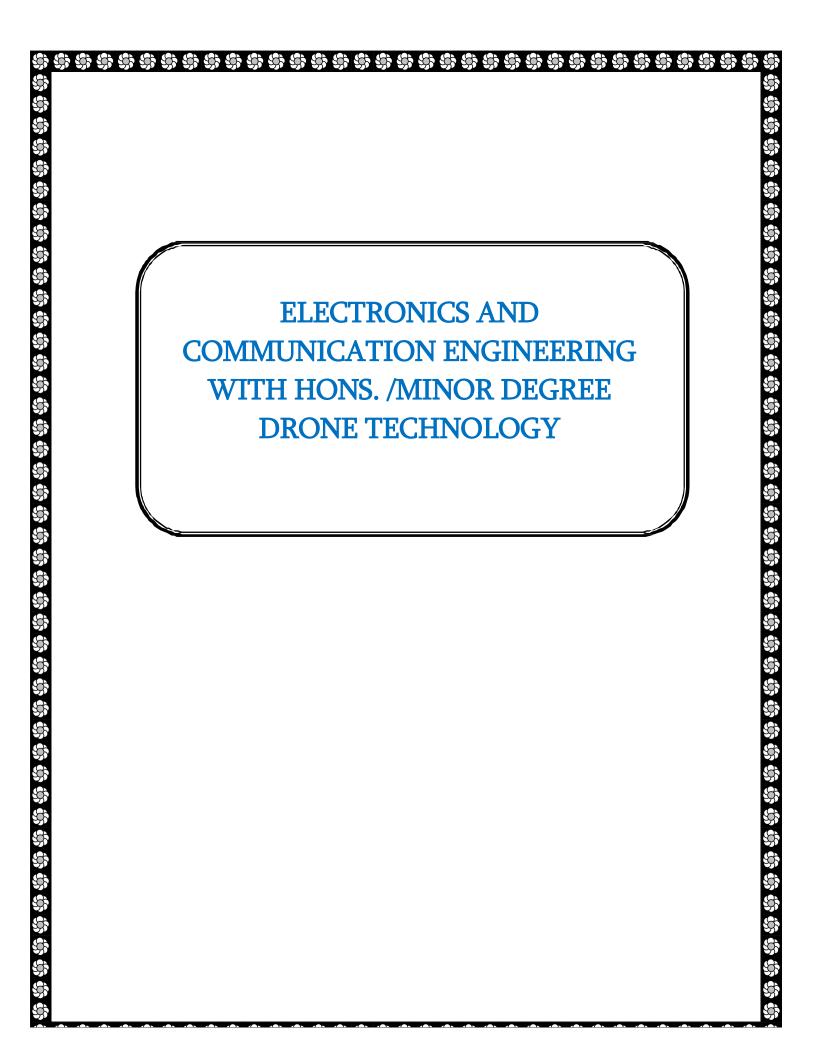


SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHA VIDYALAYA


(University established under section 3 of UGC Act 1956) (Accredited with 'A' Grade by NAAC)

CURRICULUM AND SYLLABUS FOR
FULLTIMEBE-ELECTRONICS AND COMMUNICATION ENGINEERING
HONS. /MINOR DEGREE IN EMERGING AREAS (OPTIONAL)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CURRICULUM & SYLLABUS

For B.E. (Hons.) Electronics and Communication Engineering with Specialization in

Drone Technology

S.No	Year	Sem	Course Code	Course Name	L	Т	P	С	IA	EA	TM
1	II	IV		Introduction To Drone Technology	2	1	0	3	40	60	100
2	III	V		Drone MRO Lab	0	1	3	3	40	60	100
3	III	VI		Embedded Avionics	2	1	0	3	40	60	100
4	IV	VII		Drone Innovation Lab	0	1	3	3	40	60	100
5	IV	VIII		Real Time Project Design	0	0	0	6	40	60	100
	•		Total	Credits				18	8		

Course Code		L	Т	P	С	IA	EA	TM
Course Name	INTRODUCTION TO DRONE TECHNOLOGY	2	1	0	3	40	60	100
Course	PROFESSIONAL		Syllal	ous Rev	ision		V	7.1.0
Category	SPECIALIZED COURSE							
Pre-requisite	Basic Electrical and Electronic	S						

Course Objectives:

The course should enable the students

- 1. To understand the historical development of unmannedaerial vehicles.
- 2. To understand the structure of unmannedaerial vehicles.
- 3. To learn about the various types of Drones and its application.
- 4. To understand different types of drone circuits/electronic parts and control system
- 5. To learn the criterion for the selection of various drone materials.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Under standing the history and Classification of UAV.	K2
CO2	Under standing the selection of drone components.	K2
CO3	Analyze Air frame Selection.	КЗ
CO4	Under standing the communication between ground station and drone.	K2
CO5	Under standing the tuning of PID controller.	К3

													Progr	Program Specific			
				Outcomes(PSOs)													
COs	РО	PO												PS	PSO3		
003	1	2	3	4	5	6	7	8	9	10	11	12	0	O2			
													1				
CO1	M	-	-	-	-	-	-	-	-	-	-	-	L	-	-		
CO2	M	M	L	-	-	-	-	-	-	-	-	-	L	-	-		
CO3	S	-	_	L	L	-	-	-	-	-	-	-	-	L	L		
CO4	M	-	L	-	-	-	-	-	-	-	-	-	L	-	-		
CO5	S	M	M	L	M	-	-	-	-	-	-	-	-	M	L		
	•	•	•	•	•		•		•		•		•				

UNIT-I	Introduction to Drones	9Hours
History of	UAV: Introduction to UAV Drones and its Sub systems -Classi	ification–Airframe
configuration	s –Multi-rotor. Trocopter, Quad, Hexa and Octocopter- Fixed-Wing	control surfaces-
Applications.		
	,	
UNIT-II	Components Selection	9Hours
	the System Components: Flight Controllers, Sensors, Propeller ESCs	s Control Surface
Actuators, Ba	ttery –Ground Control Software –Integration.	
UNIT-III	AirFrame Selection and Integration	9Hours
Airframe Sel	ection: Selection requirements-Integration of Motors, Controllers an	nd Pay loadsWith
	or Configuration for multi-rotor.	
UNIT-IV	Transmitter Receiver	9Hours
	Selection –Frequency Hopping Spread Spectrum, Tx-Rx Pairing at	
	lection and Configuration.	iid coiiiiguratioii,
Telemetry be	action and Configuration.	
UNIT-V	Control and Testing	9Hours
Drone Contro	ol. Altitude, Pitch, Roll and Heading Control- Tuning of PID Contro	
Drone Contro	· · · · · · · · · · · · · · · · · · ·	
Drone Contro	ol. Altitude, Pitch, Roll and Heading Control- Tuning of PID Contro n, Flight Testing and Trouble shooting.	l system, Ground
Drone Control control system	ol. Altitude, Pitch, Roll and Heading Control- Tuning of PID Contro	
Drone Control control system Text Book(s)	ol. Altitude, Pitch, Roll and Heading Control- Tuning of PID Controln, Flight Testing and Trouble shooting. Total Hours	l system, Ground
Text Book(s) 1. M.LaFay	ol. Altitude, Pitch, Roll and Heading Control- Tuning of PID Controln, Flight Testing and Trouble shooting. Total Hours 7, "Building Drones for Dummies", John Wiley & Sons, Inc., 2015.	ol system, Ground 45Hours
Text Book(s) 1. M.LaFay 2. E.Tooley	ol. Altitude, Pitch, Roll and Heading Control- Tuning of PID Controln, Flight Testing and Trouble shooting. Total Hours 7, "Building Drones for Dummies", John Wiley & Sons, Inc., 2015. 7, "Practical Drones: Building, Programming, and Applications", Apress, 20	ol system, Ground 45Hours
Text Book(s) 1. M.LaFay 2. E.Tooley	ol. Altitude, Pitch, Roll and Heading Control- Tuning of PID Controln, Flight Testing and Trouble shooting. Total Hours 7, "Building Drones for Dummies", John Wiley & Sons, Inc., 2015. 7, "Practical Drones: Building, Programming, and Applications", Apress, 20, parthy, "Drone Technology: Theory and Practice", Springer, 2020.	l system, Ground 45Hours
Text Book(s) 1. M.LaFay 2. E.Tooley 3 S.K.Kop Reference Bo	ol. Altitude, Pitch, Roll and Heading Control- Tuning of PID Controln, Flight Testing and Trouble shooting. Total Hours 7, "Building Drones for Dummies", John Wiley & Sons, Inc., 2015. 7, "Practical Drones: Building, Programming, and Applications", Apress, 20, parthy, "Drone Technology: Theory and Practice", Springer, 2020.	d system, Ground 45Hours

Course Code		L	T	P	С	IA	EA	TM
Course Name	DRONE MRO							
	LABORATORY	0	1	3	4	40	60	100
Course Category	PROFESSIONAL		Syllal	ous Rev	ision		V	7.1.0
	SPECIALIZED COURSE							
Pre-requisite	-							

Course Objectives:

The course should enable the students

- 1. To identify the battery to be used for UAV application.
- 2. To understand working of motor that can be used in UAV.
- 3. To Learn and exercise various measuring devices in drone.
- 4. To perform assembly practice of drones.
- 5. To understand the guide lines of drone flying in India.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcome		Bloom's
		Taxonomy
CO1	Understanding of GCS Application & Operations.	K2
CO2	Able to assemble a drone.	КЗ
CO3	Analyze the performance of battery.	К3
CO4	Design controller for drone stability.	K4
CO5	Perform calibration of different measuring devices.	K5

COs	ProgramOutcomes(POs)													Program Specific Outcomes (PSOs) PS PS P			
305	PO	PO													PS		
	1	1 O2 3 4 5 6 7 8 9 10 11 12													O3		
													1				
CO1	S	S	-	-	S	-	-	-	S	S	M	M	L	L	-		
CO2	S	S	L	M	S	-	-	-	S	S	M	M	-	L	-		
CO3	S	S	M	M	S	-	-	-	S	S	M	M	L	-	-		
CO4	S	S	M	M	S	M	M	L	S	S	M	M	-	L	M		
CO5	S	S	L	M	S	L	M	L	S	S	M	M	M	M	M		

	LIST OF EXPERIMENTS
1.	Study of GCS Application & Operations - User Interface with App - Working of
	GCS Application Control Drone using GCS
2.	Assembly-Component Handling Soldering Techniques, Routing of Wires,
3.	Assembly-Fitment of Components.
4.	Battery Management -Battery Charging- Battery Storage-Battery Handling
5.	Calibration Steps for Drone-Accelerometer Calibration- Compass Calibration
	Magnetometer Connection
6.	Calibration Steps for Drone-PID Tuning, GPS Reception
7.	Drone Connections & Operations-Auto Pilot Connection
8.	Drone Connections & Operations-Altitude Sensor Connections, GPS Connection
9.	Payload Integration-Electro-Mechanical Integration Camera Integrations
10.	Debugging-HardwareVisual Test, Hardware Function Test
	Tools:Ground Control Station (GCS) Application, MATLAB

Course Code		L	Т	P	С	IA	EA	TM
Course Name	EMBEDDED AVIONICS	2	1	0	3	40	60	100
Course	PROFESSIONAL		Sylla	bus Rev	visior	1	Į	V.1.0
Category	SPECIALIZED COURSE							
Pre-requisite	Digital Communication							

Course Objectives:

The course should enable the students

- 1. To understand different types of sensors used in drone technology.
- 2. To explain the basic concept of communication system.
- 3. To understand different types of pay loads used in drone technology.
- 4. To identify the best Protocols for given project.
- 5. To understand different types of drone applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Understanding selection of sensors and Placement of sensor.	K2
CO2	Design peripheral interface protocols	К3
CO3	Analyze payloads to drone	К3
CO4	Analyze Drone Data	КЗ
CO5	Develop AI based Drone applications.	K5

													Prog	ram Sp	ecific						
	ProgramOutcomes (POs) Outcom (PSO																				
COs	PO1	POI PO												PS	PS						
		2 3 4 5 6 7 8 9 10 11 12												Ο	O3						
													1	2							
CO1	M	L	L	-	-	-	-	-	-	-	-	-	L	-	-						
CO2	M	L	L	-	M	-	-	-	-	-	-	-	-	L	-						
CO3	S	M	M	-	M	-	-	-	-	-	-	-	M	ı	-						
CO4	L	_	-	M	-	-	_	_	_	-	-	-	-	-	-						
CO5	L	M	M	S	S	-	-	-	_	-	-	-	S	L	L						

UNIT-I	Sensors & Input Elements	9Hours
Sensor Select	ion Rules, Sensor Placement Considerations, Sensor Interfacing	g Methods,
User Input	Element Functions, Protocols & Peripherals Used Sensor Ty	pes, S-Bus
Communicati	on, and PWM- PPM Communication.	
UNIT-II	Protocols & Peripherals	9Hours
User Input	Protocols, Control Element Protocols, Peripheral Interface	Protocols,
Telemetry Pr	otocols, Multi-platform Communication.	
UNIT-III	Drone Payl oads	9Hours
Types of pay	l ·loads, LIDAR working, Gimbal working, Camera sensor worki	nσ Frame
	& Analysis, Image Frame Filtering.	g, 11ume
<u> </u>	ter i i i i i i i i i i i i i i i i i i i	
UNIT-IV	Data Logging Analysis	9Hours
Drone Data	Logging Format, Flight Parameters & Path Analysis, Embe	dded Data
	C Analysis for Avionics System.	
•	,	
UNIT-V	AI-Based Realtime Applications	9Hours
Python SDK	Interface – Command Sequence Execution, DRONES WARM, Vis	ion – based
	ng, Vision-based Landing.	
	Total Hours	45Hours
Text Book(s)		
1. Cary R. S	Spitzer, Avionics: Development and Implementation, CRC Press, 2	006.
2. R.P.G. C	ollinson, Introduction to Avionics Systems, Springer, 2011.	
	mable Microcontrollers with Applications (Cem Unsalan, H.Deniz	Gurhan).
Reference Bo	ok(s)	
1. Haykin,"	An Introduction to Analog and Digital Communications", Wiley	India Pvt.
Limited,		
	al and Jon Altschuld," Drone Technology in Architecture, Enginee	
	tion: Astrategic Guide to Unmanned Aerial Vehicle Operation and ntation", Willey, 2021.	1
hinbienie	intation, with y, 2021.	

Course Code		L	T	P	С	IA	EA	TM
Course Name	DRONE INNOVATION							
	LABORATORY	0	1	3	4	40	60	100
Course Category	PROFESSIONAL		Syllal	ous Rev	ision		V	7.1.0
	SPECIALIZED COURSE							
Pre-requisite	-							

Course Objectives:

The state of the s

The course should enable the students

- 1. Classify different microcontrollers and flight controllers.
- 2. Identify different types of ports and connectors.
- 3. Program different types of Protocols for communication.
- 4. Understand interfacing of payload used in drone technology.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcome		Bloom's
		Taxonomy
CO1	Under standing the programming of different types of	K2
	microcontrollers.	
CO2	Able to program and configure PWM.	КЗ
CO3	Able to program and configure USAT.	КЗ
CO4	Able to program and configure SPI&I2C.	КЗ
CO5	Able to do AI based Drone applications.	K4

													Program		
				,	Progr	amOu	tcome	e (PO	e)				S	pecific	
					i Togra	annou	cconic	.5 (1 0	3)				C	outcom (PSOs	
COs														•	
	PO	P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	O2	3	4	5	6	7	8	9	10	11	12	0	O2	O3
													1		
CO1	S	S	-	-	S	-	-	-	S	S	M	M	L	L	-
CO2	S	S	L	M	S	-	-	-	S	S	M	M	-	L	-
CO3	S	S	M	M	S	-	_	_	S	S	M	M	L	-	-
CO4	S													L	M
CO5	S	S	L	M	S	L	M	L	S	S	M	M	M	M	M

	LISTOF EXPERIMENTS
1.	Study and configure STM32.
2.	Blink the LED every two seconds using a microcontroller
3.	Measure the distance between the drone and the obstacle using an ultrasonic sensor.
4.	Embedded C Program to configure and use PWM
5.	Embedded C Program to configure and use UART
6.	Embedded C Program to configure and use SPI
7.	Embedded C Program to configure and use I2C
8.	Interfacing of Pay load- Camera/ Spray/ Box
9.	Al-based real-time applications-Object Detection
10.	Swarm Flying
Tools: G	round Control Station (GCS) Application, HILSimulator, MATLAB

Course Code		L	T	P	С	IA	EA	TM
Course Name	REAL TIME PROJECT	0	0	2	4	40	60	100
	DESIGN							
Course Category	PROFESSIONAL		Sylla	bus Re	visior	1	7	7.1.0
	SPECIALIZED COURSE							
Pre-requisite								

Course Objectives:

The course should enable the students

- 1. To carry out research / investigation and development work and to solve practical problems in the field of Drone.
- 2. To write and present a substantial technical report / documentin the field of Drone.
- 3. To Demonstrate the Research findings the Drone Technology.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest
Outcomes		Bloom's
		Taxonomy
CO1	Synthesize knowledge and skills previously gained and apply to an	КЗ
	in-depth study and execution of new technical problems in the area	
	of Drone.	
CO2	Defines pecification, adopt new methodologies and analyze to	K5
	produce a suitable research design and justify the design.	
CO3	Demonstrate the research findings through hardware ands of tware	K5
	tools.	
CO4	Present the findings of their technical solution in a written report.	К6
CO5	Publish the work inreputed journals and International Conferences.	K6

COs		ProgramOutcomes(POs)													ecific es
COs	PO	PO 2	РО	PO	P	P	PS	PS	PSO						
	1		3	4	5	6	7	8	9	10	0	0	0	O2	3
											11	12	1		
CO1	S	S	S	S	S	-	-	_	-	-	-	M	S	S	-
CO2	S	S	S	S	S	S	S	-	-	-	-	S	S	S	-
CO3	-	-	S	S	S	S	S	-	-	-	S	M	S	S	-

CO4	-	-	-	-	-	-	-	S	S	M	-	S	-	-	S
CO5	1	-	-	-	-	-	-	S	S	M	-	M	-	-	S

PRACTICAL SYLLABUS:

The project topic should be selected to ensure the satisfaction need to establish a direct link between education, national development and productivity and reduce the gap between the world of work and the world of study.

The project should have the following

- 1. Relevance to social needs of society.
- 2. Relevance to value addition to existing facilities in the institute.
- 3. Relevance to industry need.
- 4. Problems of nation alimportance.
- 5. Research and development in various domains.

The student should complete the following for Mini Project

- 1 Literature survey and Problem Definition.
- 2 Motivation for study and Objectives.
- 3 Preliminary design approaches.
- 4 Development and Verification.
- 5 Report and presentation.
- 6 Presenting the workin Reputed journals / International Conferences.