60	100
Course	PROGRAMME CORE		Syllal	bus Rev	ision			
Category	COURSE							
Pre-requisite	Basic knowledge of Microprocesso	ors, M	icrocoı	ntrollers	&Di	gital Sy	stem I	Design

Course Objectives:

The course should enable the students-

- 1. Learn the architecture and programming of ARM processor.
- 2. Be familiar with the embedded computing platform design and analysis.
- 3. Be exposed to the basic concepts and overview of real time Operating system.
- 4. Learn the system design techniques and networks for embedded systems to industrial applications.

Course Outcomes:

On completion of the course, the studentwill be able to

Course	Description	Highest Bloom's
outcomes		Taxonomy
CO1	Describe the architecture and programming of ARM processor.	K2
CO2	Outline the concepts of embedded systems	К3
CO3	Use the system design techniques to develop software for embedded systems.	К3
CO4	Differentiate between the general purpose and real time operating system	К3
CO5	Model real-time consumer/industrial applications using embedded-system concepts.	K5

		Program Outcomes(POs)													Specific	
	Frogram Outcomes(POs)													Outcomes(PSOs)		
	РО	PO	PO	PO	PO	P	PO	PO	PO	PO	РО	PO	PS	PS	PSO3	
COs	1	2	3	4	5	O6	7	8	9	10	11	12	O1	O2		
CO1	S	S	M	S	-	S	-	-	M	S	S	M	S	L	M	
CO2	S	M	M	M	-	M	-	-	M	S	M	M	S	M	M	
CO3	S	L	M	M	-	L	-	-	M	S	M	M	S	M	M	
CO4	S	S M M S - L M M S M										M	S	L	M	
CO5	S S S S - M M M M S											S	S	L	M	
	<u> </u>			<u> </u>	<u> </u>	·					<u> </u>					

	INTRODUCTION	TO	EMBEDDED	COMPUTING	AND	ARM	
UNIT-I	PROCESSORS						9Hours

Complex systems and microprocessors—Embedded system design process — Overview on formalismsfor system design —Design example: Model train controller—Instruction sets preliminaries — ARM Processor — CPU: programming input and output—supervisor mode, exceptions and traps — Co— processors— Memory system mechanisms — CPU performance— CPU power consumption—Introduction to Embedded Industrial CPUs for rugged environment.

UNIT-II EMBEDDED COMPUTING PLATFORM DESIGN 9Hours

The CPU Bus–Memory devices and systems–Designing with computing platforms – consumer electronics architecture – platform–level performance analysis – Components for embedded programs– Models of programs– Assembly, linking and loading – compilation Programming techniques– Program level performance analysis – Software performance optimization –Program validation and testing.

UNIT-III PROCESSES AND OPERATING SYSTEMS 9Hours

Introduction – Kernel, Threads –Multiple tasks and multiple processes – Multirate systems– Pre- emptive real–time operating systems– Priority based scheduling– Interposes communication mechanisms – Evaluating operating system performance– power optimization strategies for processes GPOS versus RTOS- Classification of RTOSExample Real time operating systems– POSIX– Windows CE.

UNIT-IV SYSTEM DESIGN TECHNIQUES AND NETWORKS 9Hours

Design methodologies— Design flows — Requirement Analysis — Specifications—System analysis and architecture design — Quality Assurance techniques— Distributed embedded systems — Multiprocessors—CPUs, accelerators, MPSoCs— Overview on Internet of (robotic) Things— Ubiquitousoptimization

UNIT-V CASE STUDY 9Hours

Data compressor – Alarm Clock – Audio player – Software modem–Digital still camera – Telephoneanswering machine–Engine control unit – Video accelerator–Challenges and trends in embedded systems in industrial applications

Total Hours | 45Hours

Text Book(s)

1. Marilyn Wolf, "Computers as Components - Principles of Embedded Computing SystemDesign", Third Edition "Morgan Kaufmann Publisher, 2012

ReferenceBook(s)

- 1. Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", ThirdEdition, Cengage Learning, 2012.
- 2. David. E. Simon, "An Embedded Software Primer", 1st Edition, Addison WesleyProfessional, 2007
- 3. Raymond J.A. Buhr, Donald L.Bailey, "An Introduction to Real-Time Systems- From Designto Networking with C/C++", Prentice Hall, 1999

Course Code		L	T	P	С	IA	EA	TM
Course Name	PRINCIPLES OF	3	0	0	3	40	60	100
	MANAGEMENT &							
	PROFESSIONAL ETHICS							
Course	PROGRAMME CORE		Syllat	ous Rev	ision			
Category	COURSE							
Pre-requisite								

Course Objectives:

- 1. The course should enable the students-
- 2. To develop knowledge on the principles of management essential for all kinds of organizations.
- 3. To have a clear understanding of the managerial functions like planning, organizing, leading andcontrolling.
- 4. To understand global business and diversity.
- 5. To gain some basic knowledge on international aspect of management
- 6. To understand the concepts of computer ethics in work environment.

Course Outcomes:

On completion of the course, the studentwill be able to

Course outcomes	Description	Highest Bloom's Taxonomy
CO1	Examine situations and to internalize the need for applying ethics principles, values to tackle withvarious situations.	K2
CO2	Develop a responsible attitude towards the use of computer as well as the technology	К2
CO3	Able to envision the societal impact on the products / projects they develop in their career.	K2
CO4	Understanding the code of ethics and standards of computer professionals	K2
CO5	Analyze professional responsibility and empowering access to information in the work place.	К3

					Progr	am O	utcom	es(PC	Os)					Specific s(PSOs)	
	РО	РО	РО	РО	РО	P	РО	РО	РО	РО	РО	РО	PS	PS	PSO3
COs	1	2	3	4	5	O6	7	8	9	10	11	12	O1	O2	
CO1	-	-	-	-	-	-	-	M	S	M	M	L	L	-	L
CO2	-	-	-	-	-	L	-	M	S	M	M	L	L	-	M
CO3	-	-	-	-	-	-	-	M	S	M	S	M	L	L	L
CO4	-	-	-	-	-	-	-	S	S	M	M	S	L	-	M
CO5	-	-	-	-	-	M	-	S	M	M	M	S	L	-	M
		•		•			•						•	•	

SCSVIIV	Curriculum (2025-26) onwards	
UNIT-I	INTRODUCTION TO MANAGEMENT	9Hours
Definition of I	Management, process of Management, Planning, Organizing, leading, Control	lling Classica
Approach-Cont	tribution and Limitation, Management Science Approach, Skills, Roles and Perfor	mance: Type
of managers Ma	anagerial Skills,- Technical Skill, Analytical Skill Decision Making skill, Human	Relation skil
Communication	n skill. Managerial Roles – Interpersonal Role, Informational Role, Decisional Role	e
UNIT-II	PLANNING FUNCTION	9Hours
	nning-Objectives, Action, Resource, Implementation, Managerial Decision Making s of Decision Making, Decision Making-Certainty Condition, Uncertainty Conditi	
	naging Information System; Need for Decision Support System, MIS and DSS Strate	
	Strategy, Business Portfolio Matrix.	78-7
UNIT-III	ORGANIZING FUNCTION	9Hours
Organizational	Structure- Job Design, Departmentation, Span of Control, Delegation of	of Authority
· ·	authority, Chain of Command and Authority, Line and Staff concept Matrix of	·
Design		0
UNIT-IV	ENGINEERING ETHICS	9Hours
Senses of 'engir	neering ethics' – variety of moral issues – types of inquiry – moral dilemmas – m	oralautonom
_	neory – Gilligan's theory – consensus and controversy – professions and prof	
_	eas and virtues – theories about right action – self-interest – customsand relig	
ethical theories		,
UNIT-V	ENGINEER'S RESPONSIBILITY FOR SAFETY	9Hours
Safety and risk	- Assessment of safety and risk - Risk benefit analysis - Reducing risk - The Thro	ee Mile Islan
and Chernobyl		
	Total Hours	45Hours
Text Book(s)		
1. Mike Mai	rtin & Roland schinzinger "Ethics in engineering" McGraw Hill, 2009	
2 Covindor	gion M. Natargian, S. Sonthillaumar V. S. "Engineering Ethice", DHI 2004	

- 2. Govindarajan M, Natarajan. S.Senthilkumar V.S, "Engineering Ethics", PHI, 2004.
- 3. Dr. T. Ramaswamy, Principles of Management, Himalaya Publishing House, 2014.

Reference Book(s)

- 1. Charles D.Fleddermamm, "Engineering Ethics", Pearson Hall, 2004.
- 2. Charles E.Haris, Michael S.Protchard & Michael J.Rabins, "Engineering Ethics- concepts andcases", Wadsworth Thompson Learning, 2009.
- 3. JhonR.Boartright, "Ethics and conduct of Business", Pearson Education, 2003

Course Code		L	T	P	С	IA	EA	TM
Course Name	COMPUTER NETWORKS LABORATORY	0	0	3	2	40	60	100
Course Category	PROGRAMME CORE COURSE		Syllab	ous Revis	sion			
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To understand the function of various protocol
- 2. To perform real time experiments using existing infrastructure
- 3. To gain knowledge to construct LAN and WAN in real time environment

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Ability to design MAC and routing protocols in Wired and Wireless	K4
	Environment using NS2 /QUALNET / NS3 / OMNET / CISCO	
CO2	Acquire the technical competence to meet out the industry expectation on the	К3
	state – of the artwired / wireless technologies.	
CO3	Acquire the ability to design WLAN/ LAN systems meeting out real time	K3
	requirements	

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	PO	PS	PS	PS
										10	0	12	O1	O2	О3
											11				
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO3	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S

LISTOF EXPERIMENTS

- 1. (a) Study of different types of Network cables and implement cross-wired cable and straightthrough cable using clamping tool
 - b) Study of Network devices c) Study of Network IP
 - 2. Configuration of Local Area Network (LAN) and VPN
 - 3. Wireless LAN protocols
 - 4. To create scenario and study the performance of network with CSMA / CA protocol and compare with CSMA/CD protocols.
 - 5. Implementation and study of stop and wait protocol
- 6. Implementation and study of Go back-N and selective repeat protocols
- 7. Implementation of client server using TCP protocol
- 8. Implementation of Remote Procedure Call
- 9. Implementation of distance vector routing algorithm
- 10. Configure a network using address resolution protocol (ARP) and routing information protocol(RIP) and analyze the performance of the network.
- 11. Configuration of internet protocol (IP)
- 12. Configuration of network using Ad hoc On demand distance vector (AODV) routing
- 13. Configuration of network using Dynamic Source Routing (DSR) routing

Course Code		L	T	P	С	IA	EA	TM
Course Name	EMBEDDED SYSTEM DESIGN LABORATORY	0	0	3	2	40	60	100
Course Category	PROGRAMME CORE COURSE		Syllab	ous Revis	sion			
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To learn the working of ARM processor
- 2. To understand the Building Blocks of Embedded Systems
- 3. To learn the concept of memory map and memory interface
- 4. To know the characteristics of Real Time Systems
- 5. To write programs to interface memory, I/O's with processor
- 6. To study the interrupt performance

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Write programs in ARM for a specific Application	К3
CO2	Interface memory and Write programs related to memory operations	К3
CO3	Interface A/D and D/A convertors with ARM system	К3
CO4	Analyse the performance of interrupt	K4
CO5	Write programmes for interfacing keyboard, display, motor and sensor	K4
CO6	Formulate a mini project using embedded system	K4

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	РО	PS	PS	PS	
										10	0 11	12	O1	O2	O3	
CO1	C	C	C	C	C	7./	Ъ./г	ъл	7./	ъ.		C	C	C	S	
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	3	
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO3	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO4	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO5	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO6	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	

LISTOF EXPERIMENTS

- 1. Study of ARM evaluation system
- 2. Study of Keil C Compiler
- 3. Interfacing ADC and DAC
- 4. Interfacing LED and PWM
- 5. Interfacing real time clock and serial port
- 6. Interfacing keyboard and LCD
- 7. Interfacing EPROM and interrupt
- 8. Mailbox
- 9. Interrupt performance characteristics of ARM and FPGA
- 10. Flashing of LEDS
- 11. Interfacing stepper motor and temperature sensor
- 12. Implementing Zigbee protocol with ARM.

Course Code		L	T	P	С	IA	EA	TM
Course Name	VLSI DESIGN LABORATORY	0	0	3	2	40	60	100
Course Category	PROGRAMME CORE COURSE	Syllabus Revision						
Pre-requisite			•					

Course Objectives:

The course should enable the students

- 1. To learn Hardware Descriptive Language (Verilog/VHDL)
- 2. To learn the fundamental principles of VLSI circuit design in digitaland analog domain
- 3. To familiarize fusing of logical modules on FPGAs
- 4. To provide hands on design experience with professional design (EDA) platforms.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Write HDL code for basic as well as advanced digital integrated circuits	К3
CO2	Import the logic modules into FPGA Boards and carry out a series of validations of thedesign.	K4
CO3	Synthesize, Place and Route the digital IPs	K4
CO4	Design, Simulate and Extract the layouts of Analog IC Blocks using EDA tools.	K4

COs		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	PO	PS	PS	PS
										10	0	12	O1	O2	O3
											11				
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO3	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO4	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S

LISTOF EXPERIMENTS

1. (a) Study of IC design flow using EDA tools of different vendors (b) Introduction to JTAG

FPGA Based Experiments:

- 2. HDL based design entry, Test bench creation and simulation of BCD counters PRBSgenerators, Comparators (min 4-bit) / Bothe multiplier / Carry select adder.
- 3. Synthesis, Placement and Routing (P&R) and post P&R simulation of the componentssimulated in (Expt. No. 2) above
- Critical paths and static timing analysis results to be identified. Identify and verify possible conditions under which the blocks will fail to work correctly.
- 5. Hardware fusing and testing of each of the blocks simulated in (Expt. 2). Use of either chipscope feature (Xilinx) or the signal tap feature (Altera) is a must.
- 6. Invoke the PLL and demonstrate the use of the PLL module for clock generation in FPGAs.

IC Design Experiments:

- 7. Design and PSPICE simulation of (a) Simple 5 transistor differential amplifier. Measure gain, BW, output impedance, ICMR, and CMRR. (b) Ring Oscillator
- 8. Layout generation, DRC and LVS Checking, Parasitic Extraction and Resimulation of CMOSInverter.
- Synthesis and Standard cell-based design of a circuit simulated in (Expt. 7-b) above Synthesis principles,
 Logical Effort, Interpreting Scripts, Constraints and Library preparationand generation, Boolean
 Optimization, Optimization for Area, Power.
- 10. For Expt. 7-b above, Floor Planning, Placement and Routing (P&R), Power and Clock Routing, and post P&R simulation
- 11. Static Timing analyses procedures and constraints. Critical path considerations.
- 12. DFT Scan chain insertion / Clock Tree Synthesis / Stick diagrams.

SEMESTER - V

Course Code		L	T	P	С	IA	EA	TM			
Course Name	COMPUTER ARCHITECTURE	2	1	0	3	40	60	100			
Course Category	PROGRAMME CORE COURSE		Syllab	us Rev	ision/		V.1.0				
Pre-requisite	Digital System Design, Microprocessors & Microcontrollers										

Course Objectives:

The course should enable the students

- 1. To familiarize with implementation of fixed point and floating-point arithmetic operations.
- 2. To study the design of data path unit and control unit for processor.
- 3. To understand the concept of various memories and I/O systems and interfacing.
- 4. To introduce the parallel processing technique and multi-core processors.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest Bloom's
Outcomes		Taxonomy
CO1	Understand the basics structure of computers and instructions.	К3
CO2	Illustrate the fixed point and floating-point arithmetic for ALU operation.	К3
CO3	Discuss about implementation schemes of data-path and control units and pipelineperformance	K4
CO4	Explain the concept, interfacing and organization of of various memories and I/O systems.	К3
CO5	Discuss parallel processing technique and unconventional architectures.	K4

													Progr	am S	pecific	
					Ducan	O		·/DOs\					Outco	mes		
					Progra	amOu	tcomes	s(POs)					(PSOs)	s)		
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3	
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO3	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO4	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	
CO5	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S	

3.

Part Time- B.E. (Electronics and Communication Engineering) Curriculum (2025-26) onwards

CSVM		
UNIT-I	STRUCTURE OF COMPUTERS AND INSTRUCTIONS	9Hours
Classification	of computers and their characteristics –Functional units- Eight ideas —	Performance,
Instructions: C	perations - Operands – Instruction representation – Logical operations – Dec	cision making
operations – Pr	ocedures: Stacks, Ques and Subroutines - Program translation.	
UNIT-II	ARITHMETIC FOR COMPUTERS	9Hours
	btraction – Multiplication – Division – Floating Point arithmetic Operations – IEI	EE 754
rioating point io	rmats - Sub-word Parallelism	
UNIT-III	PROCESSOR DATAPATH AND CONTROL UNITS	9Hours
Fundamental c	oncepts–Instruction executionMultiple bus organization - Data path–Hardv	vired control-
Microprogramm	med control, Pipelining – Pipelined data path and control, Data Hazards - Cont	trol Hazards –
Exception hand	lling	
		T
UNIT-IV	MEMORY AND I/O SYSTEMS	9Hours
•	rchy – Review of memory technologies – Cache memory – Measuring and im	
-	Virtual memory - TLB's. Accessing I/O Devices - Interrupts - Direct Memor	•
structure – Bus	operation – Arbitration – Interface circuits - Standard I/O Interfaces – PCI, SCSI	and USB.
UNIT-V	PARALLELISM	9Hours
	sing challenges, Flynn's classification – SISD, MIMD, SIMD, SPMD, and Vector A	
-	tithreading – Multi-core processors and other Shared Memory Multiprocessors -	
	Processing Units, Clusters, Warehouse Scale Computers and other Me	
-	s. Introduction to Multiprocessor Network Topologies	23346 1 4331116
Withfocesson	s. Introduction to wantiprocessor retwork ropologies	
	Total Hours	45Hours
Text Book(s)		
1. David A.	Patterson and John L. Hennessy, "Computer Organization and Design:The Hardw	vare/Software
	', Fifth Edition, Morgan Kauffman / Elsevier, 2014.	
	nacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, "Computer Organization d Systems", Sixth Edition, McGraw Hill, 2012.	nand
Reference Boo		
	Murdocca and Vincent P. Heuring, —Computer Architecture and Organization: <i>A</i> , Second edition, Wiley India Pvt Ltd, 2015.	AnIntegrated
	Stallings, "Computer Organization and Architecture – Designing for Performance"	
	Pearson Education 2010	,0

Edition, Pearson Education, 2010.

John P. Hayes, Computer Architecture and Organization, Third Edition, Tata McGraw Hill,2012.

Course Code		L	T	P	С	IA	EA	TM	
Course Name	OPTICAL COMMUNICATION	2	1	0	3	40	60	100	
Course Category	PROGRAMME CORE COURSE	Syllabus Revision V.1.0						V.1.0	
Pre-requisite	Digital System Design, Microprocessors & Microcontrollers								

Course Objectives:

The course should enable the students

- 1. To learn the basic elements of optical fiber transmission link, fiber modes configurations and structures.
- 2. To understand the different kind of losses, signal distortion, SM fibers.
- 3. To learn the various optical sources, materials and fiber splicing
- 4. To learn the fiber optical receivers and noise performance in photo detector.
- 5. To explore link budget, WDM, solitons and SONET/SDH network

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
	Demonstrate an understanding of optical fiber communication link, structure, propagation and transmission properties of an optical fiber.	K5
CO2	Estimate the losses and analyze the propagation characteristics of an optical signal in differenttypes of fibers	K5
CO3	Describe the principles of optical sources and power launching-coupling methods.	К3
CO4	Compare the characteristics of fiber optic receivers.	K5

													Progr	am S	pecific
					D			/DO-\					Outco	mes	
					Progra	amOu	tcomes	s(POs)					(PSOs)		
COs	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	S	M	L	-	-	-	-	-	-	-	M	L	M	-	S
CO2	M	S	L	-	-	-	L	-	-	-	L	S	M	-	M
CO3	S	L	M	-	-	-	M	-	-	-	S	M	M	L	S
CO4	L	S	S	-	-	-	-	-	-	-	M	L	M	-	M

UNIT-I	INTRODUCTION TO OPTICAL FIBERS	9Hours
--------	--------------------------------	--------

Evolution of fiber optic system- Element of an Optical Fiber Transmission link-- Total internal reflectionAcceptance angle –Numerical aperture – Skew rays Ray Optics-Optical Fiber Modes and Configurations -Mode theory of Circular Wave guides- Overview of Modes-Key Modal concepts- Linearly Polarized Modes -Single Mode Fibers-Graded Index fiber structure

UNIT-II SIGNAL DEGRADATION OPTICAL FIBERS 9Hours

Attenuation - Absorption losses, Scattering losses, Bending Losses, Core and Cladding losses, SignalDistortion in Optical Waveguides-Information Capacity determination -Group Delay- Material Dispersion, Wave guide Dispersion, Signal distortion in SM fibers-Polarization Mode dispersion, Intermodal dispersion, Pulse Broadening in GI fibers-Mode Coupling -Design Optimization of SM fibers-RI profile and cut-off wavelength.

UNIT-III FIBER OPTICAL SOURCES AND COUPLING 9Hours

Direct and indirect Band gap Materials -LED structures -Light source materials -Quantum efficiency and LED power, Modulation of a LED, lasers Diodes-Modes and Threshold condition – Rate equations-External Quantum efficiency -Resonant frequencies -Laser Diodes, Temperature effects, Introduction to Quantum laser, Fiber amplifiers- Power Launching and coupling, Lencing schemes, Fiber -to- Fiber joints, Fiber splicing-Signal to Noise ratio, Detector response time.

UNIT-IV FIBER OPTIC RECEIVER AND MEASUREMENTS 9Hours

Fundamental receiver operation, Pre-amplifiers, Error sources – Receiver Configuration – Probability of Error – Quantum limit, Fiber Attenuation measurements – Dispersion measurements – Fiber Refractive index profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture Measurements – Fiber diameter measurements

UNIT-V OPTICAL NETWORKS AND SYSTEM TRANSMISSION 9Hours

Basic Networks – SONET / SDH – Broadcast – and –select WDM Networks –Wavelength Routed Networks – Non linear effects on Network performance –Link Power budget -Rise time budget- Noise Effects on System Performance-Operational Principles of WDM Performance of WDM + EDFA system – Solutions – Optical CDMA – Solitons in Optical Fiber -Ultra High Capacity Networks.

Total Hours 45Hours

Text Book(s)

- 1. Gerd Keiser, "Optical Fiber Communication & quot; Mc Graw-Hill International, 4th Edition.2010.
- 2. John M. Senior, "Optical Fiber Communication", Second Edition, Pearson Education, 2007.

Reference Book(s)

- 1. Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009
- 2. J.Senior, & quot; Optical Communication, Principles and Practice & quot;, Prentice Hall ofIndia, 3 rd Edition, 2008.
- 3. J.Gower, & quot; Optical Communication System & quot;, Prentice Hall of India, 2001.

Course Code		L	T	P	С	IA	EA	TM
Course Name	OPTICAL COMMUNICATION LABORATORY	0	0	3	2	40	60	100
Course Category	PROGRAMME CORE COURSE		Syllat	ous Revi	sion			
Pre-requisite			•	•	•	•		•

Course Objectives:

The course should enable the students

- 1. To understand the working principle of optical sources, detector, fibersand optical components
- 2. To develop understanding of simple optical communication link.
- 3. To learn about the characteristics and measurements in optical fibre
- 4. To understand the Various losses involved in OFC

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Understand the working principle of optical sources, detector, fibers and	K2
	microwavecomponents	
CO2	Develop understanding of simple optical communication link	K2
CO3	Learn about the characteristics and measurements in optical fibre	K2
CO4	Analyse the losses in Optical Fibre Communication	К3

COs	Program Outcomes (POs)									S _I	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	P	PO	PS	PS	PS
										10	0 11	12	O1	O2	O3
CO1	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO2	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO3	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S
CO4	S	S	S	S	S	M	M	M	M	M	M	S	S	S	S

LISTOF EXPERIMENTS

- 1. DC Characteristics of Light Emitting Diode
- 2. DC Characteristics of PIN Photo diode
- 3. Mode Characteristics of Fibers
- 4. Measurement of connector and bending losses
- 5. Analysis of Fiber optic Analog frequency response (analog)
- 6. Analysis of Fiber optic Digital Link eye diagram (digital)
- 7. Numerical Aperture determination for Optical Glass Fibers
- 8. Numerical Aperture determination of Plastic Fiber
- 9. Attenuation Measurement in Fibers
- 10. Bit error rate Measurement
- 11. Design of basic Optical Communication system using computational too
- 12. Study experiment Optical Wavelength Multiple Access
- 13. Study of computational tools of Optical Communication

SEMESTER - VI

Course Code		L	T	P	С	IA	EA	TM
Course Name	INDUSTRIAL IOT	2	1	0	3	40	60	100
Course Category	PROGRAMME CORE	Syllabus Revision V.1				V.1.0		
	COURSE							
Pre-requisite	Computer Networks and Internet							

Course Objectives:

The course should enable the students

- 1. To focus on basics of Industrial Internet
- 2. To modify the various existing industrial systems
- 3. To get an idea about IIoT Architectures
- 4. To acquire the knowledge about various Network Protocols
- 5. To extract the backend Middleware Protocols

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest Bloom's
Outcomes		Taxonomy
CO1	Enhance the company's performance using IoT	
CO2	Demonstrate the different styles of technical and business innovators	
CO3	Examine various IIoT Architectures related to data management system	
CO4	Organize the design of Industrial Internet Systems	
CO5	Select various Software design patterns using API	
CO6	Construct a Middleware software system related to proximity edge networks.	

													Progr	am S	Specific	
	ProgramOutcomes(POs)													Outcomes		
COs														(PSOs)		
	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	РО	РО	PS	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3	
CO1	S	S	-	-	-	S	-	-	-	-	-	-	-	L	M	
CO2	L	M	-	S	-	-	S	-	-	-	M	-	-	-	M	
CO3	L	-	-	-	-	-	-	S	-	L	-	M	-	L	M	
CO4	-	-	-	-	-	-	-	-	S	-	-	-	-	L	M	
CO5	-	-	-	-	-	-	-	-	S	-	-	-	-	L	M	
CO6	-	-	-	-	-	-	-	-	S	-	-	-	-	L	M	

UNI	T-I	INTRODUCTION TO INDUSTRIAL INTERNET	9Hours
Innovatio	n and	IIoT – Intelligent Devices – Industrial Internet – Health care –Oil and Gas Ind	ustry – Smart
Office – I	Logistic	s – IoT Innovations in Retail.	
UNI	T-II	TECHNICAL AND BUSINESS INNOVATORS OF INDUSTRIAL INTERNET	9Hours
Miniaturi	ization	– Cyber Physical Systems – Wireless technology – IP Mobility – Network	Functionality
Virtualiza	ation –	Cloud and Fog - Big Data and Analytics – M2M Learning and Artificial Intelligen	ce.
UNIT	Г-ТТТ	IIOT REFERENCE ARCHITECTURE	9Hours
		net Architecture Framework – Functional Viewpoint – Operational Domain,	
		ation Domain, Business Domain – Implementation View point – Architectura	
		logy – Data Management.	· · · · · · · · · · · · · · · · · ·
UNIT	Γ- IV	INDUSTRIAL INTERNET SYSTEMS	9Hours
Introduct	ion-Pro	oximity Network Protocols – WSN Edge Node – Legacy Industrial Protocols –	RS232 Serial
		s, 40-20ma Current Loop, Field Bus Technologies – Modern Communication	
		net – Industrial Gateways.	
UNI	Γ-V	MIIDDLEWARE TRANSPORT PROTOCOL	9Hours
TCP/IP,	UDP,	RTP, CoAP –Middleware Software patterns –Software Design patterns –	- Application
Programn	ning In	terface (API) – CAN Protocol-Web Services – Middleware IIoT – Securing the	lIoT- Identity
Access M	anagen	nent.	
		Total Hours	45Hours
Text Bo	• • •		
		A. Mukherjee, and A. Roy, Introduction to IoT. Cambridge University Press, 2020	
	Misra, ess.202	C. Roy, and A. Mukherjee, Introduction to Industrial Internet of Things and Industrial	stry 4.0. CRC
Referen	ce Boo	k(s)	
		nume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies Sensors for the Ir usinesses & Market Trends 2014 -2024', Yole Development Copyrights, 2014	nternet of
2. Pe	ter Wah	ner, 'Learning Internet of Things', Packt Publishing, 2015	

Professional Elective Courses

Course Code		L	Т	P	С	IA	EA	TM		
Course Name	ANTENNAS AND	3	0	0	3	40	60	100		
	PROPAGATION									
Course	PROFESSIONA LELECTIVE	Syllabus Revision V.1.0						7.1.0		
Category	COURSE -I									
Pre-requisite	BasicknowledgeofElectromagneticFieldsandWaveguides									

Course Objectives:

- 1. The course should enable the students:
- 2. To give insigh to fradiation phenomena and antenna parameters.
- 3. To give thorough understanding of the radiation characteristics of different types of antenna arrays.
- 4. To understand the concept of different types of aperture antennas.
- 5. To create awareness about different types of Special antennas and measurement of antennas.
- 6. To understand the concept of antennas propagation.

Course Outcomes:

Oncompletion of the course, the student will be able to

Course	Description	Highest
Outcom		Bloom's
es		Taxonomy
CO1	Antennas Parameters.	K4
CO2	Differenttypesofantennaarrays.	К3
CO3	Analyzetheapertureantennasandtheir types.	K4
CO4	DescribetheconceptsofSpecialAntennas.	K2
CO5	Describethedifferenttypesofpropagationinantennas.	K4

		ProgramOutcomes(POs)										ProgramSpecific Outcomes(PSOs)			
COs	PO	PO	РО	РО	РО	PO	PS	PS	PS						
	l	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	M	S	-	S	-	-	L	-	-	L	-	L	S	L	-
CO2	M	M	-	-	_	-	L	-	M	M	-	-	L	M	M
CO3	S	L	-	L	-	-	M	-	-		-	-	-	-	L
CO4	M	L	-	-	M	-	S	-	-	L	-	L	-	L	L
CO5	L	L	-	_	_	_	S	-	_	S	-	L	L	L	S

UNIT-I FUNDAMENTALSOFRADIATION

9Hours

Definition of antenna parameters – Gain, Directivity, Effectiveaperture, Radiation Resistance, Band width, Beam width, Input Impedance, Matching Baluns, Polarization mismatch, Antenna noise temperature, Radiation from oscillating dipole, Half wave dipole. Folded dipole.

UNIT-II ANTENNAARRAYS

9Hours

Nelementlineararray, Patternmultiplication, Broadsideand Endfirearray – Concept of Phased arrays, Adaptivearray, Basic principle of antenna Synthesis - Binomialarray, Yagi Arrays.

UNIT-III APERTUREANDSLOTANTENNAS

9Hours

Radiation from rectangular apertures, Uniform and Taperedaperture, Hornantenna, Reflector antenna, Aperture blockage, Feedingstructures, Slotantennas, Microstripantennas – Radiation mechanism – Application, Numerical tool for antenna analysis.

UNIT-IV SPECIALANTENNAS

9Hours

Principle of frequency, independent antennas –Spiral antenna, helical antenna,Logperiodic, Modernantennas- Reconfigurableantenna, Active antenna, Dielectricantennas, Electronic band gapstructureandapplications,AntennaMeasurements-TestRanges,MeasurementofGain, Radiationpattern,Polarization,VSWR.

UNIT-V PROPAGATIONOFRADIOWAVES

9Hours

Modes of propagation , Structure of atmosphere , Ground wave propagation, Tropospheric propagation , Duct propagation, Troposcatter propagation , Flatearth and Curvedearth concept Sky wave propagation – Virtual height, critical frequency , Maximum usable frequency – Skip distance, Fading , Multi hop propagation.

Text Book(s)

Total Hours 45Hours

1. JohnDKraus,"AntennasforallApplications",4thEdition,McGrawHill,2010.

Reference Book(s)

- 1. Edward C. Jordan and Keith G. Balmain" Electromagnetic Waves and Radiating Systems" Prentice Hall of India, 2nd Edition 2011.
- 2. RajeswariChatterjee, "AntennaTheoryandPractice" RevisedSecondEditionNewAge International Publishers, 2006.
- 3. Constantine.A.Balanis"AntennaTheoryAnalysisandDesign",WileyStudentEdition, 4thEdition, 2016.
- 4. H.Sizun"RadioWavePropagationforTelecommunicationApplications",FirstIndianReprint, Springer Publications, 2007.

Course Code		L	T	P	C	IA	EA	TM		
Course Name	INFORMATION THEORY	3	0	0	3	40	60	100		
	AND CODING									
Course Category	PROFESSIONAL ELECTIVE COURSE -I	Syllabus Revision V.1.0						V.1.0		
Pre-requisite	BasicKnowledgeofAnalogandDigitalCommunication									

Course Objectives:

The course shouldenablethestudents:

- 1. To provide an insight into the concept of information in the context of communication theory and its significance in the design of communication receivers.
- 2. To explore in detail, the calculations of channel capacity to support error-free transmission and also, the most commonly used source coding and channel coding algorithms.
- 3. To encourage and train to design coding schemes for data compression and error correction,
- 4. They will also get an overall perspective of how this impacts the design of an optimum communication receiver.

Course Outcomes:

Oncompletion of the course, the student will be able to:

Course Outcomes	Description	Highest Bloom's Taxonomy				
CO1	Overview of Probability Theory, significance of "Information" with respect to Information Theory.	K2				
CO2	Derive equations for entropy, mutual information and channel capacity for all kinds of channels.	К3				
CO3	Implement the various types of source coding algorithms and analyze their performance.	K4				
CO4	Explain various methods of generating and detecting different types of error correcting codes.	К3				
CO5	Understand the fundamentals of Field Theory and polynomial arithmetic.	K2				
CO6	Design linear block codes and cyclic codes (encoding and decoding)	К3				

COs	ProgramOutcomes(POs)									Program Specifi Outcomes(PSOs					
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	S	M	-	-	-	-	-	-	-	-	-	-	S	L	-
CO2	S	S	L	-	-	-	-	-	-	-	-	-	S	L	-
CO3	S	S	_	M	S	-	-	-	-	-	-	-	S	L	-

CO4	S	S	-	L	-	-	-	-	-	-	-	-	S	L	-
CO5	S	L	-	-	-	-	-	-	-	-	-	-	S	L	-
CO6	S	M	-	-	L	-	-	-	-	-	-	-	S	M	-

UNIT-I SOURCE CODIN GANDENTROPY 9Hours

Definition and Examples- Uniquely Decodable Codes-Instantaneous Codes-Constructing Instantaneous Codes- Kraft's Inequality - McMillan Inequality- Information and Entropyproperties of the Entropy function-Entropy and Average Word-Length-Shannon-Fanocoding-Entropy of Extensions and products-Shannon's First Theorem.

UNIT-II INFORMATION CHANNEL 9Hours

Information Channel- Definitions- Binary Symmetric channel-System Entropiessystementropies fortheBinary Symmetric Channel Extension to Shannon's First Theoremto information channels- MutualIn formation-Mutual information for the Binary Symmetric channel-Channel Capacity.

UNIT-III **CHANNELS AND OPTIMAL CODES** 9Hours

Decision rules- Improved Reliability- hamming Distance- Statement and proof of Shannon's Theorem- Converse of Shannon's Theorem- Optimality-Binary Huffman Codes-Average Word-lengthofHuffmancodes-OptimallyofBinaryHuffmancodes-r-aryHuffmancodes-Extensions of source.

UNIT-IV CYCLIC CODES 10Hours

Description of cyclic codes- Generator and parity check matrices of Cyclic codes- Encoding of cycliccodes- Cyclic hamming codes- Syndrome Computation and error Detection- Decoding of cyclic codes- Cyclic Hamming Codes- Error- Trapping Decoding- Improved error-Trapping Decoding-The(23,12)Golaycode-shortenedCycliccodes-CyclicProductcodes-Quasi-Cyclic codes.

CONVOLUTION ALARITHMETIC CODES **UNIT-V** 8Hours

Encoding of Convolutional codes-Structural properties of Convolutional codes-Distance

Properties of Convolutional codes. **Total Hours** 45Hours Text Book(s) N.Abramson, "Information and Coding", McGrawHill, 1963. 2. M.Mansurpur, "Introduction to InformationTheory", McGrawHill, 1987. Reference Book(s) 1. R.B.Ash, "InformationTheory", PrenticeHall, 1970. 2. ShuLinand D.J.CostelloJr., Error Control Coding, PrenticeHall, 1983. 3. G.A.JonesandJ.MaryJones, "InformationandCodingTheory", SpringerSUMS.

Course Code		L	T	P	C	IA	EA	TM	
Course Name	INTRODUCTION TO MEMS	3	0	0	3	40	60	100	
Course Category	PROFESSIONAL ELECTIVE COURSE -I		Syllabus Revision V.1.0						
Pre-requisite	Basic Knowledge of Integrated Circuits, Measurement & Instrumentation								

Course Objectives:

The course should enable the students

- 1. To introduce the concepts of micro and nano electromechanical devices.
- 2. To know the fabrication process of Microsystems.
- 3. To know the design concepts of micro sensors and micro actuators.
- 4. To understand application of MEMS in different industries & provides real-world case studies.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcom		Bloom's
es		Taxonomy
CO1	Understand the historical background of MEMS development and the impact of MEMS on technology advancement.	K2
CO2	Recognize the use of materials in micro fabrication and describe the fabrication processes including surface micromachining, bulk micromachining and LIGA.	K2
CO3	Analyze the key performance aspects of electromechanical transducers including sensors and actuators.	К3
CO4	Analysis of micromachining technique for a specific MEMS fabrication process.	K4
CO5	Analysis of MEMS applications in different industries.	K4

COs		ProgramOutcomes(POs)												Program Specific Outcomes(PSOs)			
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3		
CO1	S	L	-	-	-	-	_	-	-	-	-	-	-	-	-		
CO2	S	L	-	L	-	-	-	-	-	-	-	-	-	-	-		
CO3	S	M	-	M	-	-	-	-	-	-	-	-	S	-	-		
CO4	S	M	L	M	-	-	-	-	-	-	-	-	-	M	-		
CO5	S	S	M	M	M	-	-	-	-	-	-	-	S	M	L		

2.

3.

4.

Part Time- B.E. (Electronics and Communication Engineering) Curriculum (2025-26) onwards

SCSVM		Curriculum (2025-26) onwards	
U.	NIT-I	INTRODUCTION	9Hours
Intro	duction	andHistoricalBackgroundofMEMSdevelopment,intrinsiccharacteristics	of
MEN	MS,Ove	rviewofMicrofabrication,MicroelectronicsFabricationProcessflow,Proce Design.	
Ul	NIT-II	SENSORS AND ACTUATORS	9Hours
Intro	oduction	n to electrostatic sensors and actuators – parallel plate capacitors and	applications -
Iner	tia sens	or, pressure sensor, flow sensor, tactile sensor, parallel-plate actua	tors, Thermal
Sens	ors and	actuators. Piezo resistive sensors - piezo resistive sensor materials,	stress analysis
of m	nechanio	cal elements and applications. Piezoelectric sensing and actuators –	Quartz, PZT,
PVI	ρF,		
ZnO).		
	NIT-III	LITHOGRAPHY (LIGA) AND ETCHING TECHNIQUE	9Hours
		's origin, Overview of photolithography, Lithography sensitivity and	
	=	resolution in photolithography and its enhancement technique,	-
		and Jargon, Physicaletching, plasma etching, Deepreactive Ion etching,	Comparing
Weta	andDrye	etching.	
	NIT-IV	SURFACE MICRO MACHINING	9Hours
		n,MechanicalpropertiesofThinfilms,SurfaceMicromachiningprocesses	*
		omachiningmodifications,comparisonofbulkmicromachiningandsurfa	ace
mici	omachi	ning. Top-Down and Bottom-Up micromachining technique.	
TIN	ITT X	ADDITIONS AND CASE STUDIES	OHouwa
	VIT-V	APPLICATIONS AND CASE-STUDIES	9Hours
		tomotivemarket,MEMSinMedicalandBiomedicalMarket,Environmen	
	_	Industrial/Automation,IT/Peripheral,Telecommunication.CASE-STUP) Sensor, Microphone, Acceleration sensor, Gyros.	DIES:BIOOU
ries	sure (Dr	5) Sensor, Microphone, Acceleration sensor, Gyros.	
		Total Hours	45Hours
Text	Book(s)		10110015
1.		ation of MEMS" Chang Liu, Second Edition, Parson, 2012.	
2.	"Funda	mentals of Micro fabrication – The Science of Miniaturization" Marc J.Madou, Seress, 2011.	econd Edition,
Refe	rence B		
1.	1	and Smart Systems" – Anantha suresh & Gopal Krishnan - Wiley India	

"Microsystem Design" - S.D.Senturia, Kluwer Academic Publishers.

"MEMS and Microsystems Design and Manufacture", Tai Ran Hsu, TataMcraw Hill, 2002.

"MEMS and NEMS: Systems, Devices, and Structures" Sergey Edward Lyshevski, CRC Press,2002.

Course Code		L	T	P	С	IA	EA	TM		
Course Name	VLSI DESIGN	3	0	0	3	40	60	100		
Course	PROFESSIONA LELECTIVE		Sylla	abus Re		V.1.0				
Catego	COURSE -II									
ry										
Pre-requisite Basic knowledge of Electronic Circuits and Digital System Design										

Course Objectives:

The course should enable the students:

1. To understand the principles of CMOS-VLSI technology and the design issues involved at circuit, logic, layout, system level and to learn programmable logics.

Course Outcomes:

On completion of the course, the student will beable to

Course Outcomes	Description	Highest Bloom's
		Taxonomy
CO1	❖ Learn the evolution of IC Technologies	K4
CO2	❖ Learn and analyze front end and back end of CMOS Circuits	КЗ
CO3	❖ Analyze circuit performance and logic circuits of CMOS	K4
CO4	❖ Understand design and testability for VLSI circuits	K2

		ProgramOutcomes(POs)											Program Specific Outcomes(PSOs)			
COs	PO 1	PO 2	P O	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
			3													
CO1	M	S	-	S	-	-	L	-	-	L	-	L	S	L	-	
CO2	M	M	-	-	-	-	L	-	M	M	-	-	L	M	M	
CO3	S	L	-	L	-	-	M	-	-		-	-	-	-	L	
CO4	M	L	-	-	M	-	S	-	-	L	-	L	-	L	L	

UNIT-I INTRODUCTION TO VLSI AND MOS TRANSISTOR THEORY

9Hours

Evolution of IC Technologies: SS1, MSI, LSI, VLSI, ULSI, and GLSI. The Moore's Law, MOS THEORY: TheMOS as switch - nMOS and pMOS. CMOS logic and its features, The nMOS Enhancement Transistor – Workingand Characteristics. Threshold voltage and Body effect of MOS. MOS device design equations (First order effects).

MOS INVERTERS: The CMOS inverter Transfer characteristics, Noise margin. The nMOS and pseudo-nMOSinverter, Tile BiCMOS Inverter, Tile CMOS Transmission gate

UNIT-II

CMOS PROCESSING TECHNOLOGY AND LAYOUTS

9Hours

Silicon Semiconductor fabrication technology, Fabrication forms and CMOS (Basic n-WELL process)

LAYOUTS AND DESIGN RULES: Layout based rules, Simple CMOS Stick Layout diagrams - Inverter, NAND, NOR gatesand Multiplexer. Scaling: Constant Field, and Constant voltage

UNIT-III

MOS CIRCUIT PERFORMANCE AND CMOS LOGIC CIRCUITS

9Hours

Sheet Resistance definition, MOS device capacitances – model, Distributed RC effects, switching characteristics - Rise time, fall time and Delay time. Stage ratio, Simple examples of Combinational and Sequential circuits using CMOS: NANDI NOR gates, and Compound gates, Latches, and Registers.

UNIT-IV

SUB SYSTEM DESIGN AND TESTING

9Hours

General System Design-Design of ALU subsystems, Adder and Multipliers Memories - Static RAM, Control LogicImplementation using PLA's. Testing of VLSI circuits - Need for Testing, Fault models, and ATPG. Design for Testability (DFT) - Scan Based and Self-test approaches.

UNIT-V

PROGRAMMABLE LOGICS

9Hours

Basic ROM structures, PLAs, PALs, PLDs, Implementation of Traffic Light controller using PLD, FPGAs and CPLDs: XILINX and ALTERA series.

Text Book(s)

- Total Hours | 45Hours
- 1. Neil Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design"-AddisonWesley,1998.
- 2. H Roth, Jr. "Digital Systems Design using VHDL"-Thomson Learning, 2001.

Reference Book(s)

- 1. VLSI Design Principles- John P. Uyemura, John Wiley, 2002.
- 2. E. Fabricious, Introduction to VLSI design, McGraw-Hill1990.
- 3. Wayne Wolf, Modern VLSI Design, Pearson Education, 2003.

Course Code		L	T	P	C	IA	EA	TM		
Course Name	MULTIMEDIA COMPRESSION TECHNIQUES	3	0	0	3	40	60	100		
Course Category	PROFESSIONAL ELECTIVE COURSE -II	Syllabus Revision V.1.0						7.1.0		
Pre-requisite	asic knowledge of Coding Theory and CommunicationSystems									

Course Objectives:

- 1. The course should enable the students
- 2. To have acomplete understanding of error—control coding.
- 3. To understand encoding and decoding of digital data streams.
- 4. To introduce methods for the generation of the secodes and their decoding techniques.
- 5. To have a detailed knowledge of compression and decompression techniques.
- 6. To introduce the concepts of multimedia communication.

Course Outcomes:

On completion of the course, the student will be able to

	Bloom's
	Taxonomy
Describe various multimedia components.	K4
Describe compression and decompressiont echniques.	K4
Apply the compression concepts in multimedia communication.	К3
Understand The VOIP Technology.	K2
Describe Multimedia Networking.	K4
	Describe compression and decompressiont echniques. Apply the compression concepts in multimedia communication. Understand The VOIP Technology.

COs		ProgramOutcomes(POs)										Sp O	Program Specific Outcomes (PSOs)		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
CO1	S		-	-	S	-	-	-	-	-	-	-	M	-	-
CO2	S	M	-		S	-	-	-	-	-	-	L	M	L	S
CO3	S	L	-	-	M	-	-	-	-	-	-	L	L	M	S
CO4	S	S	S	-	M	-	-	-	-	-	-	M	L	M	L
CO5	S	S	-	-	M	-	-	-	-	-	-	M	M	M	M

UNIT-I	MULTIMEDIACOMPONENTS	9Hours
Introduction	-Multimedia skills-Multimedia components and their characteristics-T ϵ	ext,sound,
images, grapl	nics,animation,video,hardware.	
		1
UNIT-II	AUDIOANDVIDEOCOMPRESSION	9Hours
_	ession–DPCM-Adaptive PCM –adaptive predictive coding-linear Predi	
_	excitedLPC-perpetual codingVideo compression–principles-H.261-H.26	63-
MPEG1,2,and	14.	
	TEVEL VIDIAL CE COLEDBECTON	OTT
UNIT-III	TEXTANDIMAGECOMPRESSION	9Hours
-	principles-source encoders and destination encoders-lossless a entropyencoding—source encoding-text compression—static Huffman	and lossy an coding
-	ing-arithmetic coding- Lempel ziv-welsh Compression-image compres	•
UNIT-IV	VOIPTECHNOLOGY	9Hours
Basics of IP t	ransport,VoIP challenges,H.323/SIP–Network Architecture,Protocols,C	Call
establishmen	t and release,VoIPandSS7,Quality of Service-CODECMethods-VOIP ap	plicability.
UNIT-V	MULTIMEDIANETWORKING	9Hours
UNIT-V Multimedia r	MULTIMEDIANETWORKING networking-Applications-streamed stored andaudio-making the best Eff	
Multimedia r	networking-Applications-streamed stored andaudio-making the best Eff	fort service-
Multimedia r protocols for	networking-Applications-streamed stored andaudio-making the best Eff real time interactive Applications-distributing multimedia eyond best of	fort service- effort
Multimedia r protocols for	networking-Applications-streamed stored andaudio-making the best Eff	fort service- effort
Multimedia r protocols for	networking-Applications-streamed stored andaudio-making the best Eff real time interactive Applications-distributing multimedia eyond best of	fort service- effort
Multimedia r protocols for	networking-Applications-streamed stored andaudio-making the best Efficiency real time interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services	fort service- effort ces-RSVP.
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa	networking-Applications-streamed stored and audio-making the best Effective and time interactive Applications-distributing multimedia eyond best adding and policing Mechanisms-integrated services-differentiated Services and Hours Total Hours Ishall "Multimedia communication-Applications, Networks, Protocols"	fort service- effort ces-RSVP.
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa	networking-Applications-streamed stored and audio-making the best Efficient interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services and Hours Total Hours Ishall "Multimedia communication-Applications, Networks, Protocols eds", Pearson Education, 2007.	fort service- effort ces-RSVP. 45Hours
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa Standar ReferenceBoo	real time interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services and Hours Total Hours Ishall "Multimedia communication-Applications, Networks, Protocols eds", Pearson Education, 2007. Dk(s)	fort service- effort ces-RSVP. 45Hours
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa Standar ReferenceBoot 1. TayVau	real time interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services and Hours Total Hours Ishall "Multimedia communication-Applications, Networks, Protocols eds", Pearson Education, 2007. Ok(s) Ighan, "Multimedia: Makingitwork", Seventh Edition, TMH, 2008.	fort service- effort ces-RSVP. 45Hours and
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa Standar ReferenceBoot 1. TayVau	real time interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services and Hours Total Hours Ishall "Multimedia communication-Applications, Networks, Protocols eds", Pearson Education, 2007. Dk(s)	fort service- effort ces-RSVP. 45Hours and
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa Standar ReferenceBoo 1. TayVau 2. Kurose 2005.	real time interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services and Hours Total Hours Ishall "Multimedia communication-Applications, Networks, Protocols eds", Pearson Education, 2007. Ok(s) Ighan, "Multimedia: Makingitwork", Seventh Edition, TMH, 2008.	fort service- effort ces-RSVP. 45Hours and
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa Standar ReferenceBoo 1. TayVau 2. Kurose 2005. 3. Marcus	real time interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services and Hours Total Hours Ishall "Multimedia communication-Applications, Networks, Protocols eds", Pearson Education, 2007. Ok(s) Ighan, "Multimedia: Makingitwork", Seventh Edition, TMH, 2008. and W.Ross "Computer Networking- a Top Down Approach", Pearson Education Education, 2007.	fort service- effort ces-RSVP. 45Hours and ducation,
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa Standar ReferenceBoo 1. TayVau 2. Kurose 2005. 3. Marcus 4. KR.Rac	real time interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services and Hours Total Hours Ishall "Multimedia communication-Applications, Networks, Protocols eds", Pearson Education, 2007. Ok(s) Inghan, "Multimedia: Makingitwork", Seventh Edition, TMH, 2008. and W.Ross "Computer Networking- a Top Down Approach", Pearson Educatives "Voiceover IPNetworks", McGraw Hill, 1999	fort service- effort ces-RSVP. 45Hours and ducation,
Multimedia r protocols for service- Seclu Text Book(s) 1. FredHa Standar ReferenceBoo 1. TayVau 2. Kurose 2005. 3. Marcus 4. KR.Rac Standar	real time interactive Applications-distributing multimedia eyond best ending and policing Mechanisms-integrated services-differentiated Services differentiated Services diffe	fort service- effort ces-RSVP. 45Hours and ducation, echniques,

Course Code		L	T	P	C	IA	EA	TM					
Course Name	NANO ELECTRONICS	3	0	0	3	40	60	100					
Course	PROFESSIONAL ELECTIVE		Syllab	ous Re	vision		V.1.0						
Category	COURSE -II												
Pre-requisite	Basic knowledge of Material Science and	d Electro	onics										

Course Objectives:

- 1. To learn and understand basic concepts of Nano electronics.
- 2. To know the techniques of fabrication and measurement.
- 3. To gain knowledge about Nanostructure devices and logic devices

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcome		Bloom's
S		Taxonomy
CO1	Understand various aspects of Nano-technology and the processes involved in	K2
	making nanocomponents and material.	
CO2	Leverage advantages of the Nano-materials and appropriate use in solving	K2
	practical problems.	

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs	ProgramOutcomes(POs)								S _I	Program Specific Outcomes (PSOs)					
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	M	-	M	L	-	-	-	-	-	-	L	S	-	-
CO2	S	M	-	M	L	-	-	-	-	-	-	L	S	M	-

	UNIT-I	INTRODUCTION TO NANO TECHNOLOGY	9Hours
- 1		· ·	1

Introduction to nano technology, meso structures, Basics of Quantum Mechanics: Schrodingerequation, Density of States. Particle in a box Concepts, Degeneracy, Band Theory of Solids, Kronig-Penny Model, Brillouin Zones

UNIT-II	CMOS SCALING AND ITS LIMITS	9Hours
MOSFETs,limits	approaches: Introduction, CMOS Scaling, The nanoscale MOSFET, Finf to scaling, system integration limits (interconnect issues etc.), Nano Materials - of Nano materials.	
UNIT-III	FUNDAMENTALS OF NANOELECTRONICS	9Hours
twoterminal dev	f logic devices:- physical limits to computations; concepts of logic devices:- clarices – field effect devices – coulomb blockade devices – spintronics– quantum cell putting – DNA computer; Ultimate computation: - powerdissipation limit – cutation.	ular automata
UNIT-IV Resonant Tunn	NANO STRUCTURE DEVICES nelling Diode, Coulomb dots, Quantum blockade, Single electron transis	9Hours tors, Carbon
	nics, Band structure and transport, devices, applications, 2D semiconductors a le, atomistic simulation.	nd electronic
UNIT-V	LOGIC DEVICES AND APPLICATIONS	9Hours
onResonant Tui	Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quantum Transport nnelling-Single-Electron Devices for Logic Applications-Superconductor Digital ting Using Superconductors-Carbon Nanotubes for Data Processing- Molecula ons and Trends	l Electronics
	Total Hours	45Hours
Text Book(s)		
1. G.W. Hai	nson, Fundamentals of Nano electronics, Pearson, 2009	
Reference Bo	ok(s)	
	r, Nano electronics and Information Technology, Wiley-VCH, 2003.	
2. K.E. Dre	xler, Nano systems, Wiley, 1992.	
3. J.H. David	es, The Physics of Low-Dimensional Semiconductors, Cambridge University Press,1	998.
4. C.P. Poo	le, F. J. Owens, Introduction to Nanotechnology, Wiley, 2003	

Course Code		L	T	P	C	IA	EA	TM	
Course Name	DIGITAL IMAGE & VIDEO PROCESSING	3	0	0	3	40	60	100	
Course Category	PROFESSIONAL ELECTIVE COURSE -III	Syllabus Revision V.1.0						7.1.0	
Pre-requisite	Basic knowledge of Signals & Systems, Digital Signal Processing and Digital System Design								

Course Objectives:

- 1. To learn digital image fundamentals.
- 2. To be exposed to simple image processing techniques.
- 3. To be familiar with image compression and segmentation techniques
- 4. To represent image and video in form of features

Course Outcomes:

On completion of the course, the student will be able to

Course Outcome s	Description	Highest Bloom's Taxonomy
CO1	Understand the image enhancement techniques	K2
CO2	Understand wavelets and image compression	К3
CO3	Understand the fundamentals of video processing	К3

COs	ProgramOutcomes(POs)												Program Specific Outcomes (PSOs)		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3
CO1	L	L	M	M	L	-	L	-	-	L	-	S	M	M	-
CO2	M	M	M	L	-	M	L	-	-	L	-	S	M	M	-
CO3	S	M	M	L	-	M	M	-	-	L	-	S	S	M	-

SCSVMV		Currentin (2023-20) onwards	
UNI	Г-І	DIGITAL IMAGE FUNDAMENTALS	9Hours
Image	Sensing a	nd Acquisition – Image Sampling and Quantization – Relationships between 1	-
UNI	Γ-II	IMAGE ENHANCEMENT	9Hours
Introduction — Origin — Steps in Digital Image Processing — Components — Elements of Visus ImageSensing and Acquisition — Image Sampling and Quantization — Relationships between models. —Neighborhood, adjacency, connectivity, distance measures. UNIT-II IMAGE ENHANCEMENT Spatial Domain: Gray level transformations — Histogram processing — Basics of Spatial Filtering andSharpening Spatial Filtering — Frequency Domain: Introduction to Fourier Transform—Sharpeningfrequency domain filters — Ideal, Butterworth and Gaussian filters. ColorImage Processing—Colorimage smoothing and sharpening; ColorSegmentation. UNIT-III IMAGE RESTORATION AND SEGMENTATION Noise models — Mean Filters — Order Statistics — Adaptive filters — Band reject Filters — Band NotchFilters — Optimum Notch Filtering — Inverse Filtering — Wiener filtering Segmentation-processingerosion and dilation. UNIT-IV WAVELETS AND IMAGE COMPRESSION Wavelets and Multi-resolution image processing, wavelets and Sub band filter banks, w ImageCompression—Redundancy—inter-pixel and psycho-visual; Lossless compression — predictive and transform coding; Discrete Cosine Transform; Still imageand ppega and JPEG—2000 UNIT-V VIDEO PROCESSING Fundamentals of Video Coding—Inter-frame redundancy, motion estimation techniques—searchstrategies, forward and backward motion prediction, frame classification — I, P and B; V hierarchy—Group of pictures, firames, slices, macro-blocks and blocks; Elements of avideo encode video codingstandards — MPEG and H.26X. Video Segmentation—Temporal segmentation-detection, hard-cutsand soft-cuts; spatial segmentation — motion-based; Video object detection and tection, hard-cutsand soft-cuts; spatial segmentation — motion-based; Video object detection and tection, hard-cutsand soft-cuts; spatial segmentation — motion-based; Video object detection and tection. — Region Beducation — Re			noothing and cessing-Color
UNI	Г-Ш	IMAGE RESTORATION AND SEGMENTATION	9Hours
proces	singerosio	on and dilation.	/orphologica
Image Lossyc	Compression ompression	ion-Redundancy–inter-pixel and psycho-visual; Lossless compression – predict on- predictive and transform coding; Discrete Cosine Transform; Still imag	ive, entropy
UNI	Γ-V	VIDEO PROCESSING	9Hours
search hieraro Video	strategies chy –Grou codingsta	, forward and backward motion prediction, frame classification – I, P and B; Vi up of pictures, frames, slices, macro-blocks and blocks; Elements of avideo encoder and ards – MPEG and H.26X. Video Segmentation- Temporal segmentation—sh	deo sequence and decoder not boundary
Tovt	Rook(e)	Total Hours	45Hours
	` ′	zalez and R.E. Woods, Digital Image Processing, Second Edition, Pearson Education	1,2008
Refe	rence Bo		
1.		nar Jain, Fundamentals of Digital Image Processing, Prentice Hall of India, 2nd editi	on,2004
2.	Murat Te	ekalp , Digital Video Processing" Prentice Hall, 2nd edition 2011.	

Course Code		L	T	P	C	IA	EA	TM
Course Name	WIRELESS SENSOR NETWORKS	3	0	0	3	40	60	100
Course		Syllabus Revision V.						
	PROFESSIONAL ELECTIVE		Бупак	us Ne		V.1.0		
Categoy	COURSE -III							
Pre-requisite Basic knowledge of Data Communication Network								

Course Objectives:

- 1. To understand the basics of Wireless sensor Networks
- 2. To learn the Architecture of WSN
- 3. To understand the concept of Networking and Networking in WSN

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcome s		Bloom's
		Taxonomy
CO1	Understand challenges and technologies for wireless networks	K2
CO2	Understand architecture and sensors	К3
CO3	Establishing infrastructure and simulations	K4

COs	ProgramOutcomes(POs)													Program Specific Outcomes (PSOs)		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3	
CO1	M	L	-	-	-	-	-	-	-	-	-	-	L	-	-	
CO2	S	M	-	-	-	-	-	-	-	-	-	-	M	-	-	
CO3	S	M	L	-	L	-	-	-	-	-	-	-	-	-	-	

	OVERVIEW OF WIRELESS SENSOR NETWORKS	9Hours
ingle-Node A	rchitecture - Hardware Components- Network Characteristics- unique constraints	
ndchallenges,	Enabling Technologies for Wireless Sensor Networks-Types of wireless sensor netw	vorks.
UNIT-II	ARCHITECTURES	9Hours
letwork Arch	itecture- Sensor Networks-Scenarios- Design Principle, Physical Layer and Transcei	ver
	rations, Optimization Goals and Figures of Merit, Gateway Concepts, Operating Sys	
xecutionEnvi	ronments- introduction to Tiny OS and nesC- Internet to WSN Communication	
UNIT-III	NETWORKING SENSORS	9Hours
AC Protocol	 s for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts -	S-MAC, -
MAC Protoco	ol, IEEE 802.15.4 standard and ZigBee, the Mediation Device Protocol, Wakeup Rad	io
Concepts,Addr	ess and Name Management, Assignment of MAC Addresses, RoutingProtocols Energe	gy-Efficient
louting,Geogr	aphic Routing.	
UNIT-IV	INFRASTRUCTURE ESTABLISHMENT	9Hours
	rol, Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking	
,		
UNIT-V	SENSOR NETWORK PLATFORMS AND TOOLS	9Hours
UNIT-V ensor Node H	SENSOR NETWORK PLATFORMS AND TOOLS ardware – Berkeley Motes, Programming Challenges, Node-level software platforms, State-centric programming.	9Hours
UNIT-V ensor Node H evelSimulator	ardware – Berkeley Motes, Programming Challenges, Node-level software platforms, State-centric programming. Total Hours	9Hours
UNIT-V ensor Node H evelSimulator Text Book(s	ardware – Berkeley Motes, Programming Challenges, Node-level software platforms, State-centric programming. Total Hours	9Hours s,Node 45Hours
UNIT-V ensor Node H evelSimulator Text Book(s 1. Holger K	ardware – Berkeley Motes, Programming Challenges, Node-level software platforms, State-centric programming. Total Hours	9Hours s,Node 45Hours ey,2005.
UNIT-V ensor Node H evelSimulator Text Book(s 1. Holger K Feng Zha Waltene	ardware – Berkeley Motes, Programming Challenges, Node-level software platforms, State-centric programming. Total Hours arl & Andreas Willig, "Protocols and Architectures for Wireless SensorNetworks", John Wilden	9Hours s,Node 45Hours ey,2005. Elsevier,2007
UNIT-V ensor Node H evelSimulator Text Book(s 1. Holger K Feng Zha Waltene John Wi	ardware – Berkeley Motes, Programming Challenges, Node-level software platforms, State-centric programming. Total Hours arl & Andreas Willig, "Protocols and Architectures for Wireless SensorNetworks", John Wilder & Leonidas J.Guibas, "Wireless Sensor Networks – An InformationProcessing Approach", Sus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks - Theory Andrey & Sons Publications, 201	9Hours s,Node 45Hours ey,2005. Elsevier,2007
UNIT-V ensor Node H evelSimulator Text Book(s 1. Holger K Feng Zha Waltene John Wi Reference B 1. KazemSo	ardware – Berkeley Motes, Programming Challenges, Node-level software platforms, State-centric programming. Total Hours arl & Andreas Willig, "Protocols and Architectures for Wireless SensorNetworks", John Wilder & Leonidas J.Guibas, "Wireless Sensor Networks – An InformationProcessing Approach", Sus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks - Theory Andrey & Sons Publications, 201	9Hours s,Node 45Hours ey,2005. Elsevier,2007 Practice",By

Course Code		L	T	P	С	IA	EA	TM	
Course Name	ASIC DESIGN	3	0	0	3	40	60	100	
Course Categoy	PROFESSIONAL ELECTIVE COURSE -III	Syllabus Revision V.1						V.1.0	
Pre-requisite Basic knowledge of Digital System Design and VLSI									

Course Objectives:

- 1. To understand the programmable logic devices.
- 2. To understand the logic of chip design.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Understand the chip design	K2
CO2	Understand the concept of IC floor planning, Placement and routing.	K5

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs	ProgramOutcomes(POs)													Program Specific Outcomes (PSOs)		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03	
CO1	S	M	M	L	-	L	-	-	-	-	M	-	S	M	S	
CO2	S	M	M	-	-	L	-	-	-	-	M	-	S	M	S	

UNIT-I	INTRODUCTION TO ASICS, CMOS LOGIC & ASIC LIBRARY DESIGN	9Hours

Types of ASICs - Design flow - CMOS transistors CMOS Design rules - Combinational LogicCell – Sequentiallogic cell - Data path logic cell - Transistors as Resistors – Transistor Parasitic Capacitance - Logical effort – Librarycell design - Library architecture.

UNIT-1	PROGRAMMABLE ASICS, ASIC LOGIC CELLS AND ASIC I/O CELLS	9Hours
Anti-fuse	static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT- Xilinx	LCA –
AlteraFL	X-Altera MAX DC & AC inputs and outputs-Clock & Power inputs- Xilinx I/O blocks.	
UNIT-1	PROGRAMMABLE ASIC INTERCONNECT, ASIC DESIGN SOFTWARE AND LOW-LEVELDESIGN ENTRY	9Hours
Actel AC	-Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 – Altera FLEX $_{\rm I}$	X –Design
· -	ogic Synthesis - Half gate ASIC -Schematic entry - Low level design language - PLA tools -	EDIF- CFI
design re	resentation.	
UNIT-I	LOGIC SYNTHESIS, SIMULATION AND TESTING	9Hours
_	d logic synthesis -VHDL and logic synthesis - types of simulation -boundary scan test- fault - automatic test pattern generation	
UNIT-	ASIC CONSTRUCTION, FLOOR PLANNING, PLACEMENT & ROUTING	9Hours
	tition - FPGA partitioning - partitioning methods - floor planning - placement - physical ding-detailed routing-special routing-circuit extraction -DRC.	esign flow-
Text Bo		45Hours
	S .Smith, "Application Specific Integrated Circuits, Addison -Wesley Longman Inc.,1997.	
	ee Book(s)	
	ad Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practical Approach, Proc., 2003.	entice Hal
2. W	ne Wolf, FPGA-Based System Design, Prentice Hall PTR, 2004.	
3. R.	ajsuman, System-on-a-Chip Design and Test. Santa Clara, CA: Artech HousePublishers,200	00.
	ekoogar. Timing Verification of Application-Specific Integrated Circuits (ASICs). Proc.,1999.	entice Hal

Course Code		L	T	P	С	IA	EA	TM
Course Name	ADVANCED MICRO CONTROLLERS	3	0	0	3	40	60	100
Course Categoy	PROFESSIONAL ELECTIVE COURSE -III	Syllabus Revision V.1.0						
Pre-requisite	Basic knowledge of Microprocessors and	Microc	ontrol	lers				

Course Objectives:

- 1. To study the properties and evolution of RISC and CISC processors.
- 2. To study the architecture addressing modes and instruction set of R8C microcontroller.
- 3. To impart knowledge on embedded software development.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcmoes		Bloom's
		Taxonomy
CO1	Explain RISC and CISC properties	К3
CO2	Interfacing using CAN bus	К3
CO3	System design based on microcontroller	К3

COs	ProgramOutcomes(POs)												Program Specific Outcomes (PSOs)		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	S	S	-	-	-	-	-	-	-	-	L	S	-	-
CO2	S	S	S	-	-	-	-	-	-	-	-	L	S	-	-
CO3	S	S	S	-	-	-	-	-	1	ı	1	L	S	-	-

UNIT-I	RISC PROCESSORS	9Hours
RISC Vs CISC, I	RISC properties and evolution, Advanced RISC microcontrollers, PIC 8-bit Microco	ontrollers
UNIT-II	R8C 16-BIT MICROCONTROLLER	9Hours
	tecture, CPU Registers, Instruction Set, On-Chip Peripherals, R8C Tiny Develor RT, Timer Interrupts, System design using R8C Microcontroller.	opment Tools,
UNIT-III	MSP430 16 - BIT MICROCONTROLLER	9Hours
	Architecture, CPU Registers, Instruction Set, On-Chip Peripherals, MSP430 M, UART, Timer Interrupts, System design using MSP430 Microcontroller.	Development
UNIT-IV	EMBEDDED SOFTWARE DEVELOPMENT	9Hours
schedulingtechr UNIT-V	nent tools, Debugging techniques, Real-time Operating System, Memory iques. VSYSTEM DEVELOPMENT	9Hours
	based System Design, Peripheral Interfacing, Inter-Integrated Circuit ADC/DAC, CAN BUS interfacing, Application in Automobiles, Robotic a	
	Total Hours	45Hours
	chez Maria P.Canton, Microcontroller Programming: Themicrochip PIC, CRCProup,2007.	ress, Taylor &
Reference Bo	ok(s)	
1. D. E. Sim		
	on, An Embedded Software Primerl, Addison-Wesley, 1999.	
	on, An Embedded Software Primerl, Addison-Wesley, 1999. Volf, Computers as Components: Principles of Embedded Computing SystemDe Publishers, 2006.	esign, Morgan

Course Code		L	T	P	C	IA	EA	TM
Course Name	MOBILE COMMUNICATION AND NETWORKS	3	0	0	3	40	60	100
Course Categoy	PROFESSIONAL ELECTIVE COURSE -IV	Syllabus Revision V.1.0						
Pre-requisite	Basic knowledge of Digital Communicati	on and	Anten	nas				

Course Objectives:

- 1. To understand the issues involved in mobile communication system design and analysis.
- 2. To understand the concept of frequency reuse.
- 3. To understand the characteristics of wireless channels.
- 4. To know the fundamental limits on the capacity of wireless channels.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Understand the working principles of the mobile communication systems.	K 4
CO2	Understand the relation between the user features and underlying technology.	К3
CO3	Analyze mobile communication systems for improved performance.	К3

COs		ProgramOutcomes(POs)													n es
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	03
CO1	S	M	M	L	-	-	-	-	M	S	-	L	S	M	S
CO2	S	M	S	M	-	-	-	-	M	L	-	M	S	M	M
CO3	M	L	S	L	-	-	-	-	L	M	-	M	S	L	M

	CELLULAR CONCEPTS	9Hours
	pts- Cell structure, frequency reuse, cell splitting, channel assignment, handoff, control; Wireless Standards: Overview of 2G and 3G cellular standards.	interference,
UNIT-II	THE WIRELESS CHANNEL	9Hours
signalpropagat statisticalmulti rms delaysprea	ation-Propagation mechanism- reflection, refraction, diffraction and scattering ion and lognormal shadowing. Fading channels -Multipath and small scale fading- I path channel models, narrowband and wideband fading models, power delay profile id, coherence bandwidth and coherence time, flat andfrequency selective fading, stade duration and level crossing rate.	Doppler shift, , average and
UNIT-III	ANTENNAS FOR MOBILE TERMINALS	9Hours
Capacity of monopoleante	flat and frequency selective channels, Antennas- Antennas for mobinnas,PIFA, base station antennas and arrays	ile terminal
UNIT-IV	MULTI-ANTENNA COMMUNICATION	9Hours
IINIT-V	MIMO AND MUUTIPI FYING	9Hours
UNIT-V	MIMO AND MULTIPLEXING	9Hours
MIMO and Performancem	MIMO AND MULTIPLEXING space time signal processing, spatial multiplexing, diversity/multiplexine easures - Outage, average SNR, average symbol/bit error rate. System examples - GSM IS-95, CDMA 2000 and WCDMA.	ng tradeoff.
MIMO and Performancem	space time signal processing, spatial multiplexing, diversity/multiplexineasures- Outage, average SNR, average symbol/bit error rate. System examples- GSM	ng tradeoff.
MIMO and Performancem EDGE, GPRS, TextBook(s)	space time signal processing, spatial multiplexing, diversity/multiplexing easures - Outage, average SNR, average symbol/bit error rate. System examples - GSM IS-95, CDMA 2000 and WCDMA. Total Hours	ng tradeoff.
MIMO and Performancem EDGE, GPRS, TextBook(s) 1. WCY L	space time signal processing, spatial multiplexing, diversity/multiplexing easures - Outage, average SNR, average symbol/bit error rate. System examples - GSM IS-95, CDMA 2000 and WCDMA. Total Hours ee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990.	ng tradeoff.
MIMO and Performancem EDGE, GPRS, TextBook(s) 1. WCY L ReferenceB	space time signal processing, spatial multiplexing, diversity/multiplexing easures- Outage, average SNR, average symbol/bit error rate. System examples- GSM IS-95, CDMA 2000 and WCDMA. Total Hours ee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990. bok(s)	ng tradeoff.
MIMO and Performancem EDGE, GPRS, TextBook(s) 1. WCY L ReferenceB 1. WCY L	space time signal processing, spatial multiplexing, diversity/multiplexing easures - Outage, average SNR, average symbol/bit error rate. System examples - GSM IS-95, CDMA 2000 and WCDMA. Total Hours ee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990. bok(s) ee, Mobile Communications Design Fundamentals, Prentice Hall, 1993.	ng tradeoff.
MIMO and Performancem EDGE, GPRS, TextBook(s) 1. WCY L ReferenceB 1. WCY L	space time signal processing, spatial multiplexing, diversity/multiplexing easures- Outage, average SNR, average symbol/bit error rate. System examples- GSM IS-95, CDMA 2000 and WCDMA. Total Hours ee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990. bok(s)	ng tradeoff.
MIMO and Performancem EDGE, GPRS, TextBook(s) 1. WCY L ReferenceB 1. WCY L 2. Raymon	space time signal processing, spatial multiplexing, diversity/multiplexing easures - Outage, average SNR, average symbol/bit error rate. System examples - GSM IS-95, CDMA 2000 and WCDMA. Total Hours ee, Mobile Cellular Telecommunications Systems, McGraw Hill, 1990. bok(s) ee, Mobile Communications Design Fundamentals, Prentice Hall, 1993.	ng tradeoff.

Course Code		L	T	P	C	IA	EA	TM
Course Name	CMOS IC DESIGN	3	0	0	3	40	60	100
Course Categoy	PROFESSIONAL ELECTIVE COURSE -IV	Syllabus Revision V						7.1.0
Pre-requisite	Basic knowledge of VLSI Design							

Course Objectives:

1. To understand MOS Devices and CMOS IC's, Design of a CMOS Amplifier, CMOSoscillator circuits and comparators.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcmoes		Bloom's
		Taxonomy
CO1	Design different CMOS circuits using various logic families along with their circuit layout.	K4
CO2	Understand the concepts of MOS Design.	K2
CO3	Design and analysis of Combinational and Sequential MOS Circuits.	K4
CO4	Extend the Digital IC Design to Different Applications.	К3
CO5	Understand the Concepts of Semiconductor Memories, Flash Memory, RAM array organization.	К3

COs	ProgramOutcomes(POs)													Program Specific Outcomes (PSOs)		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03	
CO1	S	M	M	L	-	L	-	-	-	-	-	-	S	M	M	
CO2	S	M	M	-	-	L	L	-	M	-	L	-	S	M	M	
CO3	S	M	M	L	-	M	-	-	M	-	M	-	S	L	M	
CO4	S M M L - M M								S	L	M					
CO5	S	M	M	-	-	M	-	-	-	-	L	-	S	M	M	

UNIT-I	INTRODUCTION, DESIGN ISSUES AND MANUFACTURING PROCESS	9Hours

A Historical Perspective, Issues in Digital Integrated Circuit Design, Quality Metrics of a Digital Design,Introduction to Manufacturing Process, Manufacturing CMOS Integrated Circuits, Integrated Circuit Layout: DesignRules, Parasitics.

UNIT-II INTERCONNECT AND DELAY MODELS 9Hours

Interconnect Modelling: Capacitive Parasitics, Resistive Parasitics, Inductive Parasitics, Advanced InterconnectTechniques.

Delay Model & Robustness: Introduction, RC Delay model, Linear Delay model, logical path effortsof paths.Robustness: Variability- Reliability- Scaling-Variation Tolerant design.

UNIT-III COMBINATIONAL CIRCUIT DESIGN 9Hours

Review of Circuit Families, Circuit pitfalls and Fallacies- the CMOS Inverters and CMOS Logic Gates – StaticView:Introduction to CMOS Inverter, The Static CMOS Inverter – An Intuitive Perspective, Evaluating theRobustness of the CMOS Inverter, Introduction to Static CMOS Design, Complementary CMOS, Ratioed Logic,Pass-Transistor Logic. CMOS Inverter: Dynamic View: Performance of CMOS Inverter: The Dynamic Behaviour,Power, Energy, and Energy-Delay, Perspective: Technology Scaling and its Impact on the Inverter Metrics

UNIT-IV SEQUENTIAL CIRCUIT DESIGN 9Hours

Static and Dynamic Sequential Circuits -Static Latches and Registers, Dynamic Latches and Registers, AlternativeRegister Styles: Pulse Registers and Sense-Amplifier Based Registers, Pipelining: An Approach to OptimizeSequential Circuits – Latch Vs Register-Based Pipelines – A Logic Style for Pipelined Structures, Non bistableSequential Circuits

UNIT-V DESIGN OF ABB AND MEMORY STRUCTURES 9Hours

Arithmetic Building Blocks: Introduction, Data paths in Digital Processor Architecture, The Adder, The Multiplier, The Shifter, Other Arithmetic Operators, Power and Speed Trade-off's in Data path Structures, Perspective: Designas a Trade-off Memory and Array Structures: Introduction, The Memory Core, Memory Peripheral Circuitry, Memory Reliability and Yield, Power Dissipation in Memories, Case Studies in Memory Design: The PLA, A 4-Mbit SRAM and A 1-Gbit NAND Flash memory, Perspective: Semiconductor Memory Trends and Evolution.

	Total Hours	45Hours
Text	xt Book(s)	
1.	Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, Digital Integrated Circuits	– ADesign
	Perspective,2nd edn., Pearson Education, 2003.	
2.	Digital Integrated Circuits - A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, B	Borivoje
	Nikolic, 2 nd Ed., PHI.	
Cou	urse Code L T P C IA EA	A TM

Course Name	SPEECH AND AUDIO PROCESSING	3	0	0	3	40	60	100	
Course Categoy	PROFESSIONAL ELECTIVE COURSE -IV		Sy	llabus	Revis	ion		V.1.0	
Pre-requisite	Basic knowledge Signal & Systems and D	Digital Signal Processing							

Course Objectives:

- 1. To introduce speech production and related parameters of speech.
- 2. To learn the computation and use of techniques in the analysis of speech.
- 3. To understand different speech modelling procedures and their implementation issues.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Mathematically model the speech signal	K2
CO2	Analyze the quality and properties of speech signal.	К3
CO3	Modify and enhance the speech and audio signals.	K4

COs					Progr	amOut	comes	(POs)					S _I	rograi pecific utcom (PSOs)	es
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	L	-	L	-	-	-	-	-	-	-	-	S	S	L
CO2	S	M	-	L	-	-	-	-	-	-	-	-	S	M	-
CO3	S	M	L	M	M	-	-	-	-	-	-	-	M	S	L

Part Time- B.E. (Electronics and Communication Engineering)

Curriculum (2025-26) onwards **UNIT-I** INTRODUCTION TO SPEECH PRODUCTION AND MODELING 9Hours Human Auditory System; General structure of speech coders; Classification of speech coding techniques – parametric, waveform and hybrid; Requirements of speech codecs—quality, coding delays, robustness. SpeechSignal Processing- Pitch-period estimation, all-pole and all-zero filters, convolution; Power spectral density, periodogram, autoregressive model, autocorrelation estimation. **UNIT-II** LINEAR PREDICTION OF SPEECH 9Hours Basic concepts of linear prediction; Linear Prediction Analysis of nonstationary signals –prediction gain, examples;Levinson-Durbin algorithm; Long term and short-term linear prediction models; Moving average prediction. **UNIT-III** SPEECH QUANTIZATION 9Hours Scalar quantization-uniform quantizer, optimum quantizer, logarithmic quantizer, adaptive quantizer, differential quantizers; Vector quantization – distortion measures, codebook design, codebook types **UNIT-IV** SCALAR QUANTIZATION OF LPC 9Hours Spectral distortion measures, Quantization based on reflection coefficient and log area ratio, bit allocation; Linespectral frequency – LPC to LSF conversions, quantization based on LSF Linear Prediction Coding- LPC model ofspeech production; Structures of LPC encoders and decoders; Voicing detection; Limitations of the LPC model. **UNIT-V** 9Hours CODE EXCITED LINEAR PREDICTION CELP speech production model; Analysis-by-synthesis; Generic CELP encoders and decoders; Excitation codebook search – state-save method, zero-input zero-state method; CELP based on adaptive codebook, Adaptive Codebooksearch; Low Delay CELP and algebraic CELP. Speech Coding Standards-An overview of ITU-T G.726, G.728 and G.729 standards

Total Hours 45Hours

Text Book(s)

- "Digital Speech" by A.M.Kondoz, Second Edition, Wiley, 2004.
- "Speech Coding Algorithms: Foundation and Evolution of Standardized Coders", W.C. Chu, Wiley Inter science, 2003.

Reference Book(s)

Ben Gold And Nelson Morgan, "Speech And Audio Signal Processing, Processing AndPerception Of Speech And Music", Wiley- India Edition, 2006.

Course Code		L	T	P	С	IA	EA	TM	
Course Name	HIGH SPEED ELECTRONICS	3	0	0	3	40	60	100	
Course	PROFESSIONAL ELECTIVE		Syllab	us Re	vision		V	7.1.0	
Categoy	COURSE -IV								
Pre-requisite	Basic Knowledge in Electronic Circuits and Transmission Lines								

Course Objectives:

- 1. To understand the importance of high-speed electronics circuits in various applications.
- 2. To learn the characteristics of various components used in high speed electronics
- 3. To implement the design of High-speed electronic system using those components.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcmoes		Bloom's
		Taxonomy
	Understand significance and the areas of application of high-speed electronics circuits.	K2
	Understand the properties of various components used in high speed electronics	K2
CO3	Design High-speed electronic system using appropriate components.	K2

COs					Progr	amOut	comes	(POs)					S _I	rograi pecific utcom (PSOs)	es
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	L	S	M	-	-	-	-	-	-	-	-	-	M	-	-
CO2	M	L			-	-	-	-	-	-	-	L	L	-	-
CO3	S	L	S	-	-	-	-	-	-	-	-	L	M	L	

UNIT-I	TRANSMISSION LINE THEORY CROSSTALK AND NONIDEAL	9Hours

				EFFE	CIS						
frequenc		elivery, me	nckages, vias, ethodologies								_
UNIT-I	I			DEV	CES					91	Hours
Passive a	nd active,	Lumped pas	ssive devices (models), Act	ive (m	odels,	low vs	s. high	frequ	ency	
UNIT-I	II			RF AMF	LIFIER	R				91	Hours
	rs,Class A, itput stage	B,AB andC	oise Amplific C, D E Integra Jpconversion	ted circuit re	alizatio	ons, C	ross-o	ver dis	tortio	n Effic	eiency RF
UNIT-I	V			PRINC	IPLES					91	Hours
fabricatio	on,Microvi		Printed Circ Board Assemblallenges		•	•				U	
UNIT-V	7			NOISE AI	NALYS	IS				91	Hours
Sources, modulati	Noise I	O	ain compres	sion, Harm	onic	distor	tion,	Inter	-modu	lation	, Cross-
							,	Total 1	Hours	45	5Hours
1. Step	, ,	all Carrett	W. Hall, Jame	as A McCall	'High-	Speed	Digital	Sycto	m Deci	ian: Al	Handbook
1 1 -	-		Design Practic		·	-	U	•	iii Desi	igii. 7ti	Tangook
2. The 200		:, "The Desig	n of CMOS Ra	dio-Frequency	Integr	ated C	ircuits'	', Caml	oridgeU	Jnivers	ity Press,
3. Beh	ızad Razavi	, "RF Microe	electronics", Pro	entice-Hall 19	98						
Course	Code				L	T	P	С	IA	EA	TM

Course Name	BIO-MEDICAL ELECTRONICS	3	0	0	3	40	60	100
Course Categoy	PROFESSIONAL ELECTIVE COURSE -V		Syl	llabus	Revis	ion		V.1.0
Pre-requisite	Basic Knowledge in Electronic Devices an	nd Circ	uits					

Course Objectives:

- 1. To learn the electrical and non-electrical physiological measurements
- 2. To understand the function of bio amplifiers.
- 3. To know the configuration of various electrodes

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Perform electrical and non-electrical physiological measurements	K2
CO2	Explain the function of bio amplifiers.	К2

COs					Progr	ramOut	comes	(POs)					S _I	rograi pecific utcom (PSOs)	es
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	M	L	-	-	S	L	-	M	-	S	M	M	L	S
CO2	S	L	M	-	-	S		-	M	-	M	M	M	L	S

SCSVMV	Curriculum (2025-20) onwarus	
UNIT-I	BIO POTENTIAL ELECTRODES	9Hours
Origin of b	io potential and its propagation, Electrode-electrolyte interface, electrode-skin	interface, half
cellpotential	impedance, polarization effects of electrode - non polarizable electrodes. Types	ofelectrodes -
surface,need	le and micro electrodes and their equivalent circuits, Recording problems - measurer	ment with two
electrodes		
UNIT-II	ELECTRODE CONFIGURATIONS	9Hours
Bio signals	characteristics – frequency and amplitude ranges. ECG – Einthoven's triangle, st	andard 12lead
system.EEG	– 10-20 electrode system, unipolar, bipolar and average mode, EMG– unipolar andbip	olar mode
UNIT-III	BIO AMPLIFIER	9Hours
UNII-III	DIO AIVIT LITTER	FITOUIS
Need for bio	-amplifier - single ended bio-amplifier, differential bio-amplifier - right leg driven	ECGamplifier.
Bandpass fil	tering, isolation amplifiers – transformer and optical isolation - isolated DC amp	olifier and AC
carrierampli	fier. Chopper amplifier, Power line interference	
UNIT-IV	MEASUREMENT OF NON-ELECTRICAL PARAMETERS	9Hours
Temperature	respiration rate and pulse rate measurements. Blood Pressure: indirect methods	- auscultatory
-	lometric method, direct methods: electronic manometer, Pressure amplifiers- syst	•
	or circuit. Blood flow and cardiac output measurement: Indicator dilution, thermaldi	
	hod, Electromagnetic and ultrasound blood flow measurement.	·
UNIT-V	BIO-CHEMICAL MEASUREMENT	9Hours
D: 1 : 1	II OD 1 COD I 1 C PULL OF THE COMPANY	1 1 11
	sensors - pH, pO2 and pCO2, Ion selective Field effect Transistor (ISFET), im	
	(IMFET), Blood glucose sensors - Blood gas analyzers, colorimeter, flame ometer, blood cell counter, auto analyzer (simplified schematic description).	photometer,
эрссиорнос	ineter, brood een counter, auto anaryzer (simplinet senematic description).	
	Total Hours	45Hours
TextBook	(\mathbf{s})	
1. John C	G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons,2004.	
2. Khand	our R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, 2003.	
Reference		
1. Leslie	Cromwell, "Biomedical Instrumentation and measurement", PHI, 2007.	

Myer Kutz, "Standard Handbook of Biomedical Engineering and Design", McGrawHill,2003.

Course Code		L	T	P	С	IA	EA	TM
Course Name	ADAPTIVE SIGNAL PROCESSING	3	0	0	3	40	60	100
Course	PROFESSIONAL ELECTIVE		Syllab	ous Re	vision		V	7.1.0
Categoy	COURSE -V							
Pre-requisite	Basic Knowledge in Signals & Systems a	nd Digit	al Sign	al Proc	essing			

Course Objectives:

- 1. To learn the significance of real time changing control parameters.
- 2. To understand the representation of 'adaptability requirement'.
- 3. To understand the mathematical modelling of various signal processing systems.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcmoes		Bloom's
		Taxonomy
	Understand the non-linear control and the need and significance of changing the controlparameters w.r.t. real-time situation.	К3
CO2	Mathematically represent the 'adaptability requirement'.	K2
	Understand the mathematical treatment for the modelling and design of the signal processingsystems.	К3

COs	ProgramOutcomes(POs)														Program Specific Outcomes (PSOs)		
	PO	PO											PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03		
CO1	S	M	L	L	L	L	-	-	-	-	-	-	M	-	-		
CO2	S M L M L L									M	-	-					
CO3	S	L	M	S	L	L	-	-	-	-	-	-	S	-	-		

UNIT-I	INTRODUCTION TO ASP	9Hours
_	t of adaptive filtering and estimation, applications and motivation, Review of and stationary random processes, Correlation structures, properties of correlation	
UNIT-II	LMS AND FILTERS	9Hours
-	Viener) filter, Method of steepest descent, extension to complex valued The LI convergence analysis, weight error correlation matrix, excess mean squareerr	Ü
UNIT-III	LMS ALGORITHM	9Hours
basedrealization introduction tof nullity, inner pr	e LMS algorithm the sign LMS family, normalized LMS algorithm, block Line, frequency domain adaptive filters, Sub-band adaptive filtering. Signal space finite dimensional vector space theory, subspace, basis, dimension, linear operate oductspace, orthogonality, Gram Schmidt orthogonalization, concepts of orthogonaposition of vector spaces.	e concepts - ors, rank and
UNIT-IV	RANDOM VARIABLES	9Hours
latticefilters, rec	random variables, correlation as inner product, forward and backward projection cursive updating of forward and backward prediction errors, relationship with Amator, gradient adaptive lattice.	
UNIT-V	INTRODUCTION TO RECURSIVE LEAST SQUARES	9Hours
products,develo	formulation of RLS estimation, pseudo inverse of a matrix, time updati pment of RLS lattice filters, RLS transversal adaptive filters. Advanced topics: afted adaptive filters, partial update algorithms, QR decomposition and systolic array.	O
	Total Hours	45Hours
TextBook(s)		
1. S. Haykin	, Adaptive filter theory, Prentice Hall, 1986.	
2. C.Widrov	v and S.D. Stearns, Adaptive signal processing, Prentice Hall, 1984.	
3. Adaptive	Signal Processing, Bernie Widrow and Stearns, Prentice Hall	
4. Fundamei	ntals of Adaptive Filtering, Ali Sayed, Wiley, 2003	

Course Code		L	T	P	С	IA	EA	TM
Course Name	RF DESIGN	3	0	0	3	40	60	100
Course Categoy	PROFESSIONAL ELECTIVE COURSE -V		Sy	llabus	Revis	ion		V.1.0
Pre-requisite	Basic knowledge of Electronic Circuits a	nd Micı	rowave	Engin	eering			

Course Objectives:

- 1. To understand the characteristics of active/passive RF devices and components.
- 2. To learn the characteristics of RF filters.
- 3. To learn the design of RF amplifiers and Oscillators.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Use the active/ passive RF devices and components for various applications.	К2
CO2	Analyze the RF filter and Oscillator design.	К2

COs	ProgramOutcomes(POs)													Program Specific Outcomes (PSOs)			
	PO	PO											PS	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03		
CO1	S	S M M M - L L - M										M	M	L			
CO2	M	M	M	M	-	L	-	-	1	L	1	M	S	M	L		

UNIT-I	RF ISSUES	9Hours
-	RF design, Electromagnetic Spectrum, RF behaviour of passive components, rd considerations, Scattering Parameters, Smith Chart and applications	Chip components
UNIT-II	RF FILTER DESIGN	9Hours
Overview, Basi filter.	c resonator and filter configuration, Special filter realizations, Filter implementations	entations, Coupled
UNIT-III	ACTIVE RF COMPONENTS & APPLICATIONS	9Hours
RF diodes, B	 JT, RF FETs, High electron mobility transistors; Matching and Bias	sing Networks -
-	ching using discrete components, Micro-strip line matching networks, Ai iasing networks	mplifier classes of
-		mplifier classes of 9Hours
UNIT-IV Characteristics,	iasing networks	9Hours
UNIT-IV Characteristics,	RF AMPLIFIER DESIGNS Amplifier power relations, Stability considerations, Constant gain circles,	9Hours
UNIT-IV Characteristics, circles, Low Noi UNIT-V Basic Oscillato	RF AMPLIFIER DESIGNS Amplifier power relations, Stability considerations, Constant gain circles, is circuits, Broadband, high power and multistage amplifiers.	9Hours Constant VSWF 9Hours of Mixers; Phase
UNIT-IV Characteristics, circles, Low Noi UNIT-V Basic Oscillato	Amplifier power relations, Stability considerations, Constant gain circles, is circuits, Broadband, high power and multistage amplifiers. OSCILLATORS, MIXERS & APPLICATIONS or model, High frequency oscillator configuration, Basic characteristics	9Hours Of Mixers; Phase
UNIT-IV Characteristics, circles, Low Noi UNIT-V Basic Oscillato Locked Loops; F Text Book(s) 1. Reinhold	Amplifier power relations, Stability considerations, Constant gain circles, ise circuits, Broadband, high power and multistage amplifiers. OSCILLATORS, MIXERS & APPLICATIONS or model, High frequency oscillator configuration, Basic characteristics RF directional couplers and hybrid couplers; Detector and demodulator circuits. Total Hold	9Hours Constant VSWE 9Hours of Mixers; Phase
UNIT-IV Characteristics, circles, Low Noi UNIT-V Basic Oscillato LockedLoops; F Text Book(s) 1. Reinhold Asia, Firs	RF AMPLIFIER DESIGNS Amplifier power relations, Stability considerations, Constant gain circles, is e circuits, Broadband, high power and multistage amplifiers. OSCILLATORS, MIXERS & APPLICATIONS or model, High frequency oscillator configuration, Basic characteristics and directional couplers and hybrid couplers; Detector and demodulator circuits. Total Ho	9Hours Constant VSWE 9Hours of Mixers; Phase
UNIT-IV Characteristics, circles, Low Noi UNIT-V Basic Oscillato Locked Loops; F Text Book(s) 1. Reinhold Asia, Firs 2. Pozar, M Reference Bo	Amplifier power relations, Stability considerations, Constant gain circles, is ecircuits, Broadband, high power and multistage amplifiers. OSCILLATORS, MIXERS & APPLICATIONS or model, High frequency oscillator configuration, Basic characteristics of directional couplers and hybrid couplers; Detector and demodulator circuits. Total Hold de Ludwig and Powel Bretchko, RF Circuit Design – Theory and Applications, at Edition, 2001. icrowave Engineering, John Wiley, Third Edition, 2004. book(s)	9Hours Constant VSWE 9Hours of Mixers; Phase
UNIT-IV Characteristics, circles, Low Noi UNIT-V Basic Oscillato Locked Loops; F Text Book(s) 1. Reinhold Asia, First 2. Pozar, M Reference Book	RF AMPLIFIER DESIGNS Amplifier power relations, Stability considerations, Constant gain circles, is ecircuits, Broadband, high power and multistage amplifiers. OSCILLATORS, MIXERS & APPLICATIONS or model, High frequency oscillator configuration, Basic characteristics of directional couplers and hybrid couplers; Detector and demodulator circuits. Total Hold Ludwig and Powel Bretchko, RF Circuit Design – Theory and Applications, at Edition, 2001. icrowave Engineering, John Wiley, Third Edition, 2004.	9Hours Constant VSWF 9Hours of Mixers; Phase

Course Code		L	T	P	C	IA	EA	TM
Course Name	NEURAL NETWORKS & FUZZYLOGIC	3	0	0	3	40	60	100
Course	PROFESSIONAL ELECTIVE		Syllab	ous Re	vision		V	7.1.0
Categoy	COURSE -VI							
Pre-requisite	Basic knowledge of Mathematics, Data Co	ommur	nicatio	n and N	Networ	ks		

Course Objectives:

- 1. To learn the various architectures of building an ANN and its applications
- 2. To learn advanced methods of representing information in ANN like self-organizing networks, associative and competitive learning
- 3. To learn the fundamentals of Crisp sets, Fuzzy sets and Fuzzy Relations

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcmoes		Bloom's
		Taxonomy
CO1	Learn the various architectures of building an ANN and its applications	К2
CO2	Learn the Fundamentals of Crisp sets, Fuzzy sets and Fuzzy Relations	K2

COs		ProgramOutcomes(POs)													m es)
	PO	PO											PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	M	S	M	S	L	-	-	-	-	-	L	L	S	M
CO2	S	M	S	S	M	M	-	-	-	-	-	L	M	S	L

UNIT-I	INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS	9Hours
Neuro-physiolo	gy - General Processing Element - ADALINE - LMS learning rule – MADA	LINE – XOR
Problem– MLP	- Back Propagation Network - updation of output andhidden layer weights - applic	ation of BPN.
UNIT-II	ASSOCIATIVE MEMORY & CPN	9Hours
	emory - Bi-directional Associative Memory – Hopfield memory - travelling, Boltzmann machine-learning–application-Counter Propagation network tions	
UNIT-III	SELF ORGANIZING MAP & ART	9Hours
0 0	map - learning algorithm - feature map classifier – applications - ance Theory - pattern matching in ART network	chitecture of
UNIT-IV	CRISP SETS AND FUZZY SETS	9Hours
	- Fuzzy logic- Operations on fuzzy sets - fuzzy complement – fuzzy un abinations of operations – general aggregation operations	mon – ruzzy
UNIT-V	FUZZY RELATIONS	9Hours
-	ly relations – binary relations – binary relations on a single set– equivalence atibility or tolerance relations– orderings – morphisms-fuzzy relation equations.	and similarity
	Total Hours	45Hours
Text Book(s)		
1. Freeman andProgr	J.A. and Skapura B.M., "Neural Networks, Algorithms ammingTechniques", Addison-Wesley, 1990.	Applications
2. George J	Klir and Tina A Folger," Fuzzy sets, uncertainty and information", PHI, 1988.	
3. Laurene l	Fausett, "Fundamentals of Neural Networks: Architecture, Algorithms and Applicati	ions", Pearson
Education	n, 1994.	
4. H.J. Zimr	nerman, "Fuzzy set theory and its Applications", Allied Publishers Ltd, 1996.	

Course Code		L	T	P	С	IA	EA	TM
Course Name	4G LTE CELLULAR SYSTEMS	3	0	0	3	40	60	100
Course Categoy	PROFESSIONAL ELECTIVE COURSE -VI		Syllabus Revision V.1.0					
Pre-requisite	Basic knowledge of Cellular Mobile Cor	nmunica	ation				•	

Course Objectives:

- 1. To categorize the current wireless cellular standards of LTE and LTE advanced.
- 2. To analyze the effective utilization of spectrum and RF requirements for LTE.
- 3. To discriminate the LTE Air Interface, OFDMA, MIMO, SDR and CoMP technology.
- 4. To describe the relay deployment and overview of WiMAX.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Describe the different standards of LTE and LTE –advanced such as SAE, EPC	K1
CO2	Discriminate 4G Technology.	К3
CO3	Differentiate relay schemes and compare LTE with WiMAX.	К3

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs		ProgramOutcomes(POs)											S _I	rograi pecific utcom (PSOs)	es
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	L	S	-	S	-	-	-	-	-	L	-	L	S	-	L
CO2	M	M	-	-	-	-	-	-	M	M	-	-	L	-	M
CO3	S	L	-	S	-	-	M	-	-		-	L	M	-	L

UNIT-I	STANDARDIZATION OF LTE	9Hours
SystemArchitect stack:NAS (Non RLC(Radio Linl	Partnership Project (3GPP); The 3G Evolution to 4G; Long Term Evolution ture Evolution (SAE), LTE and LTE-Advanced; LTE-Advanced E- UTRAN architecter - Access Stratum), RRC (Radio Resource Control), PDCP (Packet Data Convergence Control), MAC (Medium Access Control); Evolved Packet Stratum: Mobility erving Gateway (S- GW), Packet Data Network Gateway (PDN-GW).	ture; Protocol nce Protocol),
UNIT-II	SPECTRUM AND RF CHARACTERISTICS	9Hours
accessscheme; T	tion: LTE and LTE-Advanced carrier aggregation scenario; Control chann ransceiver architecture; Spectrum sharing; Research challenges: Transceiver desice management; Retransmission control; Overview of RF Requirements for LTE	_
UNIT-III	KEY 4G TECHNOLOGIES	9Hours
MIMO: Single- modes; Multi-U	WARE DEFINED RADIO, Enhanced MIMO, HANDOVER AND MOBILIT User MIMO (SU- MIMO): MIMO adaptive switching scheme. LTE- Advanced ser MIMO (MU-MIMO); Cooperative MIMO; Single- site MIMO: Advanced precedor transmission; Uplink MIMO transmission	l mainMIMC
UNIT-IV	COMP TRANSMISSION & RECEPTION	9Hours
Downlink, Upl	ure: Centralized architecture, Distributed architecture, Mixed architectures: The Coink, Relays: Relay basic scheme, Relay deployment scenarios; Types; Duplex RAN, Add-ons; BACKHAUL DESIGN FOR INBAND RELAYING.	
UNIT-V	LTE VS WIMAX	9Hours
WiMAX Overv LTEand WiMAX		
Text Book(s)	Total Hours	45Hours
` ′	nlman, Stefan Parkvall, John Skold, "4G: LTE Advanced for Mobile Broad	dband,Second
2. Erik Dahl	man, Stefan Parkvall, John Skold, "4G, LTE Advanced Pro and The Road to5G", 3rd	Edition.
Reference Bo		
1. Christoph 2012.	er Cox, Wiley, "An introduction to LTE: LTE Advanced, SAE and 4G MobileCon	nmunication

Course Code		L	T	P	C	IA	EA	TM
Course Name	ERROR CORRECTING CODES	3	0	0	3	40	60	100
Course Categoy	PROFESSIONAL ELECTIVE COURSE -VI		Syllabus Revision V.1.0					
Pre-requisite	Basic Knowledge of Analog and Digital	Commu	ınicatio	on				

Course Objectives:

- 1. To understand about the concepts of various types of error sources
- 2. To learn the error control coding techniques applied in the field of Digital Communication.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcmoes		Bloom's
		Taxonomy
CO1	Understand the error sources	K2
CO2	Understand error control coding applied in Digital Communication.	K2

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs		ProgramOutcomes(POs)										Program Specific Outcomes (PSOs)			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	M	S	M	-	1	-	-	1	-	L	L	S	M	L
CO2	S	M	S	M	-	ı	-	-	ı	-	L	L	S	M	L

UNIT-I	LINEAR BLOCK CODES	9Hours

Introduction- Mathematics of Binary Codes- Parity Checks- Systematic codes- Minimum Hamming Distance of alinear block code- How to Encode - Generator Matrix-Encoding with parity check matrix- Decoding with paritycheck matrix- Decoding by Standard Array- Codec Design for linear Block Codes- Modifications to Block CodesDorsch Algorithm Decoding, Syndrome decoding on symmetric channels- Hamming codes- Weight enumeratorand the McWilliams identities; Perfect codes, Introduction to finite fields and finite rings-factorization of (Xn-1)over a finite field.

UNIT-II	CYCLIC CODES	9Hours

Introduction- Definition of a cyclic code- Example of a cyclic code- Polynomial Representation- Encoding byconvolution- Establishing the cyclic property -Deducing the properties of a cyclic code-PrimitivePolynomialsSystematic Encoding of cyclic codes- Syndrome of a cyclic code- Implementation of Encoding- Decoding-Decoderoperation - Multiple Error Correction-Example of Multiple Error Correction-Shortened Cyclic codes- ExpurgatedCyclic codes-Cyclic codes for Burst -Error correction- Spectral properties of cyclic codes.

UNIT-III BCH CODES 9Hours

Introduction- Specifying Cyclic codes by roots-Definition of BCH codes-Construction of BCH codes-roots and parity check matrices- Algebraic Decoding- BCH Decoding and the BCH Bound- Decodingin the frequencydomainDecoding examples for binary BCH codes- Polynomial form of the key equation- Euclid's methodBerlekampMassey Algorithm- Massey's minimum shift register synthesistechnique and its relation to Berlekamp's algorithm- A fast Berlekamp - Massey algorithm.

UNIT-IV REED SOLOMON CODES 9Hours

Introduction- Generator Polynomial for a Reed Solomon Code-Time domain encoding for Reed Solomon CodeDecoding Reed Solomon Codes- Reed Solomon Code Decoding Example-Frequency Domain Encoded ReedSolomon Code-Erasure Decoding- Generalized Minimum Distance Decoding-Welch-Berlekamp Algorithm- SinglyExtended Reed Solomon Codes-Doubly Extended Reed Solomon Codes- Justeen codes, MDS codes, Alterant, Goppa codes

UNIT-V CONVOLUTION CODES 9Hours

Introduction- General properties of Convolutional codes- Generator Polynomials – Terminology- Encoder StateDiagram- Distance Structure of Convolutional codes-Evaluating Distance and weight Structures-MaximumLikelihood Decoding- Viterbi Algorithm- General properties –Example of viterbi decoding- issues arising- Practicalimplementations of viterbi decoding-Performance of Convolutional codes- Good Convolutional codes- puncturedConvolutional codes- Applications of Convolutional codes- codes for multilevel modulations-Wozencraft'ssequential decoding algorithm, Fann's algorithm.

	Total Hours 45Hours
Tex	t Book(s)
1.	F.J. McWilliams and N.J.A. Slone, "The theory of error correcting codes", 1977.
2.	R.E. Balahut, "Theory and practice of error control codes", Addison Wesley, 1983
3.	Peter Sweeney, "Error Control Coding from theory to practice", John Wiley & Sons ltd, 2002.
4.	Shu Lin and D.J. Costello Jr., "Error Control Coding", Prentice Hall, 1983.

Course Code		L	T	P	С	IA	EA	TM
Course Name	VLSI TESTING	3	0	0	3	40	60	100
Course	PROFESSIONAL		Sy	llabus	Revis	ion		V.1.0
Categoy	ELECTIVE COURSE -VI							
Pre-requisite Basic knowledge of Electronic Circuits and Microwave Engineering								

Course Objectives:

- 1. To understand the basics of testing and the testing equipments in VLSI
- 2. To understand the different testing methods in VLSI

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Explain different testing equipments.	K2
CO2	Design the different testing schemes for a circuit.	K2
CO3	Discuss the need for test process	К3

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs	ProgramOutcomes(POs)											S _I	rograi pecific utcom (PSOs)	es	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	S	-	-	L	-	-	-	1	-	-	L	L	-	S
CO2	S	S	L	M	M	-	_	_	-	-	-	L	M	M	S
CO3	S	S	L	M	M	-	_	_	-	_	-	L	M	M	S

UNIT-I	INTRODUCTION	9Hours
Test process and	l automatic test equipment, test economics and product quality, fault modelling	
UNIT-II	DIGITAL TESTING	9Hours
Logic and fault s	simulation, testability measures, combinational and sequential circuit test generation	1.
UNIT-III	ANALOG TESTING	9Hours
Memory Test, D test,IIDQ test.	SP Based Analog and Mixed Signal Test, Model based analog and mixed signal test,	delay
TINITED TO	DEGLEST DOD MEGET VITALIA	OII
UNIT-IV	DESIGN FOR TESTABILITY	9Hours
testbus, Functio	t, Scan chain design, Random Logic BIST, Memory BIST, Boundary scan test standar nal Microprocessor Test, Fault Dictionary, Diagnostic Tree, Testable System Design, d Test Wrapper Design, Test design for SOCs.	J
UNIT-V	LOADED BOARD TESTING	9Hours
Unpowered sho	rt circuit tests, unpowered analog tests, Powered in-circuit analog, digital and mixed	l signal
tests,optical and	X-ray inspection procedures, functional block level design of in-circuit test equipm	ent
Text Book(s)	Total Hours	45Hours
	L. Bushnell and Vishwani D. Agarwal, "Essentials of Electronic Testing for Digital, N	/ Memory
	Signal VLSI Circuits", Springer, 2006.	
Reference Bo	• •	
1. Dimitris (Gizopouilos, "Advances in Electronic Testing", Springer, 2006	

Course Code		L	T	P	С	IA	EA	TM
Course Name	SATELLITE COMMUNICATION	3	0	0	3	40	60	100
Course	PROFESSIONAL		Syllab	ous Re	vision	Į.	V	7.1.0
Categoy	ELECTIVE COURSE -VII							
Pre-requisite	Basic knowledge of Antennas and Digit	al Comn	nunicat	ion				

Course Objectives:

- 1. To understand the basics of satellite orbits.
- 2. To understand the satellite segment and earth segment.
- 3. To analyze the various methods of satellite access.
- 4. To understand the applications of satellites

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcmoes		Bloom's
		Taxonomy
CO1	Analyze the satellite orbits.	К2
CO2	Analyze the earth segment and space segment.	К2
CO3	Design various satellite applications.	K2

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs		ProgramOutcomes(POs)								Sp O	rograi pecific utcom (PSOs)	es			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	M	M	-	-	-	-	-	-	-	-	-	M	L	-
CO2	M	S	M	-	M	-	-	-	-	-	-	L	M	M	L
CO3	S	S	S	L	L	-	-	-	-	-	-	-	L	L	L

UNIT-	I	SATELLITE ORBITS	9Hours
nonGeo-	stationa	Newton's law, orbital parameters, orbital perturbations, station keeping, geo stary orbits – Look Angle Determination- Limits of visibility –eclipse- Sub satellit unching Procedures - launch vehicles and propulsion.	•
UNIT-	II	SPACE SEGMENT AND SATELLITE LINK DESIGN	9Hours
Propulsi Uplink	on,Com andDow ents-Sys	nnology- Structure, Primary power, Attitude and Orbit control, Thermal munication Payload and supporting subsystems, Telemetry, Tracking and commonlink Analysis and Design, Link Power Budget, C/N calculation, G/T ratio stemnoise, Inter-modulation Noise, Noise Temperature, Propagation Factors, Ition.	and. Satellite -Performance
UNIT-	Ш	EARTH SEGMENT	9Hours
Master a	antenna	Receive – Only home TV systems (TVRO) – Outdoor UNIT – Indoor UNIT for ana TV system (MATV) – Community Antenna TV system (CATV) – Transmittennas, Terrestrial Interface, Equipment Measurements on G/T,C/N, EIRP, Antenna	it – Receive
UNIT-	IV	SATELLITE ACCESS	9Hours
Broadcas	st,multip	d Multiplexing: Voice, Data, Video, Analog – digital transmission system, lole access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum concryption.	•
UNIT-	V	SATELLITE APPLICATIONS	9Hours
Satellitel broadcas	Navigati t(DAB)	ies, INSAT, VSAT, Mobile satellite services: GSM, GPS, INMARSAT, onal System. Direct Broadcast satellites (DBS)- Direct to home Broadcast (DTH), - World space services, Business TV (BTV), GRAMSAT, Specialized services ing, Internet.	Digital audio
		Total Hours	45Hours
Text B	ook(s)		I
1. D	ennis R	oddy, "Satellite Communication", Fourth Edition, McGraw Hill, 2006.	
	ilbur ommuni	L.Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, cationSystemsEngineering", Prentice Hall, 2007.	"Satellite
3. N	. Agarw	ral, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.	
4. M			

Course Code		L	T	P	C	IA	EA	TM
Course Name	RADAR AND NAVIGATIONAL AIDS	3	0	0	3	40	60	100
Course	PROFESSIONAL		Sy	llabus	Revis	ion		V.1.0
Categoy	ELECTIVE COURSE -VII							
Pre-requisite	Basic knowledge of Antenna Propagation	and D	igital c	ommu	nicatio	n	•	

Course Objectives:

- 1. To understand Doppler principle for target detection in Radars
- 2. To understand Principles of antennas and propagation related to radars along with studyof transmitters andreceivers.
- 3. To understand principles of navigation, in addition to approach and landing aids related to navigation

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Explain the principles of navigation	К2
CO2	Derive and discuss the range equation and nature of detection	К2

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs		ProgramOutcomes(POs)									S _I	rograi pecific utcom (PSOs)	es		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	M	M	M	L	L	-	-	-	-	-	L	L	S	M
CO2	S	S	S	S	M	L	-	-	-	-	-	L	L	S	M

	UNIT-I	INTRODUCTION TO RADAR EQUATION	9Hours
--	--------	--------------------------------	--------

Introduction- Basic Radar – The simple form of the Radar Equation- Radar Block Diagram- Radar Frequencies—Applications of Radar – The Origins of Radar - Detection of Signals in Noise- Receiver Noise and the SignaltNoise Ratio-Probability Density Functions- Probabilities of Detection and False Alarm- Integration of RadarPulses- Radar Cross Section of Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse RepetitionFrequency- Antenna Parameters- System losses – Other Radar Equation Considerations.

UNIT-II 9Hours MTI AND PULSE DOPPLER RADAR

Introduction to Doppler and MTI Radar- Delay -Line Cancellers- Staggered Pulse Repetition Frequencies DopplerFilter Banks - Digital MTI Processing - Moving Target Detector - Limitations to MTI Performance - MTI froma Moving Platform (AMIT) – Pulse Doppler Radar – Other Doppler Radar Topics- Tracking with Radar – Monopulse Tracking –Conical Scan and Sequential Lobing – Limitations to Tracking Accuracy - Low-AngleTracking - Tracking in Range - Other Tracking Radar Topics - Comparison of Trackers - Automatic Trackingwith Surveillance Radars(ADT).

UNIT-III **DETECTION OF SIGNALS IN NOISE** 9Hours

Matched –Filter Receiver –Detection Criteria – Detectors –-Automatic Detector - Integrators - Constant-FalseAlarm Rate Receivers - The Radar operator - Signal Management - Propagation Radar Waves AtmosphericRefraction -Standard propagation - Nonstandard Propagation - The Radar Antenna - Reflector Antennas -Electronically Steered Phased Array Antennas – Phase Shifters- Frequency-Scan Arrays Radar Transmitters and Receivers - Introduction -Linear Beam Power Tubes - Solid State RF Power Sources Magnetron – CrossedField Amplifiers -Other RF Power Sources – Other aspects of Radar Transmitter.- The Radar Receiver -Receivernoise Figure – Super heterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

UNIT-IV 9Hours RADIO DIRECTION AND RANGES

Introduction - Four methods of Navigation.- The Loop Antenna - Loop Input Circuits - An Aural Null DirectionFinder - The Goniometer - Errors in Direction Finding - Adcock Direction Finders - Direction Finding at VeryHigh Frequencies - Automatic Direction Finders – The Commutated Aerial Direction Finder - Range and Accuracyof Direction Finders - The LF/MF Four course Radio Range - VHF Omni Directional Range (VOR) -VORReceiving Equipment - Range and Accuracy of VOR – Recent Developments. Hyperbolic Systems of Navigation(Loran and Decca) - Loran-A - Loran-A Equipment - Range and precision of Standard Loran - Loran-C - The DeccaNavigation System -Decca Receivers - Range and Accuracy of Decca - The Omega System

UNIT-V 9Hours SATELLITE NAVIGATION SYSTEM

Distance Measuring Equipment - Operation of DME - TACAN - TACAN Equipment – Instrument LandingSystem - Ground Controlled Approach System - Microwave Landing System (MLS) The Doppler Effect BeamConfigurations -Doppler Frequency Equations – Track Stabilization - Doppler Spectrum - Components of theDoppler Navigation System - Doppler range Equation - Accuracy of Doppler Navigation Systems. InertialNavigation - Principles of Operation - Navigation over the Earth – Components of an Inertial Navigation System -Earth Coordinate Mechanization - Strapped- Down Systems - Accuracy of Inertial Navigation Systems-The Transit

Systen	n - Navistar Global Positioning System (GPS).		
		Total Hours	45Hours
Text	Book(s)		
1.	Merrill I. Skolnik," Introduction to Radar Systems", 3rd Edition, McGraw-Hill, 2003.		
2.	N.S. Nagaraja, "Elements of Electronic Navigation Systems", 2nd Edition, TMH, 2000.		
Refe	rence Book(s)		
1.	J.C Toomay, "Principles of Radar", 2nd Edition, PHI, 2004.		

Course Code		L	T	P	С	IA	EA	TM
Course Name	WAVELET AND ITS	3	0	0	3	40	60	100
	APPLICATIONS							
Course Category	PROFESSIONAL ELECTIVE		Syllabus Revision					
	COURSE -VII		•					
Pre-requisite	Basic knowledge of Signals & Systems	sic knowledge of Signals & Systems and Digital Signal Processing						

Course Objectives:

The course should enable the students

- 1. To understand the fundamentals of Wavelet Transform
- 2. To learn the multi-resolution analysis technique with respect to WT
- 3. To know the characteristics of types of wavelet transforms and their applications

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Understand the fundamentals of Wavelet Transform	K2
CO2	Implement the multiresolution analysis technique with respect to WT	К3
CO3	Understand the characteristics of Wavelet Transforms and their applications	К3

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

COs		ProgramOutcomes(POs) ProgramOutcomes(POs) (PSOs											omes	Specific	
COS	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	S	S	M	L	S	-	-	-	-	-	-	S	S	S	L
CO2	S	S	M	L	S	-	-	-	-	-	-	S	S	M	L
CO3	S	S	M	L	S	-	-	-	-	-	-	S	M	L	-

UNIT-I	FUNDAMENTALS OF WAVELET TRANSFORMS	9Hours

Vector Spaces – Properties– Dot Product – Basis – Dimension, Orthogonality and Orthonormality – RelationshipBetween Vectors and Signals – Signal Spaces – Concept of Convergence – Hilbert Spaces for Energy SignalsFourier Theory: Fourier series expansion, Fourier transform, Short time Fourier transform, Time-frequency analysis.

UNIT-II MULTI RESOLUTION ANALYSIS 9Hours

Definition of Multi Resolution Analysis (MRA) – Haar Basis – Construction of General OrthonormalMRA – Wavelet Basis for MRA – Continuous Time MRA Interpretation for the DTWT – Discrete Time MRA – BasisFunctions for the DTWT – PRQMF Filter Banks.

UNIT-III CONTINUOUS WAVELET TRANSFORMS 9Hours

Wavelet Transform – Definition and Properties – Concept of Scale and its Relation with Frequency – ContinuousWavelet Transform (CWT) – Scaling Function and Wavelet Functions (Daubechies Coiflet, Mexican Hat, Sinc,Gaussian, Bi Orthogonal) – Tiling of Time – Scale Plane for CWT.

UNIT-IV DISCRETE WAVELET TRANSFORM 9Hours

Filter Bank and Sub Band Coding Principles – Wavelet Filters – Inverse DWT Computation by FilterBanks – BasicProperties of Filter Coefficients – Choice of Wavelet Function Coefficients – Derivations of Daubechies Wavelets– Mallat's Algorithm for DWT – Multi Band Wavelet Transforms Lifting Scheme- Wavelet Transform UsingPolyphase Matrix Factorization – GeometricalFoundations of Lifting Scheme – Lifting Scheme in Z – Domain.

UNIT-V APPLICATIONS 9Hours

Wavelet methods for signal processing- Image Compression Techniques: EZW–SPHIT Coding – Image DenoisingTechniques: Noise Estimation – Shrinkage Rules – Shrinkage Functions – Edge Detection and Object Isolation,Image Fusion, and Object Detection.

Total Hours 45Hours

Text Book(s)

- 1. R. Rao R M and A S Bopardikar, "Wavelet Transforms Introduction to theory and Applications", Pearson Education, Asia, 2000.
- 2. L.Prasad&S.S.Iyengar, "Wavelet Analysis with Applications to Image Processing", CRCPress, 1997.

Reference Book(s)

- 1. Stephen G. Mallat, "A wavelet tour of signal processing" 2 nd Edition Academic Press, 2000
- 2. Stephen G. Mallat, "A wavelet tour of signal processing" 2 nd Edition Academic Press, 2000.

Course Code		L	T	P	С	IA	EA	TM
Course Name	SOFTWARE DEFINED	3	0	0	3	40	60	100
	RADIO							
Course Category	PROFESSIONAL ELECTIVE		Syllab	us Revi	sion		V	.1.0
	COURSE-VII							
Pre-requisite	Analog & Digital Communication							

Course Objectives:

Thecourseshould enablethestudents

- 1. To understand Software Defined radio Architectures and design principles.
- 2. To learn radio frequency implementation components, functions and capabilities.
- 3. To discussmultirate signal processing and digital generation of signals.
- 4. To acquire knowledge on Data converter sand Smart Antennas in SDR.
- 5. Tol earn the digital Hardware and Software methods for SDR

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcome		Bloom's
S		Taxonomy
CO1	Demonstrate the understanding of software defined radio architecture	K2
	And design principles.	
CO2	Design and demonstrate on Radio frequency implementation issues.	К3
CO3	Implement smart antennas in SDR.	К3
CO4	Analyze complex problem scritically in the domain of SDR using Smart	К3
	Antenna techniques.	
CO5	Analyze complex problems critically in the domain of SDR using Smart	К3
	Antenna techniques.	

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

														Program		
		ProgramOutcomes(POs)											Specific			
COs		rrogramOutcomes(POs)											Outcomes			
COS													((PSOs)		
	PO	PO										PS	PS	PS		
	1 2 3 4 5 6 7 8 9 10 11 12									O1	O2	O3				
CO1	S	S	S	M	M	-	-	-	L	L	M	M	S	M	L	
CO2	S	S	S	M	M	-	-	-	L	L	M	M	S	M	L	
CO3	S	S	S	M	M	-	-	-	L	L	M	M	S	M	L	
CO4	S	S S S M L L L M M											S	M	L	
CO5	S	S	S	M	S	-	-	-	L	M	M	M	S	M	L	

UNIT	-I	INTRODUCTIONTOS OF TWARE RADIO CONCEPTS	9Hours
Evolu	tion, Need	d, Goals, Characteristics, benefits, definitions and architectures of Software Define	d
	_	rinciples; Relations with other radios, issues, enabling technologies, radio frequenc	су
Spect	rum and r	egulations.	
UNIT		RADIO FREQUENCY IMPLEMENTATION	9Hours
_	•	the RF FrontEnd, Dynamic Range, RF receivers frontend Topologies, Importance of t	
_		Overall performance, Transmitter Architecture, Noise and Distortion in the RF Chain, A, Flexible RF systems using MEMS.	ADC and
DAC	Distortion	, Flexible KI systems using MEMB.	
T 13 17/1		AND THE GLOVEL PROGESSIVE AND DEGLEVE	077
UNIT	-1111	MULTIRATE SIGNAL PROCESSING AND DIGITAL	9Hours
-	1 .	GENERATION OF SIGNALS	14.
_		version principles. Digital filter Banks. Timing recovery in Digital Receivers using M	ultirate
_		approach esto Direct Digital Synthesis .Analysis of spurious signal Bandpass on, Generation of Random sequences.	
Signa	generatio	ni,Generation of Random sequences.	
***			077
UNIT		DATA CONVERTERS AND SMART ANTENNAS	9Hours
		leal and practical Data Converters, Techniques to Improve Data Converter performance	ce, Common
ADC	allu DAC	Architectures. Smart Antennas-Hardware implementation of Smart Antennas.	
TINITE	1 T 7	DIGITAL HADDWADE AND COPTIVIADE CHOICES	OTT
UNIT		DIGITAL HARDWARE AND SOFTWARE CHOICES	9Hours
USRF		, FPGA, ASICs. Trade offs, Object oriented programming, Object Brokers, GNU Radi	10-
USKP	<u>. </u>		
		(D. 4.1 VI	4511
To4 1	Daal-(a)	Total Hours	45Hours
	Book(s)	Dood "Coftware Dodies American America has Dodie Engineering Departies Hell	
1.	2002.	Reed,"Software Radio:Amodern Approach to Radio Engineering, Prentice Hall,	
2		Mitale "Coftware Dadie Aughitecture Object Oriented Augustales to Window Creater	
2.	•	Mitola, "Software RadioArchitecture:Object Oriented Approaches to Wireless Systeming", Wiley-Interscience; IEdition 2000.	
D - C		<u> </u>	
	ence Book	·	
1.	•	puphael, "RFandDSPforSDR," ElsevierNewnesPress, 2008.	
2.		nugavel, M.A. Bhagyaveni, R. Kalidoss, "Cognitive Radio-An Enabler for Internet of	
	_	River Publishers, 2017, Modems", John Wiley & Sons, 2000.	
3.		rns, "Software Defined Radio for 3G,"ArtechHouse, 2002.	_
4.	P.Kening	gton, "RF and Baseb and Techniques for Software Defined Radio," ArtechHouse, 2005	5.

LIST OF OPEN ELECTIVE

COURSES (OEC)

Course Code		L	T	P	С	IA	EA	TM
Course Name	DISASTER MANAGEMENT	3	0	0	3	40	60	100
Course	OPEN ELECTIVE		Syllab	ous Re	vision	U	V	7.1.0
Categoy	COURSE-I							
Pre-requisite	Basic Knowledge of Environmental S	cience						

Course Objectives:

- 1. To provide students an exposure to disasters, their significance and types.
- 2. To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- 3. To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- 4. To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

Course Outcomes:

On completion of the course, the student will be able to

Course Outcmoes	Description	Highest Bloom's Taxonomy
CO1	Differentiate the types of disasters, causes and their impact on environment and society	K2
CO2	Assess vulnerability and various methods of risk reduction measures as well as mitigation.	K 2
CO3	Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disasterdamage assessment	К3

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs	ProgramOutcomes(POs)										S _I	Program Specific Outcomes (PSOs)			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	-	-	-	-	M	S	-	M	-	-	-	-	M	-	L
CO2	L	-	-	-	-	-	-	M	S	S	S	-	L	-	M
CO3	L	M										-	M	-	L

UNIT-I	INTRODUCTION TO DISASTERS	9Hours
Earthquake,Land political,environ location,disabilit	saster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of dslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social mental, health, psychosocial, etc Differential impacts- in terms of caste, class, by – Global trends in disasters: urban disasters, pandemics, complex emergent Don'ts during various types of Disasters.	al, economic, gender, age,
UNIT-II	APPROACHES TO DISASTER RISK REDUCTION (DRR)	9Hours
DRR,Structural- Institutions/Urb Framework at St	- Phases, Culture of safety, prevention, mitigation and preparedness common structural measures, Roles and responsibilities of-community, ParanLocal Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Exteand Central Level-State Disaster Management Authority (SDMA) — Early Warr Appropriate Agencies.	nchayati Raj Processes and
UNIT-III	INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT	9Hours
dams,embankme	ng Vulnerabilities, differential impacts, impact of Development projectents, changes in Land-use etc Climate Change Adaptation- IPCC Scenario and Scere Relevance of indigenous knowledge, appropriate technology and local resources.	
UNIT-IV	DISASTER RISK MANAGEMENT IN INDIA	9Hours
Hazard and Vul Health,Waste Management Ad Information Ted	DISASTER RISK MANAGEMENT IN INDIA Inerability profile of India, Components of Disaster Relief: Water, Food, Sanita Management, Institutional arrangements (Mitigation, Response and Prepared et and Policy - Other related policies, plans, programmes and legislation – Role chnologyComponents in Preparedness, Risk Assessment, Response and Recove er DamageAssessment.	tion, Shelter, less, Disaster e of GIS and
Hazard and Vul Health,Waste Management Ad Information Ted	Inerability profile of India, Components of Disaster Relief: Water, Food, Sanita Management, Institutional arrangements (Mitigation, Response andPreparednetand Policy - Other related policies, plans, programmes and legislation – Role ChnologyComponents in Preparedness, Risk Assessment, Response and Recovery	tion, Shelter, less, Disaster e of GIS and
Hazard and Vul Health, Waste Management Ad Information Ted Disaster – Disast UNIT-V Landslide Hazar Case Studies, Dr Pluvial Flooding	Inerability profile of India, Components of Disaster Relief: Water, Food, Sanita Management, Institutional arrangements (Mitigation, Response andPreparednetand Policy - Other related policies, plans, programmes and legislation – Role chnologyComponents in Preparedness, Risk Assessment, Response and Recove er DamageAssessment. DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND	tion, Shelter, less, Disaster e of GIS and ry Phases of 9Hours nfrastructure: s: Fluvial and
Hazard and Vul Health, Waste Management Ad Information Ted Disaster – Disast UNIT-V Landslide Hazar Case Studies, Dr Pluvial Flooding	Inerability profile of India, Components of Disaster Relief: Water, Food, Sanita Management, Institutional arrangements (Mitigation, Response and Prepared Letand Policy - Other related policies, plans, programmes and legislation – Role ChnologyComponents in Preparedness, Risk Assessment, Response and Recove er DamageAssessment. DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELDWORKS d Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Incought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Flooding: Case Studies; Forest Fire: Case Studies, Man Madedisasters: Case Studies, Space	tion, Shelter, less, Disaster e of GIS and ry Phases of 9Hours nfrastructure: s: Fluvial and
Hazard and Vul Health, Waste Management Ad Information Ted Disaster – Disast UNIT-V Landslide Hazar Case Studies, Dr Pluvial Flooding for Disaster Mitig	Inerability profile of India, Components of Disaster Relief: Water, Food, Sanita Management, Institutional arrangements (Mitigation, Response and Prepared not the Profile of Change Policy - Other related policies, plans, programmes and legislation - Role Change Components in Preparedness, Risk Assessment, Response and Recover er Damage Assessment. DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELDWORKS d Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Information ought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Flooding: Case Studies; Forest Fire: Case Studies, Man Madedisasters: Case Studies, Space gation and Management and field worksrelated to disaster management. Total Hours	tion, Shelter, less, Disaster e of GIS and ry Phases of 9Hours nfrastructure: s: Fluvial and Based Inputs
Hazard and Vul Health, Waste Management Ad Information Ted Disaster – Disast UNIT-V Landslide Hazar Case Studies, Dr Pluvial Flooding for Disaster Mitig	Inerability profile of India, Components of Disaster Relief: Water, Food, Sanita Management, Institutional arrangements (Mitigation, Response and Preparedne et and Policy - Other related policies, plans, programmes and legislation - Role chnologyComponents in Preparedness, Risk Assessment, Response and Recove er DamageAssessment. DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELDWORKS d Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Incought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Flooding: Case Studies; Forest Fire: Case Studies, Man Madedisasters: Case Studies, Space gation and Management and field worksrelated to disaster management.	tion, Shelter, less, Disaster e of GIS and ry Phases of 9Hours nfrastructure: s: Fluvial and Based Inputs

Course Code		L	T	P	С	IA	EA	TM
Course Name	CRYPTOGRAPHY & NETWORK SECURITY	3	0	0	3	40	60	100
Course Categoy	OPEN ELECTIVE COURSE-I		Syllabus Revision V.1.0					
Pre-requisite	Basic knowledge of Digital Communica	ition						

Course Objectives:

- 1. To understand OSI security architecture and classical encryption techniques.
- 2. To acquire fundamental knowledge on the concepts of finite fields and number theory.
- 3. To understand various block cipher and stream cipher models.
- 4. To describe the principles of public key cryptosystems, hash functions and digital signature.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Design firewalls and intrusion detection system	K2
CO2	Design security services for E-mail	К3

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs		ProgramOutcomes(POs)									Program Specific Outcomes (PSOs)				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	03
CO1	S	M	L	-	-	-	-	-	-	-	-	L	M	-	-
CO2	S	S	L	-	-	-	-	-	-	-	-	L	M	-	-

2.

Part Time- B.E. (Electronics and Communication Engineering) Curriculum (2025-26) onwards

SCSVINU	Curriculum (2025-26) onwards	
UNIT-I	INTRODUCTION & NUMBER THEORY	9Hours
Services, Mecl	nanisms and attacks-the OSI security architecture-Network security m	odel-Classical
Encryptiontech	niques (Symmetric cipher model, substitution techniques, transposition	techniques,
steganography).	FINITEFIELDS AND NUMBER THEORY: Groups, Rings, Fields-Modular arithm	etic- Euclid's
algorithm-Finite	e fieldsPolynomial Arithmetic -Prime numbers-Fermat's and Euler's theorem-	Testing for
primality -The (Chineseremainder theorem- Discrete logarithms.	
UNIT-II	BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY	9Hours
UNII-II	BLOCK CITIERS & FUBLIC RET CRTFTOGRAFIII	7110u18
, , ,	n Standard-Block cipher principles-block cipher modes of operation-Advanced	, ,
	Triple DES-Blowfish-RC5 algorithm. Public key cryptography:Principles of	- '
, , ,	TheRSA algorithm-Key management - Diffie Hellman Key exchange- Elliptic curv	e arithmetic-
Elliptic curvecry	ptography.	
UNIT-III	HASH FUNCTIONS AND DIGITAL SIGNATURES	9Hours
ONII-III	HASH FUNCTIONS AND DIGITAL SIGNATURES	Jilouis
	$requirement-Authentication\ function-MAC-Hash\ function-Security\ of\ hash$	
	SHA - HMAC – CMAC - Digital signature and authentication protocols – DSS -	- EI Gamal –
Schnorr.		
UNIT-IV	SECURITY PRACTICE & SYSTEM SECURITY	9Hours
	applications - Kerberos - X.509 Authentication services - Internet Firewalls	
=	Firewalls - Firewall related terminology- Types of Firewalls - Firewall designs	
	sactions. Intruder – Intrusion detection system – Virus and related threats – Count	
Firewalls design	principles – Trusted systems – Practicalimplementation of cryptography and securit	zy.
UNIT-V	E-MAIL, IP & WEB SECURITY	9Hours
·	y: Security Services for E-mail-attacks possible through E-mail - estab	
r ·	cationof the source-Message Integrity-Non-repudiation - Pretty Good Privacy-	
•	riew of IP sec-IP and IP v6 -Authentication Header-Encapsulation Security Pa	•
•	schange (Phases of IKE, ISAKMP/IKE Encoding). Web Security: SSL/TLS Ba	
	keysclient authentication-PKI as deployed by SSL Attacks fixed in v3- Exportabili	ty-Encoding-
Secure Electroni	icTransaction (SET).	
	Total Hours	45Hours
Text Book(s)	Total Hours	45110015
1	tallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013.	
2. Charlie Ka	ufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall ofIndia, 2002.	
	<u> </u>	
Reference Bo	OK(S)	

Behrouz A. Ferouzan, "Cryptography & Network Security", Tata McGraw Hill, 2007.

Charles Pfleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006.

Course Code		L	T	P	С	IA	EA	TM
Course Name	NANO SCIENCE	3	0	0	3	40	60	100
Course	OPEN ELECTIVE		Syllab	ous Re	vision		V	7.1.0
Categoy	COURSE-I							
Pre-requisite	Basic knowledge of Material Science	e & Electror	nics					

Course Objectives:

- 1. To Understand carbon nano structures
- 2. To Understand carbon nano tubes for data processing
- 3. To Understand mass storage device
- 4. To Understand data transmission interfaces and displays

Course Outcomes:

On completion of the course, the student will be able to

Course Outcmoes	Description	Highest Bloom's Taxonomy
CO1	Understand the basic structure and functioning of carbon nano tube	K2
CO2	Super conductors in digital electronics	K2
CO3	Materials and material processing for DRAMs,	K2
CO4	Technique for mass storage devices	K2
CO5	Data transmission interfaces and displays	K2

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs					Progr	amOut	comes	(POs)					Sp O	rograi pecific utcom (PSOs)	es
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	S	S	-	-	S	-	-	-	-	-	-	L	M	-	S
CO2	S	S	-	S	-	-	-	-	-	-	-	L	M	-	S
CO3	S	S	M	M	-	-	-	-	-	-	-	L	L	L	S
CO4	S	S	S	-	-	-	-	-	-	-	-	L	L	L	S
CO5	S	S	-	M	-	-	-	-	-	-	-	L	M	M	S

UNIT-I	TECHNOLOGY AND ANALYSIS	9Hours
-	on Methods, Lithography, Material Removing Technologies, Etching an	
	ressing, Scanning Probe Techniques, Carbon Nano Structures: Carbon Clusters,	
tubes,Fabricatio	n, Electrical, Mechanical and Vibrational Properties, Applications of Carbon Nano	Tubes.
UNIT-II	LOGIC DEVICES	9Hours
	ETS, Novel Materials and Alternative Concepts, Ferro Electric Filed Effect Digital Electronics, Carbon Nano Tubes for Data Processing.	et Transistors
UNIT-III	RANDOM ACCESS MEMORIES	9Hours
High Permittivi	ty Materials for DRAMs, Ferro Electric Random-Access Memories, Magneto- Resis	stive RAM.
UNIT-IV	MASS STORAGE DEVICES	9Hours
	es, Magneto Optical Disks, Rewriteable DVDs based on Phase Change Materials,Ho	olographicData
	es, Magneto Optical Disks, Rewriteable DVDs based on Phase Change Materials,Ho	olographicData
	es, Magneto Optical Disks, Rewriteable DVDs based on Phase Change Materials,Ho DATA TRANSIMISSION, INTERFACES AND DISPLAYS	olographicData 9Hours
Storage. UNIT-V Photonic Net	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Display	9Hours
Storage. UNIT-V Photonic Net	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Display	9Hours
Storage. UNIT-V Photonic Net	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Displayiodes.	9Hours nys, Organi
UNIT-V Photonic Net LightEmittingD TextBook(s)	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Displayiodes.	9Hours ays, Organi
UNIT-V Photonic Net LightEmittingD TextBook(s) 1. Rainer W	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Displatiodes. Total Hours	9Hours ays, Organi
UNIT-V Photonic Net LightEmittingD TextBook(s) 1. Rainer W	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Displatiodes. Total Hours aser, "Nano Electronics and Information Technology", Wiley VCH, April 2003.	9Hours ays, Organi
UNIT-V Photonic Net LightEmittingD TextBook(s) 1. Rainer W	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Displatiodes. Total Hours aser, "Nano Electronics and Information Technology", Wiley VCH, April 2003.	9Hours nys, Organi
UNIT-V Photonic Net LightEmittingD TextBook(s) 1. Rainer W	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Displatiodes. Total Hours aser, "Nano Electronics and Information Technology", Wiley VCH, April 2003.	9Hours ays, Organi
UNIT-V Photonic Net LightEmittingD TextBook(s) 1. Rainer W	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Displatiodes. Total Hours aser, "Nano Electronics and Information Technology", Wiley VCH, April 2003.	9Hours nys, Organi
UNIT-V Photonic Net LightEmittingD TextBook(s) 1. Rainer W	DATA TRANSIMISSION, INTERFACES AND DISPLAYS works, Microwave Communication Systems, Liquid Crystal Displatiodes. Total Hours aser, "Nano Electronics and Information Technology", Wiley VCH, April 2003.	9Hours nys, Organi

Course Code		L	T	P	C	IA	EA	TM
Course Name	PLC AND DATA ACQUISITION SYSTEMS	3	0	0	3	40	60	100
Course Categoy	OPEN ELECTIVE COURSE-I		Sy	llabus	Revis	ion		V.1.0
Pre-requisite	Analog and Digital Electronics	•						

Course Objectives:

- 1. To understand the need of computer control in automation.
- 2. To study the data acquisition systems.
- 3. To study the evolution and advantages of PLC.
- 4. To understand the various PLC instructions.
- 5. To study the use of PLC for some specific applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcoes		Bloom's
		Taxonomy
CO1	Able to understand the need of computer in Automation.	K2
CO2	Understand the basics of data conversion and data acquisition.	K4
CO3	Understand the fundamental of PLC.	К3
CO4	Program a PLC with different logical languages.	K2
CO5	Various industrial Applications of PLCs are studied.	K2

Correlation between Course Out comes(COs) and Program Outcomes(POs):

COs					Progr	ramOut	comes	(POs)					S _I	rograi pecific utcom (PSOs)	es
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1	M	-	L	-	M	-	M	-	-	1	-	-	L	-	M
CO2	L	-	M	-	L	L	L	_	_	ı	-	_	M	-	L
CO3	S	L	-	_	_	M	M	-	_	1	-	_	L	-	M

CO4	M	M	S	L	-	ı	S	ı	-	ı	M	L	M	ı	L
CO5	L	S	L	-	S	-	S	-	-	1	L	M	L	1	M

UNIT-I COMPUTER CONTROL-INTRODUCTION 9Hours

Need of computer in a control system-Functional block diagram of a computer control system-Data loggersSupervisory computercontrol- Direct digital control-Digital control interfacing-SCADA.

UNIT-II DATA ACQUISITION SYSTEMS 9Hours

Sampling theorem – Sampling and digitizing – Aliasing – Sample and hold circuit – Practical implementation of sampling and digitizing – Definition, design and need for data acquisition systems – Interfacing ADC and DACwith Microprocessor / Multiplexer - Multiplexed channel operation – Microprocessor/PC based acquisition systems.

UNIT-III BASICS OF PLC 9Hours

Definition and History of PLC-PLC advantage and disadvantages- Over all PLC systems-CPU and Programmer/Monitors-PLC input and output models – Architecture- PLC Programming language – Relay logic – Ladder logic – Programming of Gates – Flow charting as a programming method – connecting PLC to computer -PLC Troubleshooting and Maintenance.

UNIT-IV PLC PROGRAMMING 9Hours

Programming of Timers – Introduction - ON delay, OFF delay, Retentive Timers – PLC Timer functions – Examplesof timer function Industrial application, Programming Counters – up/down counter – Combining counter – Examplesofcounter function Industrial application. PLC Arithmetic Functions – PLC number Comparison function.

UNIT-V PLC DATA HANDALING FUNCTIONS 9Hours

PLC Program Control Instructions: Master Control Reset - Skip – Jump and Move Instruction. Sequencerinstructions - Types of PLC Analog modules and systems, PLC analog signal processing –BCD or multi bit dataprocessing – Case study of Tank level control system, bottle filling system and Sequential switching of motors.

Text Book(s)

1. Petrezeulla, "Programmable Logic Controllers", McGraw Hill, 1989.

2. Curtis D. Johnson," Process Control Instrumentation Technology", 8th edition PHI, 2005

Refe	renceBook(s)
1.	Hughes .T, "Programmable Logic Controllers", ISA Press, 1989.
2.	G.B.Clayton," Data Converters", The Mac Millian Press Ltd., 1982.
	John w.Webb& Ronald A.Reis., "Programmable logic controllers- principles andapplications", 5th Edition,PHI, 2010

Course Code		L	Т	P	С	IA	EA	TM
Course Name	AUTOTRONICS	3	0	0	3	40	60	100
Course Category	OPEN ELECTIVE COURSE-I	Syllabus Revision						
Pre-requisite	Automobile Engineering							

Course Objectives:

The course should enable the students:

- 1. To understand the basics of ignition, injection and engine control systems
- 2. To learn the various chassis and safety system operation and applications
- 3. To learn about various methods of sensors and actuators for engine control parameters

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Develop through basic knowledge about various ignition and injection systems.	K2
CO2	Acquire knowledge on the safety systems of the automobile.	K5
CO3	Learn about various methods of sensors for engine controls.	K4

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

COs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO	РО	РО	РО	РО	РО	РО	PO	PO	PO	РО	РО	PSO	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2	3
CO1	L	M	-	-	-	-	-	-	-	-	-	-	M	-	L
CO2	M	L	L	-	L	-	-	-	-	-	-	-	L	-	M
CO3	S	M	S	-	M	-	-	-	-	-	-	-	L	-	M

UNIT-I	INTRODUCTION	9 Hours

Evolution of electronics in automobiles – emission laws – introduction to Euro I, Euro II, Euro III, Euro IV, EuroV standards – Equivalent Bharat Standards, Charging systems: Working and design of charging circuit diagram – Alternators – Requirements of starting system - Starter motors and starter circuits

UNIT-II	IGNITION AND INJECTION SYSTEMS	9 Hours							
Ignition systems: Ign	ition fundamentals - Electronic ignition systems - Programmed Ignition	– Distribution							
lessignition - Direct	ignition – Spark Plugs. Electronic fuel Control: Basics of combustion – E	Ingine fuelling							
and exhaustemissions	$and\ exhaust emissions-Electronic\ control\ of\ carburetion-Petrol\ fuelinjection-Diesel\ fuel\ injection.$								
UNIT-III	SENSOR AND ACTUATORS	9 Hours							
Working principle an	Working principle and characteristics of Airflow rate, Engine crankshaft angular position, Hall effect, Throttle								
angle,temperature, ex	xhaust gas oxygen sensors – study of fuel injector, exhaust gas recircula	tion actuators,							
stepper motoractuato	r, vacuum operated actuator.								
UNIT-IV	ENGINE CONTROL SYSTEMS	9 Hours							
Control modes for fu	el control-engine control subsystems – ignition control methodologies – d	lifferentECU"s							
usedin the engine m	anagement - block diagram of the engine management system. In veh	icle networks:							
	t of CAN standard – diagnostics systems in modern automobiles.								
UNIT-V	CHASSIS AND SAFETY SYSTEMS	9 Hours							
Traction control syst	rem – Cruise control system – electronic control of automatic transmiss	ion – antilock							
brakingsystem – electronic suspension system – working of airbag and role of MEMS in airbag systems –									
• •	ng system – climate control of cars.	<i>G</i> - <i>j</i>							
	Total House	45 Uoung							

Text Book(s)

1. Ribbens, "Understanding Automotive Electronics", 7th Edition, Elsevier, Indian Reprint, 2013

Reference Book(s)

1. Tom Denton, "Automobile Electrical and Electronics Systems", Edward Arnold Publishers, 2000.

2. Barry Hollembeak, "Automotive Electricity, Electronics & Computer Controls", DelmarPublishers, 2001.

3. Richard K. Dupuy "Fuel System and Emission controls", Check Chart Publication, 2000.

4. Ronald. K. Jurgon, "Automotive Electronics Handbook", McGraw-Hill, 1999.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	REMOTE SENSING &GIS	3	0	0	3	40	60	100
Course Category	OPEN ELECTIVE COURSE-II	Syllabus Revision						
Pre- requisite	Basic Knowledge of Science & Engineering	ng						

Course Objectives:

The course should enable the students:

- 1. To provide students an exposure to Remote sensing
- 2. To ensure that students begin to understand the geographic information system

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Understand the concepts, platforms and laws related to remote Sensing.	K2
CO2	Understand the interaction of electromagnetic radiation with Atmosphere and earth material.	K2
CO3	Acquire knowledge about satellite orbits, different types of Satellites and the different types of remote sensors.	K1
CO4	Understand the fundamentals of GIS, maps, data structures and analysis of data.	K4
CO5	Gain knowledge about the concepts of interpretation of Satellite imagery and civil engineering applications.	К3

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

Program Outcomes (POs) COs										Program Specific Outcomes (PSOs)					
300	P	PO2	PO	PO	РО	РО	PO	PO	PO	PO	РО	PO	PSO	PS	PSO
	01		3	4	5	6	7	8	9	10	11	12	1	O2	3
CO1	S	-	-	-	S	M	-	-	-	L	-	M	L	-	M
CO2	S	M	-	M	S	M	-	-	-	M	-	M	M	-	L
CO3	S	M	M	M	S	M	-	1	ı	M	-	M	L	-	M

CO4	S	M	M	L	M	M	-	-	_	L	-	L	M	-	M
CO5	S	M	M	M	L	M	L	1	1	L	-	L	L	1	L

UNIT-I	REMOTE SENSING	9 Hours

Definition – Components of Remote Sensing – Energy, Sensor, Interacting Body - Active and PassiveRemoteSensing – Platforms – Aerial and Space Platforms – Balloons, Helicopters, Aircraft and Satellites – Synoptivity andRepetivity – Electro Magnetic Radiation (EMR) – EMR spectrum – Visible, Infra Red (IR), Near IR, Middle IR, Thermal IR and Microwave – Black Body Radiation - Planck's law – Stefan-Boltzman law.

UNIT-II EMR INTERACTION WITH ATMOSPHERE AND EARTH 9 Hours

Atmospheric characteristics – Scattering of EMR – Raleigh, Mie, Non-selective and Raman Scattering – EMRInteraction with Water vapour and ozone – Atmospheric Windows Significance of Atmospheric windows – EMRinteraction with Earth Surface Materials – Radiance, Irradiance, Incident, Reflected, Absorbed and TransmittedEnergyReflectance – Specular and Diffuse Reflection Surfaces- Spectral Signature – Spectral Signature curves – EMR interaction with water, soil and Earth Surface

UNIT-III OPTICAL AND MICROWAVE REMOTE SENSING 9 Hours

Satellites - Classification - Based on Orbits - Sun Synchronous and Geo Synchronous - Based on Purpose - EarthResources Satellites, Communication Satellites, Weather Satellites, Spy Satellites - Satellite Sensors - Resolution - Spectral, Spatial, Radiometric and Temporal Resolution - Description of Multi Spectral Scanning - Along and Across Track Scanners - Description of Sensors in Landsat, SPOT, IRS series - Current Satellites - Radar - Speckle- Back Scattering - Side Looking Airborne Radar - Synthetic Aperture Radar - Radiometer - Geometrical characteristics

UNIT-IV GEOGRAPHIC INFORMATION SYSTEM 9 Hours

GIS – Components of GIS – Hardware, Software and Organizational Context – Data – Spatial and Non-Spatial –Maps – Types of Maps – Projection – Types of Projection – Data Input – Digitizer, Scanner – Editing – Raster and Vector data structures – Comparison of Raster and Vector data structure – Analysis using Raster and Vector data –Retrieval, Reclassification, Overlaying, Buffering – Data Output – Printers and Plotters.

UNIT-V	MISCELLANEOUS TOPICS	9 Hours

Visual Interpretation of Satellite Images – Elements of Interpretation - Interpretation Keys Characteristics of DigitalSatellite Image – Image enhancement – Filtering – Classification - Integration of GIS and Remote Sensing –Application of Remote Sensing and GIS – Urban Applications - Integration of GIS and Remote Sensing –Application of Remote Sensing and GIS – Water resources – Urban Analysis – Watershed

Management –	ResourcesInformation Systems.							
	Total Hours	45 Hours						
Text Book(s)								
1.	Anji Reddy, Remote Sensing and Geographical Information Systems, BS Publica	ations 2001.						
2.	M.G. Srinivas, Remote Sensing Applications, Narosa Publishing House, 2001.							
Reference Boo	$\mathbf{k}(\mathbf{s})$							
1.	Lillesand T.M. and Kiefer R.W. Remote Sensing and Image Interpretation and Sons, Inc, New York.	ı, John Wiley						
2.	Janza.F.J., Blue, H.M., and Johnston, J.E., "Manual of Remote S AmericanSociety ofPhotogrammetry, Virginia, U.S.A, 1975.	ensing Vol.I,						

Course Code		L	T	P	С	IA	EA	TM
Course Name	BIG DATA ANALYTICS	3	0	0	3	40	60	100
Course Category	OPEN ELECTIVE COURSE-II	Syllabus Revision						
Pre-requisite	Basic Knowledge on Data bases, Data mining and Data Structures							

Course Objectives:

The course should enable the students:

- 1. To understand Big Data models and structure
- 2. Introduction to Analytic Tool –R
- 3. Mining Data streams for Analytics
- 4. Understanding Map Reduce Framework
- 5. Advanced Analytic Tools and Techniques

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Have Strong Foundations on Data Analytics Models and structure	K2
CO2	Understand the Role of Big Data and its importance	K2
CO3	Data modeling and Link stream Analysis	K2
CO4	Able to setup Analytical Environment using R-Studio	К3
CO5	Able to perform simple analysis application and programs using R –Scripts.	K2

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

COs		Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
	РО	РО	РО	РО	PO	PO	РО	PO	PO	PO	РО	РО	PSO	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2	3
CO1	M	-	-	M	-	-	-	-	L	S	-	-	M	-	S
CO2	-	M	L	S	-	-	S	-	-	-	-	-	M	1	S
CO3	-	S	M	-	S	_	-	-	-	-	-	-	L	-	S
CO4	-	-	-	M	S	-	-	-	M	L	-	-	L	-	S
CO5	_	-	-	M	S	_	-	-	S		-	-	M	M	S

UNIT-I		INTRODUCTION TO ANALYTIC TOOL	9 Hours
R Using R for I	[nitial .	Analysis of the Data -Introduction to R programming, initial exploration -	analysis of the
_		sualization using R –Basic Scripting-Data Set Analysis.	•
UNIT-II		OVERVIEW OF DATA ANALYTICS	9 Hours
Introduction to	o Big I	l Data Analytics -definition -overview of big data - Characteristics— Importa	nce ofBig Data
– datapreparati	ion -m	odel planning,-Use cases-critical activities in each Phase of the lifecycle.	
UNIT-III		MINING DATA STREAMS	9 Hours
The Stream Da	ata Mo	odelSampling Data in a Stream -Filtering Streams - Counting Distinct	t Elementsin a
Stream -Estima	ating I	Moments Counting Ones in a Window Link Analysis : Page Rank -1	Topic-Sensitive
Page Rank -Lir	ıkSpar	n -Hubs and Authorities.	
UNIT-IV		MAPREDUCE AND THE NEW SOFTWARE STACK	9 Hours
Distributed F	ile Sy	ystems-Map Reduce Algorithms Using Map Reduce-Extensions to	MapReduce
theCommunica	ation (Cost Model-Complexity Theory for Map Reduce.	
UNIT-V		BIG DATA FROM THE TECHNOLOGY PERSPECTIVE	9 Hours
Introduction to	o Had	oop –Components of Hadoop –Application Development in Hadoop –I	Pig Hive- Jaql,
GettingData in	Hado	op-copy Data-Flume, Other Hadoop Components-Zoo Keeper HBase- Ooz	zie.
		Total Hours	45 Hours
Text Book(s)			
1.		Leskovec ,Anand Rajaraman, Jeffrey D.Ullman, "Mining of Massive Datasets"	,SecondEdition,
		oridge University Press, 2014.	010
2.	L	Zikopoulos, "Understanding Big Data", First Edition, McGraw Hill Corporations-2	012.
Reference Boo			
1.	Garr	ett Grolemund, "Introduction to Data Science with R", O'Reilly media, 201	14.
2.	Garr	ett Grolemund, "Hands-On Programming with R: Write Your Own	Functions and
	Simu	llations Paperback",O'Reilly media, 2014.	
	I		

Course Code	L	T	P	С	IA	EA	TM

Course Name	COMPUTER INTEGRATED MANUFACTURING	3	0	0	3	40	60	100
Course Category	OPEN ELECTIVE COURSE-II		Syllal	bus Rev	ision			
Pre-requisite	Basic Knowledge of CAD & CAI	M						

Course Objectives:

The course should enable the students:

- 1. To know about the CIM.
- 2. To know about the Group technology and process planning.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Develop through basic knowledge about CIM.	K2
CO2	Acquire knowledge on the applications of CIM.	K5
CO3	Learn the usage of group technology and process planning.	

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
COs	PO	PO	PO	РО	PO	РО	PO	РО	РО	РО	PO	РО	PSO	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2	3
CO1	M	ı	ı	M	-	-	-	ı	L	S	ı	-	M	ı	S
CO2	-	M	L	S	-	-	S	ı	-	-	ı	-	M	ı	S
CO3	_	S	M	-	S	-	_	-	-	-	-	_	L	-	S

UNIT-I 9 Hours

Introduction to Automation -Production system Facilities, Manufacturing Support Systems, Automation inProduction Systems, Automated Manufacturing Systems, Types of Automation, Computerized manufacturingSupport System, Reasons for Automating, Manufacturing Industries and Products, Manufacturing operations, Product / Production Relationships, Production Concepts and Mathematical Models. Basic elements of an Automated System, Advanced Automation Functions, Levels of Automation, Industrial Control Systems-Process Industries versus Discrete Manufacturing Industries, Continuous versus

Discrete Control, Computer ProcessControl, Forms of Computer Process Control

UNIT-II	9 Hours

Fundamentals of CAD, CAM and CAE, CIM Definition, CIM Wheel, CIM components, Evolution of CIM - Development of computers - Needs of CIM, Benefits of CIM. CIM Hardware & Software, CIM Models, DBMSand Network system - Data base and DBMS- requirement, features and architecture of DBMS, CIMCommunications (Network) System, Communication Matrix, Network Architectures, Tools and Techniques

UNIT-III 9 Hours

Group Technology – Introduction - coding and classification system, Production Flow Analysis, Coding System -OPTIZ, MICLASS, Benefits of Group Technology, Machine cell design. Process Planning- Structure of a ProcessPlanning, Process Planning function, CAPP - Types of CAPP, Retrieval and Generative type CAPP, Concurrentengineering, Design for Manufacturing and Assembly, Advanced Manufacturing Planning.

UNIT-IV 9 Hours

Fundamentals of NC Technology – Basic components of an NC System, NC Coordinate and MotionControlsystems, Computer Numerical Control, Features of CNC, Machine Control Unit for CNC, CNC Software, DNCMachines, Application of NC machine tools Applications, Structure of CNC Machines, CNC Controllers, NC PartProgramming, Computer-Assisted Part Programming. Featuresand Applications of CNC Turning Centre, CNCMilling Machine, CNC Turn-Mill Centre, CNC machining Centre, CNC Tooling system and Automatic ToolChanging System, Computer Aided Quality Control- contact, non-contact inspection methods, CoordinateMeasuring Machine CMM - Integration of CAQC with CAD / CAM.

UNIT-V 9 Hours

FMS -Components of FMS, Computer control and function, FMS planning, scheduling and control, KnowledgeBased Scheduling, FMS operation control, Hierarchy of computer control, supervisory control, types of softwareused in FMS, Applications and Benefits. Production Support Machines and Systems - Industrial Robots, AutomatedMaterial Handling, Automatic Guided Vehicles, Automated Storage and Retrieval system. Developments inManufacturing Technologies- AI and Expert System, Agile manufacturing, Lean Manufacturing, VirtualManufacturing, Simulation in Manufacturing – Factories of Future.

								Total H	Iours 4	45 Hours	
Text Book(s)											
1.	Kant	Kant Vajpayee.S, "Principles of Computer- Integrated Manufacturing"; 1st ed. PHI 2006.									
2.	Mike	Mikell p. Groover, "Automation, Production Systems & CIM", 2nd ed. PHI 2001.									
3.		ames A.Rehg, Henry W.Kraebber, "Computer- Integrated Manufacturing", second Edition,Pearson ducation.									
4.	P.N. Rao, "CAD/CAM Principles and Applications", Second Edition, TMH 2006.										
Reference Boo	ok(s)										
1.		akrishnan.P, Sub nternationalpublish	ramanyan. S, ers, 2000	Raju.\	7, "C	AD/CAI	M/CIM'	', Seco	ond E	dition, New	
2.	Danie	Daniel Hunt.V., "Computer Integrated Manufacturing Hand Book", Chapman & Hall, 1989									
2.	Rank	Ranky Paul. G., "Computer Integrated Manufacturing", Prentice Hall International, 1986.									
Course Coo	le			L	T	P	С	IA	EA	TM	

Course Name	OPERATIONALRESEARCH	3	0	0	3	40	60	100
Course Category	OPEN ELECTIVE COURSE-II		Syllal	bus Rev	ision/			
Pre-requisite	Basic knowledge of Mathematics	S						

Course Objectives:

The course should enable the students:

1. To improve a quantitative decision-making procedure.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Understand the Concept of Routing Problems	K2
CO2	Understand the Integer Programming and Replacement Problems	K5

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

Program Outcomes (POs)																
COs	РО	PO	PO	РО	РО	РО	PSO	PS	PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2	3	
CO1	M	-	-	M	-	-	-	-	L	S	-	-	M	-	S	
CO2	-	M	L	S	-	-	S	-	-	-	-	-	M	-	S	

UNIT-I	LINEAR PROGRAMMING AND SIMPLEX METHOD	9 Hours

Mathematical formulation of the problem - Graphical solution method - Exceptional cases - General linearprogramming problem - Canonical and standard forms of linear programming problem - The simplex method - Computational procedure : The simplex algorithm - Artificial variable techniques : Big M method, Two phasemethod - problem of degeneracy.

UNIT-II	TRANSPORTATION, ASSIGNMENT AND ROUTING								
	PROBLEMS								
Mathematical formulation of the transportation problem - Triangular basis - Loops in a transportationtable -									
Findinginitial basic feasible solution (NWC, IBM and VAM methods) - Moving towards optimality-									
Degeneracy intransportation problems- Transportation algorithm (MODI method) – Unbalanced									
transportation problems -Mathematical formulation of the assignment problem - Assignment algorithm									
Hungarian assignment method –Routing problems : Travelling salesman problem.									

2.

Part Time- B.E. (Electronics and Communication Engineering) Curriculum (2025-26) onwards

UNIT-III		GAME THEORY AND SEQUENCING PROBLEMS	9 Hours								
Two person ze	Two person zero sum games - Maxmin Minmax principle - Games without saddle points (Mixed strategies) -										
Solution of 2 X 2 rectangular games - Graphical method - Dominance property - Algebraic method for m x n											
games- Matrix oddments method for m x n games - Problem of sequencing - Problems with n jobs and 2											
machines -Problems with n jobs and k machines – Problemswith 2 jobs and k machines.											
			T								
UNIT-IV		INTEGER PROGRAMMING AND INVENTORY CONTROL	9 Hours								
Gomory's All	I.P.P 1	nethod - Gomory's mixed integer method - Branch and bound method	- Reasons for								
carryinginvent	ory -	Types of inventory - Inventory decisions - Economic order quantity -	Deterministic								
inventory prob	inventory problem– EOQ problem with price breaks - Multi item deterministic problem.										
UNIT-V		REPLACEMENT PROBLEMS AND PERT/CPM 9 Hours									
Replacement of	of equ	ipment or asset that deteriorates gradually - Replacement of equipm	nent that fails								
1	•	ipment or asset that deteriorates gradually - Replacement of equipment and promotion problem - Network and basic components - Rule									
suddenly -Rec	ruitm		es of network								
suddenly -Rec	ruitme	ent and promotion problem - Network and basic components - Rule	es of network								
suddenly -Rec	ruitme	ent and promotion problem - Network and basic components - Rule calculations in networks - Critical path method (CPM) - PERT - PERT	es of network calculations -								
suddenly -Rec	ruitme	ent and promotion problem - Network and basic components - Rule calculations in networks - Critical path method (CPM) - PERT - PERT	es of network								
suddenly -Rec	ruitme	ent and promotion problem - Network and basic components - Rule calculations in networks - Critical path method (CPM) - PERT - PERT gative Slack - Advantages of network (PERT/CPM).	es of network calculations -								
suddenly -Rec construction – Negative float	ruitmo	ent and promotion problem - Network and basic components - Rule calculations in networks - Critical path method (CPM) - PERT - PERT gative Slack - Advantages of network (PERT/CPM).	es of network calculations - 45 Hours								
suddenly -Reconstruction - Negative float a Text Book(s)	Time and ne	ent and promotion problem - Network and basic components - Rule calculations in networks - Critical path method (CPM) - PERT - PERT gative Slack - Advantages of network (PERT/CPM). Total Hours	es of network calculations - 45 Hours								
suddenly -Reconstruction - Negative float a Text Book(s)	Time and ne	ent and promotion problem - Network and basic components - Rule calculations in networks - Critical path method (CPM) - PERT - PERT gative Slack - Advantages of network (PERT/CPM). Total Hours ti Swarup, P.K.Gupta and Man Mohan, Operations Research, Ei	es of network calculations - 45 Hours								
suddenly -Reconstruction - Negative float a Text Book(s) 1.	Time and ne	ent and promotion problem - Network and basic components - Rule calculations in networks - Critical path method (CPM) - PERT - PERT gative Slack - Advantages of network (PERT/CPM). Total Hours ti Swarup, P.K.Gupta and Man Mohan, Operations Research, Ei	es of network calculations - 45 Hours								

Course Code	L	Т	P	С	IA	EA	TM

Richard Bronson, Operations Research, Schaum's Outline Series, McGraw Hill, 1982.

J.K.Sharma, OperationResearch (Theory and Applications), MacMillen, 1997.

Course Name	3D PRINTERS &	3	0	0	3	40	60	100		
	APPLICATIONS									
Course	Open Elective Course II	Syllabus Revision								
Category										
Pre-requisite	Basic knowledge of Control & Instrumentation									

Course Objectives:

The course should enable the students-

- 1. To develop CAD models for 3D printing
- 2. To import and export CAD data and generate. STL file
- 3. To select 3D printing process for an application.ect a specific material for the given application
- 4. To produce a product using 3D printing or Additive Manufacturing (AM)

Course Outcomes:

On completion of the course, the student will beable to

Course outcomes	Description	HighestBloom's Taxonomy
CO1	Develop CAD models for 3D printing.	K2
CO2	Import and Export CAD data and generate STL file.	K2
CO3	Select a specific material for the given application.	К3
CO4	Select a 3D printing process for an application.	K4
CO5	Produce a product using 3D Printing or Additive Manufacturing (AM).	K6

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

	Program Outcomes(POs)										Program Specific					
	1 Togram Outcomes(1 Os)												Outcomes(PSOs)			
	PO	PO	PO	PO	РО	P	PO	PO	PO	РО	PO	PO	PS	PS	PSO3	
COs	1	2	3	4	5	O6	7	8	9	10	11	12	O1	O2		
CO1	S	S	_	_	S	_				_	_	T	M	_	S	
					J							ь				
CO2	S	S	-	S	-	-	-	-	-	-	_	L	M	-	S	
CO3	S	S	-	M	-	-	-	-	-	-	-	L	L	-	S	
CO4	S	S	S	-	-	-	-	-	-	-	-	L	L	-	S	
CO5	S	S	_	M	-	_	-	-	-	-	-	L	M	M	S	

UNIT-I	3D PRINITING (ADDITIVE MANUFACTURING)	9Hours
--------	---------------------------------------	--------

Introd	luction, P	rocess, Classification, Advantages, Additive V/s Conventional Manufacturi	ng processes, Applications.
UNI	Γ-II	CAD FOR ADDITIVE MANUFACTURING	9Hours
CAD I	Data form	ats, Data translation, Data loss, STL format.	
UNI	Г-ІІІ	ADDITIVE MANUFACTURING TECHNIQUES	9Hours
for v	arious ap	graphy, LOM, FDM, SLS, SLM, Binder Jet technology. Process, Process paraphications. Additive Manufacturing Application Domains: Aerospace, Electronic Construction, Food Processing, Machine Tools.	
UNI	Γ-IV	MATERIALS	9Hours
,		als, Non-Metals, Ceramics - Various forms of raw material – Liquid, Sol d their desired properties, Polymers and their properties. Support Materials	
UNI	Γ-V	ADDITIVE MANUFACTURING EQUIPMENT AND POST PROCESSING	9Hours
andtro	oubleshoo	ment- design and process parameters -Governing bonding mech ting- Process design- Post processing: requirement and techniques Produc and their causes	
		Total Hours	45Hours
Text	Book(s)		
1.		Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Infacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-5	
2.		on, David W. Rosen and Brent Stucker "Additive Manufacturing Technological Manufacturing", 2nd edition, Springer., United States, 2015, ISBN-13	
Refe	rence Boo	k(s)	
1.	Khanna l	Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.	
2.	CK Chua 2017.	, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Appli	ications", World Scientific,
3.	J.D. Mag 2013.	jumdar and I. Manna, "Laser-Assisted Fabrication of Materials", Springer Se	eries inMaterialScience,
4.		Fuh and Y.S. Wong, "Laser-Induced Materials and Processes for Rapid ping", Kulwer Academic Press, 2001.	
5.	Zhiqiang	Fan And Frank Liou, "Numerical Modeling of the Additive Manum Alloy", InTech, 2012.	ufacturing (AM)Processes

Course Code		L	Т	P	С	IA	EA	TM
Course Name	SENSORS&ACTUATORS	3	0	0	3	40	60	100
Course Category	OPEN ELECTIVE COURSE-III		Syllal	bus Rev	ision/			
Pre-requisite	Basic knowledge of Basic Electro	onics						

Course Objectives:

The course should enable the students:

- 1. To acquire knowledge about the principles and analysis of sensors.
- 2. To emphasis on characteristics and response of micro sensors.
- 3. To acquire adequate knowledge of different transducers and Actuators.
- 4. To learn about the Micro sensors and Micro actuators.
- 5. To select sensor materials for fabrication for different applications

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Analyze the basics and design the resistive sensors.	K4
CO2	Identify the materials and designing of inductive and capacitive sensors.	K5
CO3	Analyze various types of Actuators.	K4
CO4	Design Micro sensors and Micro actuators for various applications.	K6
CO5	Implement fabrication process and technologies and compare various Micro-machiningprocesses	K5

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

					Progra	ım Out	tcomes	s (POs))				Program Specific Outcomes (PSOs)		
COs	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2	3
CO1	S	S	-	-	S	-	-	-	-	-	-	L	M	-	S
CO2	S	S	-	S	-	-	-	-	-	-	-	L	M	-	S
CO3	S	S	-	M	-	-	-	-	-	-	-	L	L	-	S
CO4	S	S	S	-	-	-	ı	1	•	1	1	L	L	-	S
CO5	S	S	-	M	-	-	-	-	-	-	-	L	M	M	S

UNIT-I	SENSORS	9 Hours

Difference between sensor, transmitter and transducer - Primary measuring elements - selection and characteristics: Range; resolution, Sensitivity, error, repeatability, linearity and accuracy, impedance, backlash, Response time, Dead band. Signal transmission - Types of signal: Pneumatic signal; Hydraulic signal; Electronic Signal. Principle of operation, construction details, characteristics and applications of potentiometer, Proving Rings, Strain Gauges, Resistance thermometer, Thermistor, Hot-wire anemometer, Resistance Hygrometer, Photo-resistive sensor.

UNIT-II INDUCTIVE AND CAPACITIVE TRANSDUCERS 9 Hours

Inductive transducers: - Principle of operation, construction details, characteristics and applicationsofLVDT, Induction potentiometer, variable reluctance transducer, synchros, microsyn. Capacitivetransducers: - Principle of operation, construction details, characteristics of Capacitive transducers – different types & signal conditioning- Applications: - capacitor microphone, capacitive pressure sensor, proximity sensor.

UNIT-III ACTUATORS 9 Hours

Definition, types and selection of Actuators; linear; rotary; Logical and Continuous Actuators, Pneumati cactuator- Electro-Pneumatic actuator; cylinder, rotary actuators, Mechanical actuating system: Hydraulicactuator - Control valves; Construction, Characteristics and Types, Selection criteria. Electrical actuatingsystems: Solid-state switches, Solenoids, Electric Motors- Principle of operation and its application: D.Cmotors - AC motors - Single phase & 3 Phase Induction Motor; Synchronous Motor; Stepper motors - Piezoelectric Actuator.

UNIT-IV MICRO SENSORS AND MICRO ACTUATORS 9 Hours

Micro Sensors: Principles and examples, Force and pressure micro sensors, position and speed microsensors, acceleration micro sensors, chemical sensors, biosensors, temperature micro sensors and flowmicro sensors. Micro Actuators: Actuation principle, shape memory effects-one way, two way and pseudo elasticity. Types of micro actuators- Electrostatic, Magnetic, Fluidic, Inverse piezo effect, other principles.

UNIT-V SENSOR MATERIALS AND PROCESSING TECHNIQUES 9 Hours

Materials for sensors: Silicon, Plastics, metals, ceramics, glasses, nano materials. Processing techniques: Vacuum deposition, sputtering, chemical vapour deposition, electro plating, photolithography, silicon micromachining: Bulk silicon micromachining, Surface silicon micromachining, LIGA process.

	Total Hours	45 Hours
Text Book(s)		
1.	Patranabis.D, Sensors and Transducers, Wheeler publisher, 1994.	
2.	Sergej Fatikow and Ulrich Rembold, Microsystem Technology and Microbotics First ed Verlag Newyork, Inc, 1997.	ition,Springer –

3.	Jacob Fraden, "Hand Book of Modern Sensors: Physics, Designs and Application"
	Fourthedition, Springer, 2010.
Reference Bo	ook(s)
1.	Robert H Bishop, "The Mechatronics Hand Book", CRC Press, 2002.
2.	Thomas. G. Bekwith and Lewis Buck.N, Mechanical Measurements, Oxford and IBHpublishing Co. Pvt.Ltd.,
3	Massood Tabib and Azar, Micro actuators Electrical, Magnetic, thermal, optical, mechanical, chemical and smart structures, First edition, Kluwer academic publishers, Springer, 1997.
4	Manfred Kohl, Shape Memory Actuators, first edition, Springer

Course Code		L	T	P	С	IA	EA	TM
Course Name	ADHOC NETWORKS	3	0	0	3	40	60	100
Course Category	OPEN ELECTIVE COURSE-III	Syllabus Revision						
Pre-requisite	Basic knowledge of Data Comm	unicati	on Net	works				

Course Objectives:

The course should enable the students:

- 1. To study the wireless networks
- 2. To understand the concept of wireless protocols

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Understand the fundamentals of sensor networks	K1
CO2	Understand the various wireless sensor protocols	К3

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

					Progra	ım Ou	tcomes	(POs)					Progr Outco	_	
COs	РО	РО	РО	PO	РО	PO	PO	PO	PO	PO	РО	РО	PSO	PS	PSO
	1 2 3 4 5 6 7 8 9 10 11 12								1	O2	3				
CO1	S	S	-	-	S	-	-	-	-	-	-	L	M	-	S
CO2	S	S	-	S	-	-	-	-	-	-	-	L	M	-	S

UNIT-I	INTRODUCTION TO WIRELESS NETWORKS	9 Hours

Characteristics of wireless channels, Fundamentals of WLANs, IEEE 802.11 standard, HIPERLANStandard, First-, Second, third and beyond 3G - generation cellular systems, WLL, Wireless ATM, IEEE802.16 standard, HIPERACCESS, AdHoc Wireless Internet.

UNIT-II	MAC, ROUTING AND MULTICAST ROUTING PROTOCOLS	9 Hours

MAC Protocols: Design issues, goals and classification, Contention —based protocols with reservationandscheduling mechanisms, Protocols using directional antennas. Routing protocols: Design issues and classification, Table-driven, On-demand and Hybrid routing protocols, Routing protocols with efficient flooding mechanisms, Hierarchical and power-aware routing protocols. Multicast Routing Protocols:

Designissues and operation, Architecture reference model, classification, Tree based and Mesh-based protocols, Energy-efficient multicasting.

UNIT-III	TRANSPORT LAYER AND SECURITY	9 Hours
	PROTOCOLS	

Transport layer Protocol: Design issues, goals and classification, TCP over AdHoc wireless Networks, Security, Security requirements, Issues and challenges in security provisioning, Network security attacks, Security routing. Quality of Service: Issues and challenges in providing QoS, Classification of QoS solutions, MAC layer solutions, Network layer solutions, QoS frameworks

UNIT-IV WIRELESS SENSOR NETWORKS 9 Hours

Architecture, Data dissemination, Date gathering, MAC protocols, location discovery, Quality of a sensornetwork.

UNIT-V ENERGY MANAGEMENT 9 Hours

Classification of battery management schemes, Transmission power management schemes, System powermanagement schemes. Performance Analysis -ABR beaconing, Performance parameters,Route-discoverytime, End-to-end delay performance, Communication throughput performance, Packet loss performance,Route reconfiguration repair time, TCP/IP based applications.

	Total Hours 45 Hours
Text Book(s)	
1.	C. Siva Ram Murthy and B.S. Manoj, AdHoc Wireless Networks: Architectures and protocols, Prentice Hall PTR, 2004.
2.	C.K.Toh, AdHoc Mobile Wireless Networks: Protocols and Systems, Prentice Hall PTR,2001
Reference Boo	$\mathrm{bk}(\mathrm{s})$
1.	Mohammad Ilyas, The Handbook of AdHoc Wireless Networks, CRC press, 2002.
2.	Charles E. Perkins, AdHoc Networking, Addison – Wesley, 2000.
3	Stefano Basagni, Marco Conti, Silvia Giordano and Ivan Stojmenovic, Mobile AdHocNetworking, Wiley – IEEE press, 2004

Course Code		L	T	P	С	IA	EA	TM
Course Name	ARTIFICIAL INTELLIGENCE	3	0	0	3	40	60	100
Course	Open Elective Course III		Syllabus Revision					
Category								
Pre-requisite Basic knowledge of Computer Architecture								

Course Objectives:

The course should enable the students-

- 1. To understand the basic building blocks of Intelligent Systems.
- 2. To gain knowledge in problem formulation and building intelligent agents.
- 3. To understand some of the searching approaches to build Intelligent Systems.
- 4. To understand the types of logic and knowledge representation schemes.
- 5. To acquire knowledge in planning and learning algorithms.

Course Outcomes:

On completion of the course, the student will be able to

Course outcomes	Description	Highest Bloom's Taxonomy
CO1	Understand the basic concepts and techniques of Artificial Intelligence	K2
CO2	Acquire Knowledge on intelligent agents and problem solving by using various search strategies.	К2
CO3	Apply AI algorithms for solving practical problems.	К3
CO4	Design and Implement an example using Knowledge representation.	К6
CO5	Apply planning and reasoning algorithms for solving real life problems.	К3

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

	Program Outcomes(POs)												Program Specific Outcomes(PSOs)		
CO-	РО	РО	РО	РО	РО	P	РО	РО	РО	РО	PΟ	РО	PS	PS	PSO3
COs	1	2	3	4	5	O6	7	8	9	10	11	12	O1	O2	
CO1	S	M	S	M	-	-	_	-	-	_	-	-	-	_	-
CO2	L	S	S	S	L	-	-	-	_	-	-	M	M	M	M
CO3	L	S	S	S	L	-	-	-	-	-	-	S	M	M	S
CO4	L	S	S	S	L	-	-	-	-	-	-	M	-	_	M
CO5	L	S	S	M	-	-	-	-	-	-	-	M	-	_	M

UNIT-I		INTRODUCTION TO AI-AI TECHNIQUES		9Hours			
	- Foun	dations of AI, the History of AI –Intelligent Agent – Agent and Env	vironme				
		onality, Nature of Environments, Structure of Agents- Problem Sol					
UNIT-II		SEARCHING TECHNIQUES- UNIFORMED SEARCH ALGORITHM	9Hours				
deepening search stra	search ategies	rching strategies-Breadth First Search, Depth First search, Dep Bidirectional Search - Avoiding repeated States - Searching with P Greedy Best First Search-A* Search-Heuristic Functions - Leablems-Local search in Continuous Spaces.	artial inf	formation –Informed			
UNIT-III	9	SEARCHING TECHNIQUES- ONLINE SEARCH ALGORITHM	9Hours				
search, lea	arning	gents and Unknown Environments-Online Search Problems, Online in Online Search – Constraint Satisfaction Problems- Backtrac sarial Search-Games, Optimal Decisions in Games, Alpha- Beta Pruni	cking C	•			
UNIT-IV		KNOWLEDGE AND REASONING	9Hours				
Order logic		Knowledge Based Agents, The Wumpus World, Propositional Log rences in first order logic – forward chaining – backward chaining –	Unificat	ion –Resolution.			
UNIT-V		PLANNING	9Hours				
i iaiiiiiig witii s	state sp	pace search – Partial-order planning – Planning graphs – Planning an Total Hours	45Hou				
Text Book(s)			•				
1. S. Russe 2003	el and l	P. Norvig, "Artificial Intelligence –A Modern Approach", Second Ed	dition,Pe	earson Education			
2.							
Reference Boo							
		Alan Mackworth, Randy Goebel, "Computational Intelligence: a Logess, 2004.	gical Ap	proach", Oxford			
2. G. Luge	er, "Art	cificial Intelligence: Structures and Strategies for Complex Problem ation, 2002	Solving"	Fourth Edition,			

Course Code		L	T	P	С	IA	EA	TM
Course Name	TOTAL QUALITY MANAGEMENT	3	0	0	3	40	60	100
Course Category	OPEN ELECTIVE COURSE- III	Syllabus Revision						
Pre-requisite	Principles of Management and F	rofessi	onal Et	hics				

Course Objectives:

The course should enable the students:

- 1. To introduce the basic functions of Total Quality Management
- 2. To learn the principles of TQM
- 3. To impart knowledge on statistical process control techniques
- 4. To study the usage of tools for problem solving
- 5. To familiarize various system standards

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description	Highest Bloom's Taxonomy
CO1	Understand the basics of TQM	K1
CO2	Explain the principles of TQM	К3
CO3	Solve problems on statistical process control	К3
CO4	Use the tools for finding solutions	K2
CO5	Gain knowledge on system standards.	K2

Correlation between Course Outcomes (COs) and Program Outcomes (POs):

						•		'DO \					_	_	ecific
		Program Outcomes (POs)									_	utcom			
COs													((PSOs)
	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PSO
		2	3	4	5	6	7	8	9	10	11	12	01	O2	3
CO1	S	S	-	-	S	-	-	-	-	-	-	L	M	-	S
CO2	S	S	-	S	-	-	-	-	-	-	-	L	M	-	S
CO3	S	S	-	S	-	-	-	-	-	-	1	L	M	-	S
CO4															
CO5	S	S	-	S	-	-	-	-	-	-	-	L	M	-	S

UNI	T-I	INTRODUCTION	9 Hours
	-	ry, dimensions of quality, quality planning, quality costs - analysts	-
		concepts of total quality management, historical review, principles of To	-
_		senior management, quality council, quality statements, Strate	egic planning,
demingphi	ilosophy, B	arriers to TQM implementation.	
UNI	Γ-II	TOTAL QUALITY MANAGEMENT PRINCIPLES	9 Hours
Customer	satisfactio	on – customer perception of quality, customer complaints, se	ervice quality,
customerre	etention, e	employee involvement – motivation, empowerment, teams, recognition	n and reward,
		l, benefits, continuous process improvement – Juran trilogy, pdsa cyc	
		 partnering, sourcing, supplier selection, supplier rating, relationship 	
	_	s – basic concepts, strategy, performance measure.	T,
periorman	cenicusure	o subte concepts, strategy, performance incubate.	
UNIT	Γ-III	TOTAL QUALITY MANAGEMENT TOOLS	9 Hours
Bench mar	king – reas	sons to benchmark, benchmarking process, quality function deployment (OFD) –houseof
		, benefits, taguchi quality loss function, total productive maintenance (T	
- ,	_	FMEA – stages of FMEA.	111) concept,
improvem	ciit iiccus,	FIVELY - stages of FIVELY.	
UNII	Γ-IV	QUALITY SYSTEMS	9
		•	Hours
Ouality Aı	ıditing - N	eed for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality Systems	
-	_	Quality System, Documentation, TS 16949, ISO 14000 – Concept,Rec	
Benefits.	tution of v	guarry bystem, becamendation, 15 10717, 150 11000 Gonecpt, nec	unements and
Deficitio.			
UNI	Γ-V	STATISTICAL PROCESS CONTROL (SPC)	9 Hours
	1 0		
	_	nality, statistical fundamentals – measures of central tendency and disper-	
and sample	e, normal o	curve, control charts for variables and attributes, process capability, conc	eptof six sigma,
new seven	managem	ent tools.	
		Total Hours	45 Hours
Text Book	(e)	Total Hours	45 Hours
	1		2002 (7. 1)
1.		Besterfiled, et al., "Total Quality Management", Pearson Education, In	c. 2003.(Indian
	reprint20	004).	
Reference	Book(s)		
1.	,	R.Evans& William M.Lidsay, "The Management and Control	of Quality",
	(5thEditi	on),South-Western (Thomson Learning), 2002.	
2.	Oakland	J.S. "Total Quality Management", Butterworth – Hcinemann Ltd., Oxford	. 1989.
3	Naravana	a V. And Sreenivasan, N.S. "Quality Management – Concepts and	Tacke" Nass
3	•	national 1996.	i rasks , incw
	1 rgemiter	114(10)1141 1770.	

Course Code		L	T	P	C	IA	EA	TM
Course Name	GLOBAL POSITIONING	3 0 0 3 40 60						100
	SYSTEMS							
Course	OPEN ELECTIVE COURSE-III	Syllabus Revision						
Category								
Pre-requisite	Basic knowledge of Communication Systems							

Course Objectives:

The course should enable the students-

- 1. To understand the basics of GPS.
- 2. To know the concepts of different coordinate system and its services.
- 3. To learn various codes and range models.
- 4. To understand the concepts of GPS propagation.
- 5. To study the various applications of GPS.

Course Outcomes:

UNIT-I

On completion of the course, the student will be able to

Course outcomes	Description	Highest Bloom's Taxonomy
CO1	Analyze the basics of GPS.	K2
CO2	Demonstrate the impact of various coordinate system and its services.	K2
CO3	Analyze the various codes and range models	К3
CO4	Describe the concepts of GPS propagation.	К6
CO5	Analyze the various applications of GPS.	К3

Correlation between Course Outcomes(COs) and Program Outcomes(POs):

COs	Program Outcomes(POs)													Program Specific Outcomes(PS		
	PO 1	PO 2	PO 3	PO 4	PO 5	P 06	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PSO 3	
CO1	M	S	-	-	-	-	L	-	-	L	_	L	L	L	-	
CO2	M	M	-	-	-	-	L	-	-	M	-	-	L	L	М	
CO3	S	L	-	-	-	-	M	-	-	M	_	-	-	-	L	
CO4	M	L	-	-	-	-	S	-	-	L	_	L	-	L	M	
CO5	L	L	-	-	-	-	S	-	-	S	_	L	L	L	S	

INTRODUCTION TO GPS

9Hours

History of GPS – BC-4 System – HIRAN – NNSS – NAVSTAR GLONASS and GNSS Systems –GPS Constellation – Space Segment – Control Segment – User Segment – Single and Dual Frequency– Point – Relative – Differential GPS – Static and Kinematic Positioning – 2D and 3D – reportingAnti Spoofing (AS); Selective Availability (SA) – DOP Factors.

UNIT-II	COORDINATE SYSTEMS AND SERVICES	9Hours
---------	---------------------------------	--------

Coordinate Systems – Geo Centric Coordinate System – Conventional Terrestrial Reference System – Orbit Description – Keplerian Orbit – Kepler Elements – Satellite Visibility – Topocentric Motion – Disturbed Satellite Motion – Perturbed Motion – Disturbing Accelerations - Perturbed Orbit – Time Systems – Astronomical Time System – Atomic Time – GPS Time – Need for Coordination – Link to Earth Rotation – Time and Earth Motion Services

UNIT-III CODES AND MODELS 9Hours

C/A code; P-code; Y-code; L1, L2 Carrier frequencies – Code Pseudo Ranges – Carries Phases – Pseudo Ranges – Satellite Signal Signature – Navigation Messages and Formats – Undifferenced and Differenced Range Models – Delta Ranges – Signal Processing and Processing Techniques – Tracking Networks – Ephemerides – Data Combination: Narrow Lane; Wide Lane – OTF Ambiguity.

UNIT-IV PROPAGATION CONCEPTS 9Hours

Propagation Media – Multipath – Antenna Phase Centre – Atmosphere in brief – Elements of Wave Propagation – Ionospheric Effects on GPS Observations – Code Delay – Phase Advances – Integer Bias – Clock Error – Cycle Slip – Noise-Bias – Blunders – Tropospheric Effects on GPS Observables– Multipath Effect – Antenna Phase Centre Problems and Correction.

UNIT-V GPS APPLICATIONS 9Hours

Inter Disciplinary Applications – Crystal Dynamics – Gravity Field Mapping – Atmospheric Occulation–Surveying – Geophysics – Air borne GPS – Ground Transportation – Space borne GPS – Metrological and Climate Research using GPS

Total Hours | 45Hours

Text Book(s)

B.Hoffman - Wellenhof, H.Lichtenegger and J.Collins, "GPS: Theory and Practice", 4threvised edition, Springer, Wein, New york, 1997

A.Leick, "GPS Satellites Surveying", 2nd edition, John Wiley & Sons, NewYork, 1995

Reference Book(s)

B.Parkinson, J.Spilker, Jr. (Eds), "GPS: Theory and Applications", Vol.I & Vol.II, AIAA, Enfant Promenade SW, Washington, DC 20024, 1996

A.Kleusberg and P.Teunisen (Eds), "GPS for Geodesy", Springer-Verlag, Berlin, 1996