

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDYALAYA

(University established under section 3of UGC Act 1956) (Accredited with 'A' Grade by NAAC)

CURRICULUM FOR FULL TIME

ME - EMBEDDED SYSTEM TECHNOLOGIES

(Applicable for the Students admitted from 2023-24 onwards)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CURRICULUM I TO IV SEMESTERS (FULL TIME)

SEMESTER I

S.No:	COURSE CODE	COURSE TITLE	L	Т	P	С
1.		ADVANCED	4	2	0	4
	MESF231T10	MATHEMATICS FOR				
		ELECTRONICS ENGINEERS				
2.	MESF231T20	ADVANCED DIGITAL	4	2	0	4
	WIEST 231120	SYSTEM DESIGN				
3.	MESF231T30	MICROCONTROLLER	4	2	0	4
	WIESF231130	BASED SYSTEM DESIGN &				
		ANALYSIS				
4.	MESF231T40	DESIGN OF EMBEDDED	4	2	0	4
		SYSTEMS				
5.	MESF231T50	EMBEDDED	4	2	0	4
	WIEST 231130	PROGRAMMING				
6.		ELECTIVE I -	4	2	0	4
	,	TOTAL	24	12	0	24

SEMESTER II

S.No:	COURSE CODE	COURSE TITLE	L	Т	P	C
1.		REAL TIME OPERATING SYSTEM	4	2	0	4
2.		SOFTWARE TECHNOLOGY FOR EMBEDDED SYSTEMS	4	2	0	4
3.		EMBEDDED NETWORKING	4	2	0	4
4.		EMBEDDED COMMUNICATION AND SOFTWARE DESIGN	4	2	0	4
5.		ELECTIVE –II	4	2	0	4
6.		ELECTIVE – III	4	2	0	4
7.		EMBEDDED SYSTEM LABORATORY	0	0	3	2
	,	TOTAL	24	12	3	26

SEMESTER III

S.No:	COURSE CODE	COURSE TITLE	L	Т	P	С
1.		ELECTIVE – IV	4	2	0	4
2.		ELECTIVE – V	4	2	0	4
3.		ELECTIVE – VI	4	2	0	4
4.		PROJECT WORK PHASE-I	0	0	12	6
	ŗ	ГОТAL	12	6	12	18

SEMESTER IV

S.No:	COURSE CODE	COURSE TITLE	L	Т	P	С
1.		PROJECT WORK PHASE-II	0	0	24	12
	ŗ	ГОТАL	0	0	24	12

Total Credit to be earned for the award of degree is: 24+26+18+12=80

LIST OF ELECTIVES:

ELECTIVE 1:

S.No:	COURSE CODE	COURSE TITLE	L	Т	P	C
1.		ADVANCED DIGITAL SIGNAL PROCESSING	4	2	0	4
2.		RISC PROCESSOR ARCHITECTURE AND PROGRAMMING	4	2	0	4
3.	MESF231EA0	WIRELESS AND MOBILE COMMUNICATION	4	2	0	4
4.		BIG DATA ANALYTICS	4	2	0	4

ELECTIVE II & III:

S.No:	COURSE CODE	COURSE TITLE	L	T	P	С
1.		ASIC DESIGN	4	2	0	4
2.		ADVANCED EMBEDDED SYSTEMS	4	2	0	4
3.		EMBEDDED LINUX	4	2	0	4
4.		VLSI ARCHITECTURE AND DESIGN METHODOLOGIES	4	2	0	4
5.		PROGRAMMING WITH VHDL	4	2	0	4
6.		PRINCIPLE OF ROBOTICS	4	2	0	4
7.		APPLICATION OF MEMS TECHNOLOGY	4	2	0	4
8.		DIGITAL IMAGE PROCESSING	4	2	0	4

ELECTIVE IV, V & VI:

S.No:	COURSE CODE	COURSE TITLE	L	T	P	C
1.		EMBEDDED ANALOG INTERFACING	4	2	0	4
2.		EMBEDDED AUTOMOTIVE NETWORKING WITH CAN	4	2	0	4
3.		EMBEDDED SYSTEM DESIGN USING ARM PROCESSOR	4	2	0	4
4.		DISTRIBUTED EMBEDDED COMPUTING	4	2	0	4
5.		SMART METERS AND SMART GRID COMMUNICATION	4	2	0	4
6.		SOFT COMPUTING TECHNIQUES	4	2	0	4

SEMESTER - I

Course Code	MESF231T10	L	Т	P	С	IA	EA	TM
Course Name	ADVANCED MATHEMATICS FOR ELECTRONIC ENGINEERS	4	2	0	4	40	60	100
Course			S	yllabus F	Revision		V.	1.0
Category								
Pre- requisite	Basic Knowledge on Engineering Mat	hem	atics	3				

Course Objectives:

The course should enable the students -

- To encourage students to develop a working knowledge of the central ideas of linear algebra.
- ❖ To study and understand the concepts of probability and random variable of the various functions.
- To understand the notion of a Markov chain, and how simple ideas of conditional probability and matrices can be used to give a thorough and effective account of discrete-time Markov chains.
- ❖ To formulate and construct a mathematical model for a linear programming problem in real life situation.
- ❖ Introduce the Fourier Transform as an extension of Fourier techniques on periodic functions and to solve partial differential equations.
- ❖ To develop the use of matrix algebra techniques this is needed by engineers for practical applications.

Course Outcomes:

On completion of the course, the student will be able to

Description					
Develop knowledge and understanding in the fields of linear algebra.					
Develop knowledge and understanding in the fields of probability.					
Develop knowledge and understanding in the fields stochastic process.					
Develop knowledge and understanding in the fields of linear matrix.					
Develop knowledge and understanding in the fields of Fourier transform.					

UNIT-I	LINEAR ALGEBRA	12Hours
Vector spa	aces – norms – Inner Products – Eigen values using QR trans formations –	QR
factorizati	on - generalized eigenvectors - Canonical forms - singular value decompo	osition and
applicatio	ns – pseudo inverse – least square approximations -Toeplitz matrices and s	some
applicatio		
UNIT-II		12 Hours
Random	variables - Probability function - moments - moment generating funct	ions and their
	 Binomial, Poisson, Geometric, Uniform, Exponential, Gamma 	
	ns –Function of a Random Variable.	
	ing Tunetion of a random Tanada	
IINIT-III	MATRIX THEORY	12 Hours
	ortant matrix factorizations – The Cholesky decomposition – Q R factorizations	
1	, i	
squares m	ethod – Singular value decomposition - Toeplitz matrices and some applic	ations.
UNIT-IV	QUEUEING MODELS	12 Hours
	rocess – Markovian queues – Single and Multi-server Mode ls – Little's fo	
	1	illiula -
Wiacillile I	nterference Model – Steady State analysis – Se If Service queue.	
	EQUIDIED ED ANGEODA FOR DARRALL DIFFERENCIAL	10.11
UNIT-V	FOURIER TRANSFORM FOR PARTIAL DIFFERENTIAL	12 Hours
	EQUATIONS	
	ransforms: Definitions, properties-Transform of elementary functions	, Dirac Delta
functions	 Convolution theorem – Parseval's identity – Solutions to partial differer 	
Heat equa	Convolution theorem. Turse var 8 recently. Solutions to partial uniferen	
	tions, Wave equations, Laplace and Poison's equations.	
Reference	tions, Wave equations, Laplace and Poison's equations. Total Hours	ntial equations:
Reference	tions, Wave equations, Laplace and Poison's equations. Total Hours	60 Hours
	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Process."	60 Hours ew york
1. 2.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010.	60 Hours ew york sses, Academic
1.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears	60 Hours ew york sses, Academic
1. 2. 3.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears Asia, New Delhi 2012. ACC.NO: B120195	60 Hours ew york sses, Academic son Education,
1. 2.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears Asia, New Delhi 2012. ACC.NO: B120195 Sankara Rao, K. "Introduction to partial differential equations" Prentice	60 Hours ew york sses, Academic son Education,
1. 2. 3. 4.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears Asia, New Delhi 2012. ACC.NO: B120195	60 Hours ew york sses, Academic son Education,
1. 2. 3.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears Asia, New Delhi 2012. ACC.NO: B120195 Sankara Rao, K. "Introduction to partial differential equations" Prentice pvt, Ltd, New Delhi, 1997. ACC.NO: B58352 Andrews,L.C. and Philips.R.L. "Mathematical Techniques for engineering the series of the series	60 Hours ew york sses, Academic son Education, Hall of India,
1. 2. 3. 4.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears Asia, New Delhi 2012. ACC.NO: B120195 Sankara Rao, K. "Introduction to partial differential equations" Prentice pvt, Ltd, New Delhi, 1997. ACC.NO: B58352 Andrews,L.C. and Philips.R.L. "Mathematical Techniques for engineering scientists", Printice Hall of India, 2006.	60 Hours ew york sses, Academic son Education, Hall of India, ng and
1. 2. 3. 4. 5.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears Asia, New Delhi 2012. ACC.NO: B120195 Sankara Rao, K. "Introduction to partial differential equations" Prentice pvt, Ltd, New Delhi, 1997. ACC.NO: B58352 Andrews,L.C. and Philips.R.L. "Mathematical Techniques for engineering the series of the series	60 Hours ew york sses, Academic son Education, Hall of India, ng and
1. 2. 3. 4. 5.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears Asia, New Delhi 2012. ACC.NO: B120195 Sankara Rao, K. "Introduction to partial differential equations" Prentice pvt, Ltd, New Delhi, 1997. ACC.NO: B58352 Andrews,L.C. and Philips.R.L. "Mathematical Techniques for engineering scientists", Printice Hall of India,2006. O'Neil P.V. "Advanced Engineering Mathematics", (Thomson Asi a pvt 2007, cengage learning India private limited ACC.NO: B119035	60 Hours ew york sses, Academic son Education, Hall of India, ng and ltd, Singapore)
1. 2. 3. 4. 5.	Total Hours Book(s) Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, N (1989). Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces Press, (An imprint of Elsevier), 2010. Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears Asia, New Delhi 2012. ACC.NO: B120195 Sankara Rao, K. "Introduction to partial differential equations" Prentice pvt, Ltd, New Delhi, 1997. ACC.NO: B58352 Andrews,L.C. and Philips.R.L. "Mathematical Techniques for engineering scientists", Printice Hall of India,2006. O'Neil P.V. "Advanced Engineering Mathematics", (Thomson Asi a pvt)	60 Hours ew york sses, Academic son Education, Hall of India, ag and ltd, Singapore

Course Code	MESF231T20	L	T	P	C	IA	EA	TM
Course Name	ADVANCED DIGITAL SYSTEM DESIGN	4	2	0	4	40	60	100
Course	CORE		Sylla	bus R	evisi	on	V.	1.0
Category								
Pre-requisite	Basic Knowledge on Digital System I	esig	n					

Course Objectives:

The course should enable the students to

- ❖ Basics on Synchronous & Asynchronous digital switching design.
- ❖ Design & realisation of error free functional blocks for digital systems.

Course Outcomes:

On completion of the course, the student will be able to

	the course, the student will be able to
Course	Description
Outcomes	
CO1	Develop knowledge and understanding in the basics on Synchronous &
	Asynchronous digital switching design.
CO2	Develop knowledge and understanding in the basics on Fault Diagnosis and
	Testability Algorithms
CO3	Develop knowledge and understanding in the basics on Synchronous Design
	Using Programmable Devices.
CO4	Develop knowledge and understanding in the basics on Synchronous &
	Asynchronous digital switching design, Design & realisation of error free
	functional blocks for digital systems and system design using hardware
	descriptive language.
CO5	Develop knowledge and understanding in the basics on Synchronous &
	Asynchronous digital switching design, Design & realisation of error free
	functional blocks for digital systems and system design using hardware
	descriptive language.
	· · · · · · · · · · · · · · · · · · ·

UNIT-I SEQUENTIAL & ASYNCHRONOS CIRCUIT DESIGN 12 Hours

Analysis of Clocked Synchronous Sequential Networks (CSSN) Modelling of CSSN – State Stable Assignment and Reduction – Design of CSSN – Design of Iterative Circuits – ASM Chart – ASM Realization, Design of Arithmetic circuits for Fast adder- Array Multiplier. Analysis of Asynchronous Sequential Circuit (ASC) – Flow Table Reduction – Race s in ASC – State Assignment – Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards – Data Synchronizers – Designing Vending Machine Controller – Mixed Operating Mode Asynchronous Circuits.

UNIT-II FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS 12 Hours

 $\label{eq:control_problem} Fault\ Table\ Method\ -\ Path\ Sensitization\ Method\ -\ Boolean\ Difference\ Method\ -\ Kohavi\ Algorithm\ -\ Tolerance\ Techniques\ -\ The\ Compact\ Algorithm\ -\ Practical\ PLA's\ -\ Fault\ in\ PLA\ -\ Test\ Generation\ -\ Masking\ Cycle\ -\ DFT\ Schemes\ -\ Built-in\ Self\ Test.$

UNIT-III	SYNCHRONOUS DESIGN USING PROGRAMMABLE	12 Hours
	DEVICES	

Programming Techniques -Re-Programmable Devices Architecture- Function blocks, I/O blocks, Interconnects, Realize combinational, Arithmetic, Sequential Circuit with Programmable Array Logic; Architecture and application of Field Programmable Logic Sequence.

UNIT-IV NEW GENERATION PROGRAMMABLE LOGIC DEVICES 12 Hours

Fold back Architecture with GAL, EPLD, EPLA , PEEL, PML; PROM – Realization State machine using PLD – FPGA – Xilinx FPGA – Xilinx 2000 - Xilinx 3000.

UNIT-V SYSTEM DESIGN USING VHDL 12 Hours

VHDL Description of Combinational Circuits – Arrays – VHDL Operators – Compilation and Simulation of VHDL Code – Modelling using VHDL – Flip Flops – Registers – Counters – Sequential Machine – Combinational Logic Circuits – VHDL Code for – Serial Adder, Binary Multiplier – Binary Divider – complete Sequential Systems – Design of a Simple Microprocessor.

	Total Hours 60 Hours				
Reference Book((\mathbf{s})				
1.	Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002.				
	ACC.NO: B100970				
2.	Mark Zwolinski, "Digital System Design with VHDL", Pear son Education,				
	2004.				
3.	Stephen Brown and Zvonk Vranesic, "Fundamentals of Digital Logic with				
	VHDL Deisgn", Tata McGraw Hill, 2002				
4.	John M Yarbrough, "Digital Logic applications and Design", Thom son				
	Learning, 2001				
5.	Parag K Lala, "Digital System design using PLD", BS Publications, 2003				
6.	Nripendra N Biswas, "Logic Design Theory", Prentice Hal 1 of India, 2001				
	ACC.NO: B130827				
7.	Charles H. Roth Jr., "Fundamentals of Logic design", Thomson Learning,				
	2004. ACC.NO: B134442				
8.	Navabi.Z. "VHDL Analysis and Modelling of Digital Systems, McGraw				
	International, 1998.				

Course Code	MESF231T30	L	T	P	C	IA	EA	TM
Course Name	MICROCONTROLLER	4	2	0	4			
	BASED SYSTEM DESIGN					40	60	100
Course	CORE	Syllabus Revision V.1.0						
Category								
Pre-requisite	Basic Knowledge on Processor and Microcontroller							

Course Objectives:

The course should enable the students to

- ❖ Basic understanding of embedded systems design.
- ❖ This includes system requirements specifications, architectural and detailed design, and implementation, focusing on real-time applications.
- ❖ Learning the concepts will be enforced by a Project to design and develop an embedded system based on a single-chip microcontroller.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description
CO1	Develop knowledge and understanding on the system requirements specifications, architectural and detailed design, and implementation, focusing on
CO2	Develop knowledge and understanding on the system requirements specifications, architectural and detailed design, and implementation, focusing on real-time applications of 32 bit ARM 920
CO3	Understanding on the system requirements specifications, architectural and detailed design, and implementation of ARM Processor Organization.
CO4	Understanding on the system requirements specifications, architectural and detailed design, and implementation of Microcontroller Based Embedded
CO5	Learning the concepts will be enforced by a Project to design and develop an embedded system based on a single-chip microcontroller.

UNIT-I	REVIEW OF 8051	12 Hours

Introduction to Embedded System. Architecture, 8051- CPU Block diagram, Memory Organization, Program memory, Data Memory, Interrupts Peripherals: Timers, Serial Port, I/O Port Programming: Addressing Modes, Instruction Set, Programming Timing Analysis Case study with reference to 8-bit 8051 Microcontroller.

UNIT-II INTRODUCTION FOR 32 BIT ARM 920 12 Hours

32- Bit ARM920T Processor Core -Introduction: RISC/ARM Design Philosophy, About the ARM920T Core, Processor Functional Block Diagram. Programmers Model. Cache: Memory hierarchy and cache memory-. Memory Management Units: - ARM Instruction Set- Thumb Instruction Set. Interrupt Handling.

UNIT-III	ARM PROCESSOR ORGANIZATION	12 Hours					
ARM9 Mic	crocontroller Architecture-Block Diagram, Features, Memory	Mapping Memory					
Controller (MC)-External Bus Interface (EBI)-External Memory Interface-In	nterrupt Controller-					
System Tim	System Timer (ST- Real Time Clock (RTC) Parallel Input/output Controller (PIO).						
		,					
UNIT-IV	PERIPHERALS OF ARM PROCESSOR	12 Hours					
AT91RM92	00 PERIPHERALS -Universal Synchronous Asynchronous Re	eceiver Transceiver					
	lock Diagram, Functional Description, Synchronous and Asynchron						
,							
UNIT-V	DEVELOPMENT & DEBUGGING TOOLS FOR	12 Hours					
01121	MICROCONTROLLER BASED EMBEDDED SYSTEMS	12 120 022					
Software an	d Hardware tools like Cross Assembler, Compiler, Debugger, S	imulator In-Circuit					
	CE), Logic Analyser.	initiation, in circuit					
Zimanator (It							
	Total Hours	60 Hours					
Reference I		ov Hours					
1.	Intel Hand Book on "Embedded Microcontrollers", 1st Edition.						
2.	Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mc	Kinlay "The 8051					
2.	Microcontroller and Embedded Systems using Assembly and C",	• •					
3.	ARM Company Ltd. "ARM Architecture Reference Manual—ARM D DI 0100E".						
4.	David Seal "ARM Architecture Reference Manual", 2001						
4.	England; Morgan Kaufmann Publishers.	Addison Wesley,					
5.							
.	Designing and Optimizing System Software", 2006, Elsevier.	severeper s curae					
6.	Ayala, Kenneth J "8051 Microcontroller - Architecture, Programming &						
	Applications", 1 st Edition, Penram International Publishing.						
7.	Steve Furber, "ARM System-on-Chip Architecture", 2 nd Edition	n, Pearson Education					
	ACC.NO: B129645.						
8.	Predko, Myke, "Programming and Customizing the 8051	Microcontroller", 1 st					
9.	Edition, McGraw Hill International ACC.NO: B100892. Schultz, Thomas W, "C and the 8051 Programming for Multita	selving" 1 st Edition					
J.	Prentice Hall.	isk ilig , i Euluoli,					
10.	Stewart, James W, Miao, Kai X, "8051 Microcontroller: Hard	dware, Software and					
- 0.	Interfacing", 2 nd Edition, Prentice Hall.	,					
11.	Arnold. S. Berger, "Embedded Systems Design - An introduction	n t o Processes, Tools					
	and Techniques", Easwer Press.						
12.	Raj Kamal, "Microcontroller - Architecture Programming Into	erfacing and System					
4.5	Design" 1 st Edition, Pearson Education.	- · · · · · · · · · · · · · · · · · · ·					
13.	P.S Manoharan, P.S. Kannan, "Microcontroller based System I	Design", 1 st Edition,					
1.4	Scitech Publications ACC.NO: B113621.	una a a m tura 11 a una A un					
14.	David Calcutt, Fred Cowan, Hassan Parchizadeh, "8051 Mic Application based Introduction", Elsevier.	cro controllers – An					
15.	Ajay Deshmukh, "Microcontroller - Theory & Applications", Tat	a McGraw Hill					
13.	Ajay Desimiakii, Microcontroller - Theory & Applications, Tat	a wicoraw IIII.					

Course Code	MESF231T40	L	T	P	C	IA	EA	TM
Course Name	DESIGN OF EMBEDDED SYSTEMS	4	2	0	4	40	60	100
Course	CORE		Syllal	bus R	evisi	on	V	7.1.0
Category								
Pre-requisite	Basic Knowledge on Embedded Systems							

Pre-requisite | Basic Knowledge on Embedded Sys

Course Objectives:

The course should enable the students to

- Basics Embedded Design Cycle.
- Design & realization of system with testing process.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description
CO1	Develop knowledge and understanding on the basics of embedded systems design life cycle.
CO2	Develop knowledge and understanding on the basics of partitioning decision.
CO3	Develop knowledge and understanding on the basics of interrupt service routines.
CO4	Develop knowledge and understanding on the basics of in circuit emulators.
CO5	Develop knowledge and understanding on the basics embedded systems design and the Testing procedure to be done for the embedded applications.

UNIT-I EMBEDDED DESIGN LIFE CYCLE 12 Hours

Embedded Design life cycle – Product specification – Hardware / Software partitioning – Detailed hardware and software design – Integration – Product testing – Selection Processes – Microprocessor Vs Micro Controller – Performance tools – Bench marking – RTOS Micro Controller – Performance tools – Bench marking – RTOS availability – Tool chain availability – Other issues in selection processes.

UNIT-II PARTITIONING DECISION

12 Hours

Partitioning decision – Hardware / Software duality – co ding Hardware – ASIC revolution – Managing the Risk – Co-verification – execution environment – memory organization – System startup – Hardware manipulation – memory – mapped access – speed and code density.

UNIT-III INTERRUPT SERVICE ROUTINES

12 Hours

Interrupt Service routines – Watch dog timers – Flash memory Basic toolset – Host based debugging – Remote debugging – ROM emulators – logic Analyzer – Caches – Computer optimisation – Statistical profiling.

UNIT-IV	IN CIRCUIT EMULATORS 12 Hours					
In circuit emulators – Buller proof run control – Real time trace – Hardware break points –						
Overlay memory	Overlay memory – Timing constraints – Usage issues – Triggers.					
UNIT-V	TESTING	12 Hours				
Testing – Bug tra	Testing – Bug tracking – reduction of risks & costs – Performance – Unit testing – Regression					
testing – Choosin	ng test cases - Functional tests - Coverage tests - Testing embedde	ed software –				
Performance testi	ng – Maintenance.					
	Total Hours 60 Hours					
Reference Book((s)					
1.	Arnold S. Berger – Embedded System Design CMP books, USA 2002.					
2.	Sriram Iyer, "Embedded Real time System Programming".					
3.	3. ARKIN, R.C., Behaviour-based Robotics, The MIT Press, 1998.					

Course Code	MESF231T50	L	T	P	C	IA	EA	TM
Course Name	EMBEDDED PROGRAMMING	4	2	0	4	40	60	100
Course	CORE	Syllabus Revision V.1.0				7.1.0		
Category								
Duo noquigito	Posis Vnoveledge on Programming							

Pre-requisite Basic Knowledge on Programming

Course Objectives:

The course should enable the students

- ❖ To impart the knowledge of the Embedded Programming.
- ❖ To Impart the knowledge in the Application with Data Structures.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understanding on the various programming concepts used
	in the field of embedded.
CO2	Develop knowledge and understanding on the various programming concepts used
	in the field of embedded OS fundamentals.
CO3	Develop knowledge and understanding on the various programming concepts used
	in the field of embedded C programming.
CO4	Develop knowledge and understanding on the various programming concepts used
	in the field of embedded applications using data structures.
CO5	Develop knowledge and understanding on the various programming concepts used
	in the field of embedded java.

Introduction – Issues in Real Time Computing – Structure of a Real Time System – Task classes – Performance Measures for Real Time Systems – Estimating Program Run Times – Task Assignment and Scheduling – Classical uniprocessor scheduling algorithms – Uniprocessor scheduling of IRIS tasks – Task assignment – Mode changes and Fault Tolerant Scheduling.

UNIT-II EMBEDDED OS FUNDAMENTALS 12 Hours

Introduction: Operating System Fundamentals, General and Unix OS architecture Embedded Linux. Booting Process in Linux GNU Tools: gcc, Conditional Compilation, Pre-processor directives, Command line arguments, Make files.

UNIT-III EMBEDDED C PROGRAMMING 12 Hours

Review of data types –scalar types-Primitive types-Enumerated types-sub ranges Structure types-character strings –arrays- Functions introduction to Embedded C- Introduction, Data types Bit manipulation, Interfacing C with Assembly. Embedded programming issues -Re-entrancy, Portability, Optimizing and testing embedded C programs.

UNIT-IV	EMBEDDED APPLICATIONS USING DATA STRUCTURES	12 Hours
Linear data struct	ures – Stacks and Queues Implementation of stacks and Queues - Linl	ked List -
Implementation o	of linked list, Sorting, Searching, Insertion and Deletion, Nonlinear st	ructures.
UNIT-V	EMBEDDED JAVA	12 Hours
Introduction to O	Object Oriented Concepts. Core Java/Java Core- Java buzzwords, O	verview of Java
	ata types, variables and arrays, Operators, Control statements. En	
	2ME, Connected Device configuration, Connected Limited device	
_	y of MIDP applications, Advantages of MIDP.	,
,		
	Total Hours	60 Hours
Text Book(s)		
1.	GNU/Linux application programming, Jones, M Tim, Dream to	ech press, New
·	Delhi.	1 /
2.	Embedded / Real-Time Systems : concepts, Design and Program	ming -The
	Ultimate Reference, Prasad K.V.K.K, Dream tech Press, New Delh	
3.	Beginning J2ME-From Novice to Professional-3 rd Edition, Sing	Li
4.	and Jonathan Knudsen, Dreamtech Press, New Delhi The Complete reference Java2, 5 th Edition, Herbert Schildt, TMH	
5.	Data structures Through 'C' Language, Samiran Chattopadhyay,	Debarata Ghosh
3.	Dastidar, Matangini Chattopadhyay, DOEACC Society.	Decurate Grossi
6.	C Programming Language, Kernighan, Brian W, Ritchie, Dennis M	I, PHI
	publications.	
7.	C and the 8051 Programming Volume II, Building efficient applica W Schultz, PHI.	tions, Thomas
Reference Book((\mathbf{s})	
1	Unix Network Programming, Stevens, W Richard, PH, New Jersey	ACC.NO:
	B126496	
2.	Linux Device Drivers, 2nd Edition, By Alessandro Rubini & Jonatl	nan Corbet,
2	O'Reilly ACC.NO: B65039	
3	Data Structures Using C- ISRD group, TMH	
4.	Data structures –Seymour Lipschutz, Schaums Outlines	
5.	Let us C, Yashwant Kanetkar ACC.NO: B113351	
6. 7.	C Programming for Embedded systems, Zurell, Kirk C and the 8051 Programming for Multitasking – Schultz, Thomas V	X/
8.	C with assembly language, Steven Holzner, BPB publication ACC.	
9.	C and the 8051: Hardware, Modular Programming and Multit	
<i>)</i> .	Schultz, Thomas W	usking voi i
10.	Art of C Programming, Jones, Robin, Stewart, Ian ACC.NO: B560	37
11.	Kelley, A & Pohl, I;, " A Book on C", Addison – Wesley	
12.	Advanced Linux Programming Mark Mitchell, Jeffrey Oldham, and	d Alex Samuel,
	Techmedia.	•
13.	Embedded/ real-time systems: concepts, design and programming by Prasad, K V K K, Dreamtech press, New Delhi. ACC.NO: B12788	· ·

SEMESTER - II

Course Code		L	Т	P	C	IA	EA	TM
Course Name	REAL TIME OPERATING SYSTEM	4	2	0	4	40	60	100
Course Category	CORE		Sylla	bus R	evisi	on	V.	1.0
Duo magnigita	Dagie Vnovyledce en Embedded Cyste	3 122 C						

Pre-requisite Basic Knowledge on Embedded Systems

Course Objectives:

The course should enable the students

- ❖To expose the students to the fundamentals of interaction of OS with a computer and User computation.
- ❖To teach the fundamental concepts of how process are created and controlled with OS.
- ❖To study on programming logic of modelling Process based on range of OS features.
- ❖To compare types and Functionalities in commercial OS.
- ❖To discuss the application development using RTOS.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge on the operating system, modelling process based on the
	OS and how to develop the application using operating systems.
CO2	Develop knowledge on the operating system, modelling process based on the
	OS and how to develop the application using RTOS.
CO3	Develop knowledge on the operating system, modelling process based on the
	OS and how to develop the application using real time kernel.
CO4	Develop knowledge on the operating system, modelling process based on the
	OS and how to develop the application using real time models and languages.
CO5	Develop knowledge on the operating system, modelling process based on the
	OS and how to develop the application using RTOS application domains.

UNIT-I REVIEW OF OPERATING SYSTEMS 12 Hours

Basic Principles - Operating System structures - System Calls - Files - Processes - Design and Implementation of processes - Communication between processes - Introduction to Distributed operating system - issues in distributed system: states, events, clocks-Distributed scheduling-Fault & recovery.

UNIT-II RTOS 12 Hours

Real-time concepts, Hard Real time and Soft Real-time, Differences between General Purpose OS & RTOS, Basic architecture of an RTOS, Scheduling Systems, Inter-process communication, Performance Matric in scheduling models, Interrupt management in RTOS environment, Memory management. File systems, I/O Systems, Advantage and disadvantage of RTOS. POSIX standards RTOS Issues - Selecting a Real Time Operating System, RTOS comparative study.

8.

9. 10.

SYLLABUS (2023-24) M.E (EMBEDDED SYSTEM TECHNOLOGIES)

UNIT-III	REAL TIME KERNEL	12 Hours
VxWorks Schedu	uling and Task Management - Real-time scheduling, Task Creat	ion, Intertask
Communication,	Pipes, Semaphore, Message Queue, Signals, Sockets, Interrupts I	/O Systems -
	cture, Device Driver Studies, Driver Module explanation, Imple	•
	a peripheral Case study using Vxworks.	
UNIT-IV	REAL TIME MODELS AND LANGUAGES	12 Hours
Event Based – Pr	rocess Based and Graph based Models – Real Time Languages – R	TOS Tasks –
RT scheduling	- Interrupt processing - Synchronization - Control Blocks	Memory
Requirements.		•
•		
UNIT-V	RTOS APPLICATION DOMAINS	12 Hours
Case studies- R7	TOS for Image Processing – Embedded RTOS for Network Com	munication –
	olerant Applications – RTOS for Control Systems.	
	•	
	Total Hours	60 Hours
Reference Book((\mathbf{s})	
1.	Silberschatz, Galvin, Gagne "Operating System Concepts", 66 Wiley,2003 ACC.NO: B132752.	th ed, John.
2.	D.M.Dhamdhere," Operating Systems, A Concept-Based Approch	,TMH,2008
3.	Raj Kamal, "Embedded Systems- Architecture, Programming and McGraw Hill, 2006. ACC.NO: B133063.	
4.	Herma K., "Real Time Systems – Design for distributed Applications", Kluwer Academic, 1997.	l Embedded
5.	Charles Crowley, "Operating Systems-A Design Oriented approaulil, 1997.	ach" McGraw
6.	C.M. Krishna, Kang, G.Shin, "Real Time Systems", McGraw Hill,	
7.	Raymond J.A.Bhur, Donald L.Bailey, "An Introduction to Real Ti PHI1999.	me Systems",

Mukesh Sighal and N G Shi "Advanced Concepts in Operating System",

McGraw Hill **ACC.NO: B132360**. VxWorks Programmers Guide.

VxWorks Reference Manual.

Course Code		L	T	P	C	IA	EA	TM
Course Name	SOFTWARE TECHNOLOGY FOR EMBEDDED SYSTEMS	4	2	0	4	40	60	100
Course	CORE		Sylla	bus R	evisi	on	V.	1.0
Category								
Pre-requisite	Basic Knowledge on Programming							

Course Objectives:

The course should enable the students to

❖ Use of C language for embedded applications, concepts, co-design methods.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge in using of Programming Embedded Systems.
CO2	Develop knowledge in using of C and Assembly.
CO3	Develop knowledge in using of Embedded Program and Software Development
	Process.
CO4	Develop knowledge in using of C language and UML Language for a real time
	application.
CO5	Develop knowledge in using of web architectural framework for embedded
	system.

UNIT-I PROGRAMMING EMBEDDED SYSTEMS 12 Hours

Embedded Program – Role of Infinite loop – Compiling, Linking and locating – downloading and debugging – Emulators and simulators processor – External peripheral s – Toper of memory – Memory testing – Flash Memory.

UNIT-II C AND ASSEMBLY 12 Hours

Overview of Embedded C - Compilers and Optimization - Programming and Assembly –Register usage conventions – typical use of addressing options – instruction sequencing– Procedure call and return – parameter passing – retrieving parameters – everything in pass by value – temporary variables.

UNIT-III	EMBEDDED PROGRAM AND SOFTWARE	12 Hours
	DEVELOPMENT PROCESS	

Program Elements – Queues – Stack- List and ordered lists- Embedded programming in C++- Inline Functions and Inline Assembly - Portability Issues - Embedded Java- Software Development process: Analysis – Design- Implementation – Testing – Validation- Debugging - Software maintenance.

UNIT-IV	UNIFIED MODELLING LANGUAGE	12 Hours				
Object State Beha	aviour - UML State charts - Role of Scenarios in the Definition of	Behaviour –				
Timing Diagrams	- Sequence Diagrams - Event Hierarchies - Types and Strategies of	of Operations				
 Architectural I 	Design in UML Concurrency Design – Representing Tasks – S	ystem Task				
Diagram – Concu	rrent State Diagrams – Threads. Mechanistic Design – Simple Patte	rns.				
UNIT-V	WEB ARCHITECTURAL FRAMEWORK FOR	12 Hours				
	EMBEDDED SYSTEM					
Basics - Client/S	Server model- Domain Names and IP address – Internet Infras	tructure and				
Routing – URL –	TCP/IP protocols - Embedded as Web Client - Embedded Web serv	vers - HTML				
=	Case study: Web-based Home Automation system.					
The beautiful case state, where cased results remove any state.						
	Total Hours	60 Hours				
Reference Book(60 Hours				
Reference Book(s) David E.Simon: "An Embedded Software Primer", Pearson Educat					
1.	S) David E.Simon: "An Embedded Software Primer", Pearson Education ACC.NO: B102775.	t ion, 2003				
1. 2.	David E.Simon: "An Embedded Software Primer", Pearson Educate ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" Company of the Com	t ion, 2003 Oreilly, 2003.				
1.	David E.Simon: "An Embedded Software Primer", Pearson Educate ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" CH.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet and World Wich	t ion, 2003 Oreilly, 2003. le Web –				
1. 2.	David E.Simon: "An Embedded Software Primer", Pearson Educat ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" CH.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet and World Wich How to Program" Third Edition, Pearson Education, 2001. ACC.N	t ion, 2003 Oreilly, 2003. le Web –				
1. 2. 3.	David E.Simon: "An Embedded Software Primer", Pearson Educat ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" of H.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet and World Wichelmann How to Program" Third Edition, Pearson Education, 2001. ACC.N B111693.	Oreilly, 2003. le Web –				
1. 2.	David E.Simon: "An Embedded Software Primer", Pearson Educat ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" of H.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet and World Wich How to Program" Third Edition, Pearson Education, 2001. ACC.N B111693. Bruce Powel Douglas, "Real-Time UML, Second Edition:	Dreilly, 2003. Dreilly, 2003. Developing				
1. 2. 3.	David E.Simon: "An Embedded Software Primer", Pearson Educat ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" of H.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet a nd World Wich How to Program" Third Edition, Pearson Education, 2001. ACC.N B111693. Bruce Powel Douglas, "Real-Time UML, Second Edition: Efficient Object for Embedded Systems, 2nd edition, 1999, Addisonance of the control of the con	Dreilly, 2003. Developing on-Wesley.				
1. 2. 3.	David E.Simon: "An Embedded Software Primer", Pearson Educat ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" of H.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet and World Wich How to Program" Third Edition, Pearson Education, 2001. ACC.N B111693. Bruce Powel Douglas, "Real-Time UML, Second Edition:	Dreilly, 2003. Developing on-Wesley.				
1. 2. 3. 4.	David E.Simon: "An Embedded Software Primer", Pearson Educat ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" of H.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet a nd World Wich How to Program" Third Edition, Pearson Education, 2001. ACC.N B111693. Bruce Powel Douglas, "Real-Time UML, Second Edition: Efficient Object for Embedded Systems, 2nd edition, 1999, Addisonance of the control of the con	Dreilly, 2003. Developing on-Wesley.				
1. 2. 3. 4.	David E.Simon: "An Embedded Software Primer", Pearson Educat ACC.NO: B102775. Michael Barr, "Programming Embedded Systems in C and C++" of H.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet a nd World Wich How to Program" Third Edition, Pearson Education, 2001. ACC.N B111693. Bruce Powel Douglas, "Real-Time UML, Second Edition: Efficient Object for Embedded Systems, 2nd edition, 1999, Addisonal Daniel W.lewis "Fundamentals of Embedded Software where C and ACC.N.)	Dreilly, 2003. de Web – IO: Developing on-Wesley. dd Assembly				

Course Code		L	Т	P	C	IA	EA	TM
Course Name	EMBEDDED NETWORKING	4	2	0	4	40	60	100
Course Category	CORE		Syllal	bus R	evisi	on	V	7.1.0
Pre-requisite	Basic Knowledge on Design in Embed	lded	Syster	ns				

Course Objectives:

The course should enable the students to

- ❖ Impart knowledge on Serial and parallel communication protocols.
- ❖ Application Development using USB and CAN bus for PIC microcontrollers.
- ❖ Application development using Embedded Ethernet for Rabbit processors.
- Wireless sensor network communication protocols.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description						
Outcomes							
CO1	Develop knowledge in the protocols, embedded communication protocols.						
CO2	Develop knowledge in USB and CAN bus.						
CO3	Develop knowledge in controller area network.						
CO4	Develop knowledge in embedded ethernet.						
CO5	Develop knowledge in wireless embedded networking related application.						

UNIT-I EMBEDDED COMMUNICATION PROTOCOLS 12 Hours

Embedded Networking: Introduction—Serial / Parallel Communication—Seri al communication protocols -RS232 standard — RS485 — Synchronous Serial Protocols - Serial Peripheral Interface (SPI) — Inter Integrated Circuits (I2C) — PC Parallel port programming -ISA/PCI Bus protocols — Firewire.

UNIT-II USB AND CAN BUS 12 Hours

USB bus — Introduction — Speed Identification on the bus — USB States — USB bus communication: Packets — Data flow types — Enumeration — Descriptors — PI C 18 Microcontroller USB Interface — C Programs — CAN Bus — Introduction - Frames — Bit stuffing — Types of errors — Nominal Bit Timing — PIC microcontroller CAN Interface — A simple application with CAN.

UNIT-III	CONTROLLER AREA NETWORK	12 Hours
Controller Area N	Network – Underlying Technology, CAN Overview – Selecting a CA	N Controller –
CAN developme	nt tools. Implementing CAN open Communication layout and 1	requirements –
Comparison of	implementation methods - Micro CAN open - CAN open s	source code –
Conformance test	- Entire design life cycle.	
UNIT-IV	EMBEDDED ETHERNET	12 Hours
Exchanging mess	ages using UDP and TCP - Serving web pages with Dynamic Data	a – Serving web
pages that respon	d to user Input – Email for Embedded Systems – Using FTP – Keep	ing Devices and
Network secure.		
UNIT-V	WIRELESS EMBEDDED NETWORKING	12 Hours
Wireless sensor n	etworks – Introduction – Applications – Network Topology – Lo	calization –
Time Synchroniz	ation - Energy efficient MAC protocols -SMAC - Energy Effic	eient and robust
routing – Data Ce	entric routing.	
	Total Hours	60 Hours
Reference Book((s)	
1.	Frank Vahid, Givargis 'Embedded Systems Design: A Unified Ha	rdware/ Software
	Introduction', Wiley Publications	
2.	Jan Axelson, 'Parallel Port Complete', Penram publications.	
3.	Dogan Ibrahim, 'Advanced PIC microcontroller projects in C', Els	
4.	Jan Axelson 'Embedded Ethernet and Internet Complete', Penram	
5.	Bhaskar Krishnamachari, 'Networking wireless sensors', Cambridge	
6.	Glaf P.Feiffer, Andrew Ayre and Christian Keyold, "Embedded no	etworking with
	CAN and CAN open", Embedded System Academy 2005.	

Course Code		L	T	P	C	IA	EA	TM
Course Name	EMBEDDED COMMUNICATION SOFTWARE DESIGN	4	2	0	4	40	60	100
Course	CORE		Sylla	bus R	evisi	on	V.	1.0
Category Pre-requisite	Basic Knowledge on Data Comr	nunication	and N	Jetwoi	rks			

Course Objectives:

The course should enable the students

- ❖ To know about the OSI Model for Embedded Communication.
- ❖ To know about the software design for the communication.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understanding the various aspects of OSI reference model.
CO2	Develop knowledge and understanding the various aspects of software partitioning.
CO3	Develop knowledge and understanding the various aspects tables & other data structures.
CO4	Develop knowledge and understanding the various aspects of management software.
CO5	Develop knowledge and understanding the various aspects of multi board communication software design.

OSI REFERENCE MODEL **UNIT-I**

12 Hours

Communication Devices - Communication Echo System - Design Consideration - Host Based Communication – Embedded Communication System – OS Vs RTOS.

UNIT-II SOFTWARE PARTITIONING

12 Hours

Limitation of strict Layering - Tasks & Modules - Modules and Task Decomposition -Layer2 Switch – Layer3 Switch / Routers – Protocol Implementation – Management Types – Debugging Protocols.

TABLES & OTHER DATA STRUCTURES UNIT-III

12 Hours

Partitioning of Structures and Tables – Implementation – Speeding Up access – Table Resizing – Table access routines – Buffer and Timer Management – Third Party Protocol Libraries.

UNIT-IV MANAGEMENT SOFTWARE

12 Hours

Device Management - Management Schemes - Router Management - Management of Sub System Architecture – Device to manage configuration – System Start up and configuration.

UNIT-V	MULTI BOARD COMMUNICATION SOFTWARE	12 Hours
	DESIGN	
Multi Board Arc	hitecture – Single control Card and Multiple line C and Architectur	e –Interface
for Multi Board	software - Failures and Fault - Tolerance in Multi Board Systems	Hardware
independent deve	elopment – Using a COTS Board – Development Environment – Tes	t Tools.
	Total Hours	60 Hours
Reference Book	(s)	
1.	Sridhar .T, "Designing Embedded Communication Software" CMI	P Books,
	2003.	
2.	Comer.D, "Computer networks and Internet", Third Edition, Prent	ce Hall,
	2001.	

Course Code		L	Т	P	C	IA	EA	TM
Course Name	EMBEDDED SYSTEMS LABORATORY	0	0	3	2	40	60	100
Course Category	CORE	Syllabus Revision V.1.0				V.1.0		
Pre- requisite	Basic Knowledge on Microprocessor and Micro	cont	rolle	r				

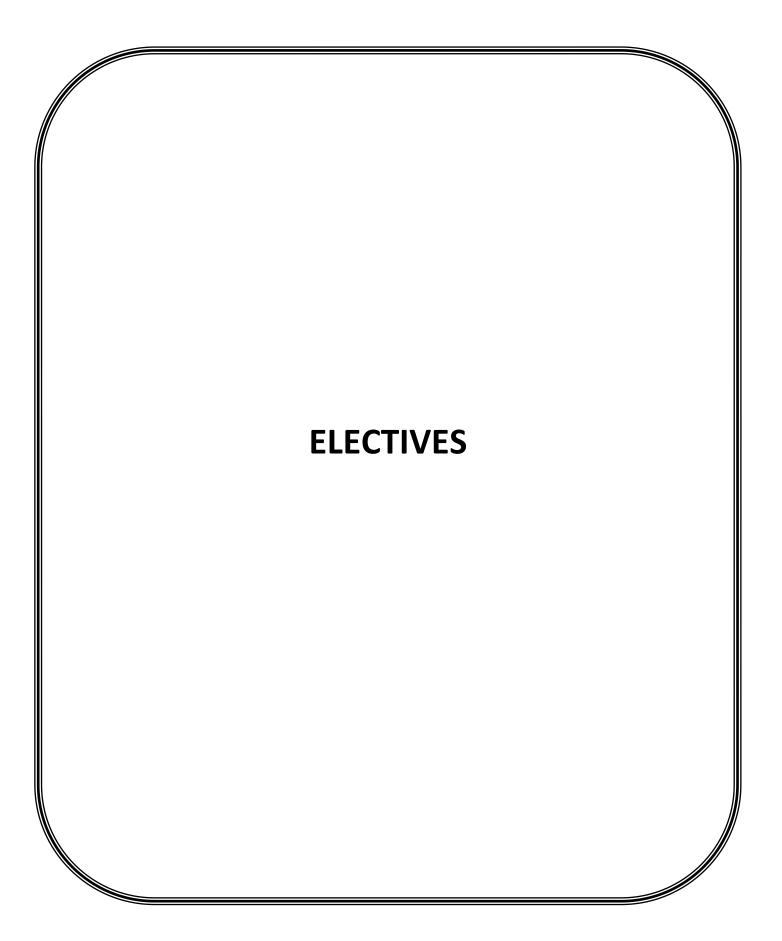
Course Objectives:

The course should enable the students

- ❖ To design 8051, PIC and 16 bit processors for I/O programming, serial port programming for PWM generation, motor control, LCD, RTC and Sensor interfacing.
- ❖ To design and analyse wired/wireless networks using NS2 simulator.

Course Outcomes:

On completion of the course, the student will be able to


Course	Description
Outcomes	
CO1	Design 8-bit Microcontrollers.
CO2	Design 16-bit Microcontrollers.
CO3	Design ARM Processor.
CO4	Design Xilinx/Altera FPGA and CPLD.
CO5	Design Network Simulators.

LIST OF EXPERIMENTS

- 1. Design with 8 bit Microcontrollers 8051/PIC Microcontrollers.
- i)I/O Programming, Timers, Interrupts, Serial port programming.
- ii) PWM Generation, Motor Control, ADC/DAC, LCD and RTC Interfacing, Sensor Interfacing.
- iii) Both Assembly and C programming.
- 2. Design with 16 bit processors. I/O programming, Timers, Interrupts, Serial Communication.
- 3. Design with ARM Processors. I/O programming, ADC/DAC, Timers, Interrupts.
- 4. Study of one type of Real Time Operating Systems (RTOS).
- 5. Electronic Circuit Design of sequential, combinational digital circuits using CAD Tools.
- 6. Simulation of digital controllers using MATLAB/LabVIEW.
- 7. Programming with DSP processors for Correlation, Convolution, Arithmetic adder, Multiplier, Design of Filters FIR based IIR based.
- 8. Design with Programmable Logic Devices using Xilinx/Altera FPGA and CPLD.
- 9. Design and Implementation of simple Combinational/Sequential Circuit
- 10. Network Simulators Simple wired/ wireless network simulation using NS2.
- 11. Programming of TCP/IP protocol stack.

Total Hours	60 Hours
-------------	----------

Course Code		L	Т	P	C	IA	EA	TM
Course Name	ADVANCED DIGITAL SIGNAL PROCESSING	4	2	0	4	40	60	100
Course	Elective Course -I	Syllabus Revision V.1.0				1.0		
Category								
Pre-	Basic Knowledge on Signals and Systems, Di	gital	Sign	nal Pro	cess	sing		
requisite								

Course Objectives:

The course should enable the students

- ❖ To make the student learn: theory of DSP, design of digital signal processing applications.
- ❖ Introduction to DSP processors.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge of discrete random signal used in the embedded system.
CO2	Develop knowledge of estimation and prediction techniques used in the embedded system.
	embedded system.
CO3	Develop knowledge of digital signal processor used in the embedded system.
CO4	Develop knowledge of application of VLSI implementation techniques used in
	the embedded system.
CO5	Develop knowledge of VLSI implementation used in the embedded system.

UNIT-I DISCRETE RANDOM SIGNAL

12H|ours

Discrete Random Processing – Expectations – Variance – Co-Variance – Scalar Product – Energy of Discrete Signals – Parseval's Theorem – Wiener Khintchine Relation – Power Spectral Density – Periodogram. Autocorrelation – Sum Decomposition Theorem – Spectral Factorization Theorem – Discrete Random Signal Processing by Linear Systems – Simulation of White Noise – Low Pass Filtering of White Noise.

UNIT-II ESTIMATION AND PREDICTION TECHNIQUES

12Hours

Discrete Random Processes – Ensemble averages, Stationary processes, Autocorrelation and Auto covariance matrices. Parseval's Theorem, Wiener-Khintchine Relation – Power Spectral Density . AR, MA, ARMA model based spectral estimation. Parameter Estimation, Linear prediction – Forward and backward predictions, Least mean squared error criterion – Wiener filter for filtering and prediction, Discrete Kalman filter.

<u></u>		
UNIT-III	DIGITAL SIGNAL PROCESSOR	12Hours
Basic Archi	tecture - Computational building blocks, MAC, Bus Arc hited	cture and
memory, D	Oata Addressing, Parallelism and pipelining, Parallel I/O	interface,
_	terface, Interrupt, DMA.	
UNIT-IV	APPLICATION OF VLSI IMPLEMENTATION	12Hours
	OSP system architecture design using VHDL programming, Ma	
		ipping or
DSP algorit	hm onto hardware, Realization of MAC & Filter structure.	
UNIT-V	VLSI IMPLEMENTATION	12Hours
	OSP system architecture design using VHDL programming, Ma	apping of
DSP algorit	hm onto hardware, Realization of MAC & Filter structure.	
	Total Hours	60Hours
Reference	Book(s)	
1.	Bernard Widrow, Samuel D. Stearns, "Adaptive Signal Production	cessing",
	Pearson Education, third edition, 2004. ACC.NO: B130380.	
2.	Dionitris G. Manolakis, Vinay K. Ingle, Stepen M. Kogon,"S	
	& Adaptive signal processing, spectral estimation, signal n	
	Adaptive filtering & Array processing", McGraw-Hill Inte	rnational
	edition 2000.	
3.	Monson H. Hayes, "Statistical Digital Signal Process:	ing and
4	Modelling", John Wiley and Sons, Inc.,	. ,,
4.	John G. Proaks, Dimitris G. Manolakis, "Digital Signal Pro	ocessing",
5.	Pearson Education 2002. S. Salivahanan, A. Vallavaraj and C. Gnanapriya "Digit	tal Signal
3.	Processing", TMH,2000. ACC.NO: B124703	iai Sigilai
6.	Avatar Sing, S. Srinivasan, "Digital Signal Processing-Imple	mentation
0.	using DSP Microprocessors with Examples from TMS32	
	Thomson India, 2004.	iocs ian,
7.	Lars Wanhammer, "DSP Integrated Circuits", Academic pres	 S.
<i>``</i>	1999, New York.	~,
8.	Ashok Ambardar,"Digital Signal Processing: A Modern	
	Introduction", Thomson India edition, 2007.	
9.	Lars Wanhammer, "DSP Integrated Circuits", Academic pres	S,
	1999,New York.	,

Course Code		L	Т	P	C	IA	EA	TM
Course Name	RISC PROCESSOR ARCHITECTURE AND PROGRAMMING	4	2	0	4	40	60	100
Course	Elective Course -I	Syllabus Revision V.1.0				1.0		
Category								
Pre-	Basic Knowledge on Microcontroller							
requisite								

Course Objectives:

The course should enable the students

- ❖ To teach the architecture of 8 bit RISC processor.
- ❖ To teach the architecture and programming of 16 bit RISC processor.
- ❖ To teach the implementation of DSP in ARM processor.
- ❖ To discuss on memory management in RISC process
- ❖ To teach the application development with ARM processor.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge in AVR microcontroller architecture and their implementation in various field.
CO2	Develop knowledge in 8 and 16 bit RISC processor and their implementation in various fields.
CO3	Develop knowledge in ARM application development and their implementation in various field.
CO4	Develop knowledge in memory protection and management and their implementation in various fields.
CO5	Develop knowledge in design with arm microcontrollers and their implementation in various fields.

UNIT-I AVR MICROCONTROLLER ARCHITECTURE 12Hours

Architecture – memory organization – addressing modes – I/O Memory – EEPROM – I/O Ports – SRAM –Timer –UART – Interrupt Structure- Serial Communication with PC – ADC/DAC Interfacing.

UNIT-II ARM ARCHITECTURE AND PROGRAMMING 12Hours

Arcon RISC Machine – Architectural Inheritance – Core & Architectures, The ARM Programmer's model -Registers – Pipeline - Interrupts – ARM organization - ARM processor family – Co-processors. Instruction set – Thumb instruction set – Instruction cycle timings.

6.

7.

SYLLABUS (2023-24) M.E (EMBEDDED SYSTEM TECHNOLOGIES)

UNIT-III	ARM APPLICATION DEVELOPMENT	12Hours
	n to DSP on ARM –FIR Filter – IIR Filter – Discrete Fourier	
-	Handling – Interrupts – Interrupt handling schemes- Firmware and	
-	Standalone - Embedded Operating Systems - Fundamental Co	omponents -
Example Si	mple little Operating System.	
UNIT-IV	MEMORY PROTECTION AND MANAGEMENT	12Hours
Protected 1	Regions-Initializing MPU, Cache and Write Buffer-MPU to M	IMU-Virtual
Memory-Pa	age Tables-TLB-Domain and Memory Access Permission-Fast Con	ntext Switch
Extension.		
UNIT-V	DESIGN WITH ARM MICROCONTROLLERS	12Hours
Assembler	Rules and Directives- Simple ASM/C programs- Hamming Cod	e- Division-
Negation-S	imple Loops –Look up table- Block copy- subroutines.	
	Total Hours	60Hours
Reference	Book(s)	
1.	Steve Furber, 'ARM system on chip architecture', Addision Wesley	7.
2.	Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield '	ARM System
	Developer's Guide Designing and Optimizing System Software', El	lsevier 2007.
3.	Trevor Martin, 'The Insider's Guide To The Philips A	ARM7-Based
	Microcontrollers, An Engineer's Introduction To The LPC2100 S	Series' Hitex
	(UK) Ltd.,	
4.	Dananjay V. Gadre 'Programming and Customizing the AVR micro	ocontroller',
	McGraw Hill 2001.	
5.	William Hohl, 'ARM Assembly Language' Fundamentals and Tech	hnıques.

ARM Architecture Reference Manual.

LPC213x User Manual.

Course	MESF231EA0	L	Т	P	C	IA	EA	TM
Code			1	1		1/1	LA	11/1
Course Name	WIRELESS AND MOBILE COMMUNICATION	4	2	0	4	40	60	100
Course Category	Elective Course -I	Syllabus Revision V.1.0				7.1.0		
Pre- requisite	Basic Knowledge on Mobile Communication							

Course Objectives:

The course should enable the students

- * To expose the students to the fundamentals of wireless communication technologies.
- ❖ To teach the fundamentals of wireless mobile network protocols.
- ❖ To study on wireless network topologies.
- ❖ To introduce network routing protocols.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description				
Outcomes					
CO1	Develop knowledge in the basic of technologies, protocol and simulation software.				
CO2	Develop knowledge in the basic of technologies and mobile networks.				
CO3	Develop knowledge in the basic of wireless networks.				
CO4	Develop knowledge in the basic of routing.				
CO5	Develop knowledge in the basic of transport and application layers.				

UNIT-I INTRODUCTION

12 Hours

Wireless Transmission – signal propagation – Free space and two ray models – spread spectrum – Satellite Networks – Capacity Allocation – FDMA–TDMA-SDMA-DAMA.

UNIT-II | MOBILE NETWORKS

12 Hours

Cellular Wireless Networks – GSM – Architecture – Protocols – Connection Establishment – Frequency Allocation – Handover – Security – GPRS.

UNIT-III WIRELESS NETWORKS

12 Hours

Wireless LAN – IEEE 802.11 Standard-Architecture – Services – Hiper LAN, Bluetooth

UNIT-IV ROUTING

12 Hours

Mobile IP- SIP – DHCP – AdHoc Networks – Proactive and Reactiv e Routing Protocols – Multicast Routing - WSN routing – LEACH- SPIN- PEGASIS

UNIT-V	TRANSPORT AND APPLICATION LAYERS	12 Hours				
TCP over A	TCP over Adhoc Networks – WAP – Architecture – WWW Programming Model – WDP –					
WTLS - W	TP – WSP – WAE – WTA Architecture – WML – WML scripts.					
	Total Hours	60 Hours				
Reference	Book(s)					
1.	Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wir	eles s				
	Networks' PHI/Pearson Education, 2003 ACC.NO: B122027.					
2.	C. Siva Ram Murthy and B.S. Manoj, Adhoc Wireless Networks: A	rchitectures				
	and protocols, Prentice Hall PTR, 2004					
3.	Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober,	" Principles				
	of Mobile computing", Springer, New york, 2003. ACC.NO: B129477.	ı				
4.	C.K.Toh, "AdHoc mobile wireless networks", Prentice Hal 1, Inc, 2002					
5.	Charles E. Perkins, "Adhoc Networking", Addison-Wesley, 2001.					
6.	Jochen Schiller, "Mobile communications", PHI/Pearson Educati	on, Second				
	Edition, 2003 ACC.NO: B132742.					
7.	William Stallings, "Wireless communications and Networks", I	PHI/Pearson				
	Education, 2002.					

Course Code		L	Т	P	С	IA	EA	TM
Course Name	BIG DATA ANALYTICS	4	2	0	4	40	60	100
Course Category	Elective Course -I		Syllab	ous Re	evision	I	V.1	0.
Pre- requisite	Basic Knowledge on Data bases, Data	mining	and Da	ata Str	uctures			

Course Objectives:

The course should enable the students

- ❖ To understand big data analytics as the next wave for businesses looking for competitive advantage.
- ❖ To understand the financial value of big data analytics.
- ❖ To explore tools and practices for working with big data.
- ❖ To understand how big data analytics can leverage into a key component.
- ❖ To understand how to mine the data.
- ❖ To learn about stream computing.
- ❖ To know about the research that requires the integration of large amounts of data.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Identify the need for big data analytics for a domain.
CO2	Identify the need for Data analysis for a domain.
CO3	Contextually integrate and correlate large amounts of information automatically to
	gain faster insights.
CO4	Suggest areas to apply big data to increase business outcome.
CO5	Use Hadoop, Map Reduce Framework Apply big data analytics for a given problem.

UNIT-I INTRODUCTION TO BIG DATA

12 Hours

Analytics – Nuances of big data – Value – Issues – Case for Big data – Big data options Team challenge – Big data sources – Acquisition – Nuts and Bolts of Big data. Features of Big Data - Security, Compliance, auditing and protection - Evolution of Big data – Best Practices for Big data Analytics - Big data characteristics - Volume, Veracity, Velocity, Variety – Data Appliance and Integration tools – Green plum – Informatics.

UNIT-II DATA ANALYSIS

12 Hours

Evolution of analytic scalability – Convergence – parallel processing systems – Cloud computing – grid computing – map reduce – enterprise analytic sand box – analytic data sets – Analytic methods – analytic tools – Cognos – Microstrategy - Pentaho. Analysis approaches – Statistical significance – business approaches – Analytic innovation – Traditional approaches – Iterative

UNIT-III | STREAM COMPUTING

12 Hours

Introduction to Streams Concepts – Stream data model and architecture - Stream Computing, Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating moments – Counting oneness in a window – Decaying window - Real time Analytics Platform (RTAP) applications IBM Infosphere – Big data at rest – Infosphere streams – Data stage – Statistical analysis – Intelligent scheduler – Infosphere Streams.

UNIT-IV | PREDICTIVE ANALYTICS AND VISUALIZATION

12 Hours

Predictive Analytics – Supervised – Unsupervised learning – Neural networks – Kohonen models – Normal – Deviations from normal patterns – Normal behaviours – Expert options – Variable entry - Mining Frequent item sets - Market based model – A priori Algorithm – Handling large data sets in Main memory – Limited Pass algorithm – Counting frequent item sets in a stream – Clustering Techniques – Hierarchical – K-Means – Clustering high dimensional data Visualizations -Visual data analysis techniques, interaction techniques; Systems and applications.

UNIT-V FRAMEWORKS AND APPLICATIONS

12 Hours

IBM for Big Data – Map Reduce Framework - Hadoop – Hive – Sharding – NoSQL Databases - S3 - Hadoop Distributed file systems – Hbase – Impala – Analyzing big data with twitter – Big data for ECommerce – Big data for blogs.

	Total Hours 60 Hours				
Reference	Reference Book(s)				
1	Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.				
2.	Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007.				
3.	Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.				
4.	Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.				
5.	Bill Franks, "Taming the Big Data Tidal Wave: Finding Opport unities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012.				
6.	Paul Zikopoulos, Chris Eaton, Paul Zikopoulos, "Understanding Big Data : Analytics for Enterprise Class Hadoop and Streaming Data", McGraw Hill, 2011.				
7.	Paul Zikopoulos, Dirk deRoos, Krishnan Parasuraman, Thomas Deutsch, James Giles, David Corrigan, "Harness the Power of Big data – The big data plat form", McGraw Hill, 2012.				
8.	Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007.				
9.	Pete Warden, Big Data Glossary, O'Reilly, 2011.				
10.	Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.				

Course Code		L	T	P	C	IA	EA	TM
Course Name	ASIC DESIGN	4	2	0	4	40	60	100
Course Category	Elective Course –II / III	Syllabus Revision V.1.0						
Pre- requisite	Basic Knowledge on Digital System Design and	nd V	LSI					

Course Objectives:

The course should enable the students

- ❖ To develop knowledge in basic transistor logic.
- ❖ To develop knowledge in various programming platform like Altera, Xilinx.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge in introduction to ASICS, CMOS Logic and ASIC Library
	Design.
CO2	Develop knowledge in programmable ASICS, programmable ASIC logic cells and
	programmable ASIC I/O cells.
CO3	Develop knowledge in programmable ASIC interconnect, programmable ASIC
	design software and low level design entry.
CO4	Develop knowledge in logic synthesis, simulation and testing.
CO5	Develop knowledge in ASIC construction, floor planning, placement and routing.

UNIT-I	INTRODUCTION TO ASICS, CMOS LOGIC AND ASIC	12 Hours
	LIBRARY DESIGN	

Types of ASICs – Design Flow – CMOS transistors, CMOS design rules – Combinational Logic Cell – Sequential logic cell – Data path logic cell – Transistors as Resistors – Transistor Parasitic Capacitance – Logical effort – Library cell design – Library architecture.

UNIT-II	PROGRAMMABLE ASICS, PROGRAMMABLE ASIC	12 Hours
	LOGIC CELLS AND PROGRAMMBALE ASIC I/O CELLS	

Anti fuse – static RAM – EPROM and EEPROM technology – PREP bench marks – Actel ACT – Xilinx LCA – Altera FLEX – Altera MAX DC & AC inputs and output s – Clock and power inputs – Xilinx I/O blocks.

UNIT-III	PROGRAMMABLE ASIC INTERCONNECT,	12 Hours			
	PROGRAMMABLE ASIC DESIGN SOFTWARE AND LOW				
	LEVEL DESIGN ENTRY				
Actel ACT	- Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera M	AX 9000			
Altera FLE	Altera FLEX – Design systems – Logic Synthesis – Half Gate ASIC – Schematic entry – Low				
level design	n language – PLA tools – EDIF – CFI design representation.				
UNIT-IV	LOGIC SYNTHESIS, SIMULATION AND TESTING	12 Hours			
Verilog and	l logic synthesis – VHDL and logic synthesis - Types of simulation – Bo	oundary			
scan test –	Fault simulation – Automatic test pattern generation.				
UNIT-V	ASIC CONSTRUCTION, FLOOR PLANNING, PLACEMENT	12 Hours			
	AND ROUTING				
System par	tition – FPGA partitioning – partitioning methods – physical design flow	v – global			
routing – d	etailed routing – specific DRC. floor planning – placement – al routing	– circuit			
extraction.					
	Total Hours	60 Hours			
Reference					
1.	M.J.S. SMITH, "Application – Specific Integrated Circuits" Add	dison-Wesley			
2.	Longman Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hil	1 1001			
3.	S.D.Brown, R.J.Francis, J.Rox, Z.G.Uranesic, "Field Programmable Ga				
J.	Kluever Academic Publishers, 1992.	ate / Hrays			
4.	Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and	Information			
	Processing", McGraw Hill, 1994.				
5.	S.Y. Kung, H.J.Whilo House, T.Kailath, "VLSI and Modern Signal F	Processing",			
6.	Prentice Hall, 1985. Jose E.France, Yannis Tsividis, "Design of Analog – Digital VLSI	Circuite for			
0.	Telecommunication and Signal Processing", Prentice Hall, 1994.	Circuits for			
	reserved and signal reserving , remained fram, 1991.				

Course Code		L	Т	P	C	IA	EA	TM
Course Name	EMBEDDED LINUX	4	2	0	4	40	60	100
Course	Elective Course –II / III	Syllabus Revision V.1.0			7.1.0			
Category								
Pre-	Basic Knowledge on Embedded Communicati	ion and Software Design						
requisite								

Course Objectives:

The course should enable the students -

❖ To develop knowledge of usage of LINUX in Embedded Systems.

Course Outcomes:

On completion of the course, the student will be able to

on complet	ion of the course, the student will be able to				
Course	Description				
Outcomes					
CO1	Understand how fundamentals of operating systems is used for embedded application.				
CO2	Understand how linux fundamentals are used as an OS for embedded application.				
CO3	Understand how embedded linux is used as an OS for embedded application.				
CO4	Understand how board support package and embedded storage is used as an OS for				
	embedded application.				
CO5	Understand the how embedded drivers and application porting is used as an OS for				
	embedded application.				

UNIT-I FUNDAMENTALS OF OPERATING SYSTEMS

12Hours

Overview of operating systems – Process and threads – Processes and Programs – Programmer view of processes – OS View of processes – Threads - Scheduling – Non preemptive and preemptive scheduling – Real Time Scheduling – Process Synchronization – Semaphores – Message Passing – Mailboxes – Deadlocks – Synchronization and scheduling in multiprocessor Operating Systems.

UNIT-II LINUX FUNDAMENTALS

12Hours

Introduction to Linux – Basic Linux commands and concepts – Logging in - Shell s -Basic text editing - Advanced shells and shell scripting – Linux File System –Linux Programming - Processes and threads in Linux - Inter process communication – Devi ces – Linux System calls.

UNIT-III INTRODUCTION TO EMBEDDED LINUX

12Hours

Embedded Linux – Introduction – Advantages- Embedded Linux Distributions - Architecture - Linux kernel architecture - User space – linux startup sequence - GNU cross platform Tool chain.

UNIT-IV	BOARD SUPPORT PACKAGE AND EMBEDDED STORAGE	12Hours
----------------	--	---------

Inclusion of BSP in kernel build procedure - The boot loader Interface - Memory Map - Interrupt Management - PCI Subsystem - Timers - UART - Power Management - Embedded Storage - Flash Map - Memory Technology Device (MTD) -MTD Architecture - MTD Driver for NOR Flash - The Flash Mapping drivers - MTD Block and character dev ices - mtdutils package - Embedded File Systems - Optimizing storage space - Turning kernel memory.

UNIT-V EMBEDDED DRIVERS AND APPLICATION PORTING 12Hours

Linux serial driver – Ethernet driver – I2C subsystem – USB gadgets – Watchdog timer – Kernel Modules – Application porting roadmap - Programming with threads – Operating System Porting Layer – Kernel API Driver - Case studies - RT Linux – uClinux.

	Total Hours 60Hours	
Reference	ce Book(s)	
1.	Dhananjay M. Dhamdhere, 'Operating Systems A concept based Approach',	
	Tata Mcgraw-Hill Publishing Company Ltd.	
2.	Matthias Kalle Dalheimer, Matt Welsh, 'Running Linux', O'Reilly Publications	
	2005.	
3.	Mark Mitchell, Jeffrey Oldham and Alex Samuel 'Advanced Linux Programming'	
	New Riders Publications.	
4.	P. Ragavan ,Amol Lad , Sriram Neelakandan, 'Embedded Linux System Design	
	and Development', Auerbach Publications, 2006.	
5.	Karim Yaghmour, 'Building Embedded Linux Systems', O'Reilly Publications	
	2003.	

Course Code		L	Т	P	C	IA	EA	TM
Course Name	VLSI ARCHITECTURE AND DESIGN METHODOLOGIES	4	2	0	4	40	60	100
Course Category	Elective Course –II / III	S	yllal	ous Re	evisi	on	,	V.1.0
Pre- requisite	Basic Knowledge on VLSI Design							

Course Objectives:

The course should enable the students

- ❖ To have a knowledge in CMOS Design.
- ❖ To Develop knowledge in PLD Devices.
- ❖ To have in floor plan design in VLSI.

Course Outcomes:

On completion of the course, the student will be able to

Description			
Develop knowledge and the understanding about the various aspects involved in			
the CMOS design.			
Develop knowledge and the understanding about the various aspects involved in			
the programmable logic devices.			
Develop knowledge and the understanding about the various aspects involved in			
the ASIC construction, floor planning, placement and routing.			
Develop knowledge and the understanding about the various aspects involved in			
the analog VLSI design.			
Develop knowledge and the understanding about the various aspects involved in			
the logic synthesis and simulation.			

UNIT-I CMOS DESIGN 12 Hours

Overview of digital VLSI design Methodologies- Logic design with CMOS-transmission gate circuits-Clocked CMOS-dynamic CMOS circuits, Bi-CMOS circuits- Layout diagram, Stick diagram-IC fabrications – Trends in IC technology.

UNIT-IIPROGRAMABLE LOGIC DEVICES12 HoursProgrammingTechniques-Antifuse-SRAM-EPROMandEEPROMtechnology

Re-Programmable Devices Architecture- Function blocks, I/O blocks, Interconnects, Xilinx-XC9500,Cool Runner - XC-4000,XC5200, SPARTAN, Virtex - Altera MAX 7000-Flex 10KStratix.

UNIT-III	ASIC CONSTRUCTION, FLOOR PLANNING, PLACEMENT	12 Hours
	AND ROUTING	
	tition - FPGA partitioning - Partitioning methods- floor planning	-
physical de DRC	sign flow – global routing – detailed routing – special routing- circu	it extraction –
UNIT-IV	ANALOG VLSI DESIGN	12 Hours
Introduction	n to analog VLSI- Design of CMOS 2stage-3 stage Op-Amp –High Spe	ed and High
frequency o	p-amps-Super MOS-Analog primitive cells-realization of neural netwo	rks.
UNIT-V	LOGIC SYNTHESIS AND SIMULATION	12 Hours
Overview of	of digital design with Verilog HDL, hierarchical modelling concepts.	modules and
port definit	ions, gate level modelling, data flow modelling, behavioural model	elling, task &
functions, V	Verilog and logic synthesis-simulation-Design examples, Ripple carry	Adders, Carry
Look ahead	adders, Multiplier, ALU, Shift Registers, Multiplexer, Comparator, Te	st Bench.
	Total Hours	60 Hours
Reference		
1.	M.J.S Smith, "Application Specific integrated circuits", Addition We Inc.1997.	
2.	Kamran Eshraghian, Douglas A.pucknell and Sholeh Eshraghian," VLSI circuits and system", Prentice Hall India,2005.	Essentials of
3.	Wayne Wolf, "Modern VLSI design " Prentice Hall India,200 B134477	06. ACC.NO:
4.	Mohamed Ismail, Terri Fiez, "Analog VLSI Signal and processing", McGraw Hill International Editions, 1994.	information
5.	Samir Palnitkar, "VeriLog HDL, A Design guide to Digital and Syntl Pearson, 2005.	hesis" 2 nd Ed,

Course Code		L	Т	P	C	IA	EA	TM
Course Name	PRINCIPLES OF ROBOTICS	4	2	0	4	40	60	100
Course	Elective Course –II / III	S	yllal	ous Re	visi	on	V.	1.0
Category								
Pre-	Basic Knowledge on Sensors and Transducer	S					•	
requisite								

Course Objectives:

The course should enable the students

- ❖ To have basic knowledge about robotics.
- ❖ To develop knowledge in image processing and Vision.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Understanding the various aspects of robotics and how image and vision
	systems are processed.
CO2	Understanding the various aspects of kinematics.
CO3	Understanding the various aspects of differential motion & velocities.
CO4	Understanding the various aspects of robot control system.
CO5	Understanding the various aspects of image processing & vision systems.

UNIT-I INTRODUCTION AND TERMINOLOGIES 12Hours

Definition-Classification-History- Robots components-Degrees of freedom-Robot joints coordinates- Reference frames-workspace-Robot languages-actuators-sensors-Position, velocity and acceleration sensors-Torque sensors-tactile and touch sensors proximity and range sensors-social issues.

UNIT-II KINEMATICS

12Hours

Mechanism-matrix representation-homogenous transformation-DH representation- Inverse kinematics-solution and programming-degeneracy and dexterity.

UNIT-III | DIFFERENTIAL MOTION & VELOCITIES

12Hours

Jacobian-differential motion of frames-Interpretation-calculation of Jacobian - Inverse Jacobian - Design - Lagrangian mechanics-dynamic equations-static force analysis.

UNIT-IV	ROBOT CONTROL SYSTEM	12Hours				
Sensor cha	Sensor characteristics- Hydraulic, Pneumatic and electric actuators-trajectory planning					
decentralis	decentralised PID control- non-linear decoupling control.					
UNIT-V	IMAGE PROCESSING & VISION SYSTEMS	12Hours				
Two and the	nree dimensional images-spatial and frequency domain representation-	noise and				
edges-conv	volution masks-Processing techniques - thresholding - noise reduction	tion edge				
detection-s	egmentation-Image analysis and object recognition.					
	Total Hours	60Hours				
Reference	Book(s)					
1.	Saeed B. Niku, "Introduction to Robotics", Pearson Education, 2002	ACC.NO:				
B66274.						
2.	Fu, Gonzalez and Lee Mcgrahill, "Robotics", international ACC.NO:	B135132.				
3.	R.D. Klafter, TA Chmielewski and Michael Negin, "Robotic Engine					
	Integrated approach", Prentice Hall of India, 2003. ACC.NO: B19966	•				

Course Code		L	T	P	C	IA	EA	TM
Course Name	APPLICATIONS OF MEMS TECHNOLOGY	4	2	0	4	40	60	100
Course Category	Elective Course –II / III	S	yllal	ous Re	evisi	on	V	7.1.0
Pre- requisite	Basic Knowledge on Integrated Circuits, Mea	sure	men	t & Ins	strui	nenta	ition	

Course Objectives:

The course should enable the students

- ❖ To develop knowledge in the basic of MEMS fabrication.
- ❖ To develop knowledge about sensors in MEMS.

Course Outcomes:

On completion of the course, the student will be able to

Course Outcomes	Description			
CO1	Develop knowledge in basic of MEMS: Micro-Fabrication, Materials and Electro			
	Mechanical Concepts.			
CO2	Develop knowledge in basic of electrostatic sensors and actuation.			
CO3	Develop knowledge in basic of Thermal Sensing and Actuation.			
CO4	Develop knowledge in basic of Piezoelectric Sensing and Actuation.			
CO5	Develop knowledge in Sensors used for the application development.			

UNIT-I	MEMS: MICRO-FABRICATION, MATERIALS AND	12 Hours
	ELECTRO MECHANICAL CONCEPTS	

Overview of micro fabrication – Silicon and other material based fabrication processes – Concepts: Conductivity of semiconductors-Crystal planes and orientation-stress and strainflexural beam bending analysis-torsional deflections-Intrinsic stress- resonant frequency and quality factor.

UNIT-II | ELECTROSTATIC SENSORS AND ACTUATION | 12 Hours

Principle, material, design and fabrication of parallel plate capacitors as electrostatic sensors and actuators-Applications.

UNIT-III | THERMAL SENSING AND ACTUATION | 12 Hours

Principle, material, design and fabrication of thermal couples, thermal bimorph sensors, thermal resistor sensors-Applications.

UNIT-IV	PIEZOELECTRIC SENSING AND ACTUATION	12 Hours				
Piezoelectric effect-cantilever Piezoelectric actuator model-properties of piezoelectric materials-						
Application	ns.					
UNIT-V	CASE STUDIES	12 Hours				
Piezoresist	ive sensors, Magnetic actuation, Microfluidics applications, Medical a	applications,				
Optical ME	EMS.					
	Total Hours	60 Hours				
Reference	Reference Book(s)					
1.	Chang Liu, "Foundations of MEMS", Pearson International Edi	tion, 2006.				
	ACC.NO: B127890.					
2.	Marc Madou, "Fundamentals of microfabrication", CRC Press, 199	7. ACC.NO :				
	B130141					
3.	Boston, "Micromachined Transducers Sourcebook", WCB McGraw H	[ill, 1998.				
4.	. M.H.Bao "Micromechanical transducers :Pressure sensors, accelerometers and					
1	gyroscopes", Elsevier, New york, 2000.					

Course Code		L	T	P	C	IA	EA	TM
Course Name	DIGITAL IMAGE PROCESSING	4	2	0	4	40	60	100
Course	Elective Course –II / III	S	yllal	ous Re	visi	on	V.	1.0
Category								
Pre-	Basic knowledge on Signals & Systems, Digi	tal S	igna	l Proce	essir	ng and	d Digi	tal
requisite	System Design							

Course Objectives:

The course should enable the students

- ❖ To have a knowledge in basic of Image Processing.
- ❖ To have a knowledge in various analysis of image.
- ❖ To develop knowledge in application where image processing is used.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description				
Outcomes					
CO1	Develop knowledge and understanding the basic concepts of image processing,				
	image analysis and the application fundamentals of image processing.				
CO2	Develop knowledge and understanding the basic concepts image enhancement.				
CO3	Develop knowledge and understanding the basic concepts image segmentation				
	and feature analysis.				
CO4	Develop knowledge and understanding the basic concepts multi resolution				
	analysis and compressions.				
CO5	Develop knowledge and understanding the basic concepts application of image				
	processing.				

UNIT-I FUNDAMENTALS OF IMAGE PROCESSING 12Hours

Introduction – Steps in image processing systems – Image acquisition – Sampling and Quantization – Pixel relationships – Color fundamentals and models, File formats, Image operations – Arithmetic, Geometric and Morphological.

UNIT-II IMAGE ENHANCEMENT

12Hours

Spatial Domain: Gray level Transformations – Histogram processing – Spatial filtering smoothing and sharpening. Frequency Domain: Filtering in frequency domain – DFT ,FFT, DCT – Smoothing and sharpening filters – Homomorphic Filtering.

UNIT-III	IMAGE SEGMENTATION AND FEATURE ANALYSIS 12Hours						
Detection	of Discontinuities - Edge operators - Edge linking and Boundary Do	etection –					
Thresholdi	ng - Region based segmentation - Morphological Watersheds -	Motion					
Segmentati	Segmentation, Feature Analysis and Extraction.						
UNIT-IV	MULTI RESOLUTION ANALYSIS AND COMPRESSIONS	12Hours					
Multi Reso	olution Analysis: Image Pyramids - Multi resolution expansion -	Wavelet					
Transforms	s, Image compression: Fundamentals – Models – Elements of Information	n Theory					
– Error free	e compression – Lossy Compression – Compression Standards.						
UNIT-V	APPLICATION OF IMAGE PROCESSING	12Hours					
Image class	sification – Image recognition – Image understanding – Video motion ar	alysis –					
Image fusion	on – Steganography – Digital compositing Mosaics – Colour Image Proc	essing.					
	Total Hours	60Hours					
Reference	Book(s)						
1.	Rafael C.Gonzalez and Richard E.Woods, "Digital Image Processing P	ng", 2nd					
Edition, Pearson Education, 2003. ACC.NO: B134341.							
2. Milan Sonka, Valclav Halavac and Roger Boyle, "Image Processing, Analysis and Machine Vision", 2nd Edition, Thomson Learning, 2001.							
3.	Anil K.Jain, "Fundamentals of Digital Image Processing" Pearson Ed	lucation.					
٥.	2003. ACC.NO: B130746.	·· ·· · · · · · · · · · · · · · · · ·					

Course Code		L	T	P	C	IA	EA	TM
Course Name	EMBEDDED ANALOG INTERFACING	4	2	0	4	40	60	100
Course	Elective Course –IV / V / VI	S	yllal	ous Re	visi	on	V.	1.0
Category								
Pre-	Basic knowledge on Integrated Circuits, Embe	edde	d Pro	ogramı	ming	5		
requisite	_							

Course Objectives:

The course should enable the students

- ❖ To have a basic knowledge in measurement system design.
- ❖ To have a knowledge in Analog to Digital Converters.
- ❖ To have a knowledge in Sensors used in interfacing.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understanding measurement system design.
CO2	Develop knowledge and understanding in analog-to-digital converters.
CO3	Develop knowledge and understanding in sensors & peripherals.
CO4	Develop knowledge and understanding in output control methods.
CO5	Develop knowledge and understanding in microcontroller interfacing.
	zeverep into intege une unevisament in interest interest.

UNIT-I MEASUREMENT SYSTEM DESIGN

12Hours

Characteristics of Instrumentation – Measurement accuracy – Measurement standards – Dynamic Range – Calibration – Bandwidth – Digital interfacing advantages.

UNIT-II ANALOG-TO-DIGITAL CONVERTERS

12Hours

Types of ADCs - ADC Comparison - Sample and Hold - ADC Types - Flash ADC - Successive Approximation ADC - Dual-Slope (Integrating) ADC - Sigma - Delta ADC - Microprocessor Interfacing - Clocked Interfaces - Serial Interfaces - Integrated ADC Embedded Controllers.

UNIT-III | SENSORS & PERIPHERALS

12Hours

Temperature Sensors - Optical Sensors - CCDs - Magnetic Sensor s - Motion/Acceleration Sensors - Strain Gauges - Solenoids - Heaters - Coolers - LEDs - DACs - Digital Potentiometers - Analog Switches - Stepper Motors - DC Motors.

UNIT-IV	OUTPUT CONTROL METHODS	12Hours					
Measuring	Period versus Frequency - Voltage-to-Frequency Converters - C	pen-Loop					
Control - N	Control - Negative Feedback and Control - Microprocessor-Based Systems- On-Off Control						
- Proporti	onal Control - Proportional, Integral, Derivative Control - Motor	Control -					
Predictive	Control - Measuring and Analyzing Control Loops.						
UNIT-V	MICROCONTROLLER INTERFACING	12Hours					
Standard I	nterfaces - IEEE 1451.2 - 4-20 ma Current Loop - Field bus - Micro	controller					
Supply and	d Reference - Resistor Networks - Multiple Input Control -AC Control	- Voltage					
Monitors	and Supervisory Circuits - Driving Bipolar Transistors/ MOSFET-	Reading					
Negative V	Voltages – PWM based control.						
	Total Hours	60Hours					
Reference	Book(s)						
1.	Stuart R. Ball, Analog Interfacing to Embedded Microprocessor	Systems,					
	Newnes, 2nd Edition ,2003.						
2.	John G. Webster, Handbook of measurement, Instrumentation, & ser	isors, John					
3.	Wiley & Sons Inc, New York-1998. Dogon Throbin Microcontroller Recod Temperature Monitoring	and					
3.	Dogan Ibrahim, Microcontroller-Based Temperature Monitoring Control Newnes 2nd Edition 2002	and					

Course Code		L	Т	P	C	IA	EA	TM
Course Name	EMBEDDED AUTOMOTIVE NETWORKING WITH CAN	4	2	0	4	40	60	100
Course Category	Elective Course –IV / V / VI	S	yllał	ous Re	visi	on	V.	1.0
Pre- requisite	Basic Knowledge on Embedded Programming	5						

Course Objectives:

The course should enable the students

- ❖ To develop knowledge in basic of data communication.
- ❖ To have knowledge in Layers of CAN Network.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description					
Outcomes						
CO1	Develop knowledge and understand the basic of data communication.					
CO2	Develop knowledge and understand the basic of CAN data link layer.					
CO3	Develop knowledge and understand the basic of CAN physical layer.					
CO4	Develop knowledge and understand the basic of CAN protocol controllers.					
CO5	Develop knowledge and understand the basic of CAN higher layer protocols.					

UNIT-I DATA COMMUNICATION BASICS

Data communication basics - Network communication protocol – Medium access control – Error checking & control – Requirements & applications of field bus systems-Characteristics of CAN.

UNIT-II | CAN DATA LINK LAYER

12Hours

12Hours

CAN data link layer – Principles of bus arbitration – Frame formats – Error detection & error handling – Extended frame format – Time triggered multiplexing.

UNIT-III | CAN PHYSICAL LAYER

12Hours

Physical signaling – Transmission media – Network topology – Bus medium access – Physical layer standards.

UNIT-IV | CAN PROTOCOL CONTROLLERS

12Hours

 $CAN\ protocol\ controllers-Functions\ of\ a\ CAN\ controller-Message\ filtering-Message\ handling\ -\ Standalone\ CAN\ controllers-Integrated\ CAN\ controller\ s-CAN\ transceivers.$

UNIT-V	CAN HIGHER LAYER PROTOCOLS	12Hours					
CAN app	CAN application layer – Protocol architecture – CAN message specification – Allocation of						
message i	dentifiers – Network management – Layer management – Higher layer p	protocols -					
CAN open	n – Device Net – SAEJ1939 – Time triggered CAN.						
	Total Hours	60Hours					
Reference	e Book(s)						
1.	Konrad Etschberger, Controller Area Network, IXXAT Automation Gn	nbH, 2001.					
2.							
	Applications, Springer, 1997.						
3.	Glaf P.Feiffer, Andrew Ayre and Christian Keyold "Embedded Netwo	rking with					
	CAN and CAN open". Embedded System Academy 2005.						
4.	4. Françoise Simonot-Lion, Handbook of Automotive Embedded Systems ,CRC						
Press,2007.							
5.	5. http://www.can-cia.org/can/.						
6.	http://www.semiconductors.bosch.de/en/20/can/3-literature.asp.						

Course Code		L	Т	P	C	IA	EA	TM
Course Name	EMBEDDED SYSTEM DESIGN USING ARM PROCESSOR	4	2	0	4	40	60	100
Course Category	Elective Course –IV / V / VI	S	yllal	ous Re	evisi	on	1	V.1.0
Pre- requisite	Basic knowledge on Embedded system design	n						

Course Objectives:

The course should enable the students

- ❖ To have a knowledge about ARM fundamentals.
- ❖ To have a knowledge of writing codes.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest				
Outcomes		Bloom's				
		Taxonomy				
CO1	Develop knowledge in the fundamentals of principles of embedded system.					
CO2	Develop knowledge in the fundamentals of ARM processor fundamentals.					
CO3	Develop knowledge in the fundamentals of caches and MMU.					
CO4	Develop knowledge in the fundamentals of optimized primitives.					
CO5	Develop knowledge in the fundamentals of ARM processor and understand how to					
	write the assembly code in ARM.					

UNIT-I PRINCIPLES OF EMBEDDED SYSTEM 12 Hours

Introduction - Embedded systems description, definition, design considerations & requirements - Overview of Embedded system Architecture - Categories of Embedded Systems - Product specifications - hardware/software partitioning - iterations and implementation - hardware software integration - product testing techniques. Wired Communication Protocols: UART - Inter Integrated Circuit (I2C) - Serial Peripheral Interface (SPI) - Controller Area Network (CAN). Wireless communication Protocols: Zigbee Protocols - Bl ue tooth Protocols - IrDA.

UNIT-II ARM PROCESSOR FUNDAMENTALS 12 Hours

ARM core Introduction – Registers – Current Program Status Register – Pipeline – Exception – Interrupts – Vector Table – Core Extension – Architecture Revisions – ARM Processor Families – ARM Instruction Set – Thumb Instruction set – Thumb Register Usage – ARM – Thumb Interworking – Stack Instruction – Software Interrupt Instruction.

UNIT-III	CACHES AND MMU 12 Hours				
The Memo	ory Hierarchy and Cache Memory - Cache Architecture - Cache Policy	_			
Co Processo	or and Caches – Flushing and Cleaning Cache Memory – Cache Lockdown – Cach	es			
and Softwa	are Performance. MMU: Moving from an MPU to an MMU - Virtual Memory	_			
Details of A	ARM MMU – The Caches and Write Buffer – Co Processor and MMU configuration	n.			
UNIT-IV	OPTIMIZED PRIMITIVES 12 Hours				
Double Pre	cision Integer Multiplication - Integer Normalization and count Leading Zeros	_			
Division – S	Square Roots – Transcendental Functions: Log, exp, sin, cos – Endian Reversal an	ıd			
Bit Operation	ons – Saturated and Rounded Arithmetic – Random Number Generation.				
UNIT-V	WRITING AND OPTIMIZING ARM ASSEMBLY CODE 12 Hours				
Writing Ass	sembly Code - Profiling and Cycle Counting - Instruct ion Scheduling - Regist	ter			
Allocation	- Conditional Execution - Looping Constructs - Bit Manipulation - Efficie	nt			
Switches –	Handling Unaligned Data.				
	Total Hours 60 Hours				
Reference l	Book(s)				
1.	Andrew N.Sloss, Dominic Symes, Chris Wright, "ARM System Develope	r's			
Guide", Morgan Kaufmann Series in Computer Architecture and Design, 2004.					
2.	Tammy Noergaard, "Embedded Systems Architecture", Newnes, 2005. ACC.N B127886	O:			
3.	David Seal, "ARM Architecture Reference Manual", 2005.				
4.	Steve Furbe, "ARM System-on-Chip Architecture", Addison-Wesley Profession				
4.	2nd Edition, 2000, ACC.NO: B129645.	.1a1,			

Course Code		L	T	P	C	IA	EA	TM
Course Name	DISTRIBUTED EMBEDDED COMPUTING	4	2	0	4	40	60	100
Course Category	Elective Course –IV / V / VI	S	yllal	ous Re	evisi	on	V.	1.0
Pre- requisite	Basic Knowledge on Embedded Programming	,						

Course Objectives:

The course should enable the students

- ❖ To have a knowledge of the Hardware Infrastructure.
- ❖To have a knowledge the concept of Internet.
- ❖To have a knowledge of the using of JAVA in Distributed Embedded Computing.
- ❖To have a knowledge of embedded computing architectures.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description				
Outcomes					
CO1	Develop knowledge and understand the concept of hardware infrastructure.				
CO2	Develop knowledge and understand the concept of internet concepts.				
CO3	Develop knowledge and understand the concept of distributed computing using				
	java.				
CO4	Develop knowledge and understand the concept of embedded agent.				
CO5	Develop knowledge and understand the concept of embedded computing				
	architecture.				

UNIT-I THE HARDWARE INFRASTRUCTURE 12Hours

Broad Band Transmission facilities – Open Interconnection standards – Local Area Networks – Wide Area Networks – Network management – Network Security – Cluster computers.

UNIT-II INTERNET CONCEPTS

12Hours

Capabilities and limitations of the internet – Interfacing Internet server applications to corporate databases HTML and XML Web page design and the use of active components.

UNIT-III | DISTRIBUTED COMPUTING USING JAVA

12Hours

 $IO\ streaming\ -\ Object\ serialization\ -\ Networking\ -\ Threading\ -\ RM\ I\ -\ multicasting\ -\ distributed\ databases\ -\ embedded\ java\ concepts\ -\ case\ studies.$

UNIT-IV EMBEDDED AGENT 12Hours

Introduction to the embedded agents – Embedded agent design criteria – Behaviour based, Functionality based embedded agents – Agent co-ordination mechanisms and benchmarks embedded-agent. Case study: Mobile robots.

UNIT-V EMBEDDED COMPUTING ARCHITECTURE 12Hours

Synthesis of the information technologies of distributed embedded systems – analog/digital co-design – optimizing functional distribution in complex system design – validation and fast prototyping of multiprocessor system-on-chip – a new dynamic scheduling algorithm for real-time multiprocessor systems.

	Total Hours 60Hours
Referen	ce Book(s)
1.	Dietel & Dietel, "JAVA how to program", Prentice Hall 1999. ACC.NO: B112846
2.	Sape Mullender, "Distributed Systems", Addison-Wesley, 1993.
3.	George Coulouris and Jean Dollimore, "Distributed Systems – con cepts and design", Addison – Wesley 1988.
4.	"Architecture and Design of Distributed Embedded Systems", edited by Bernd Kleinjohann C-lab, Universitat Paderborn, Germany, Kluwer Academic Publishers, Boston, April 2001.

Course Code		L	T	P	C	IA	EA	TM
Course Name	SMART METERS AND SMART GRID COMMUNICATION	4	2	0	4	40	60	100
Course Category	Elective Course –IV / V / VI	S	yllał	ous Re	visi	on	,	V.1.0
Pre- requisite	Basic Knowledge on sensors, grids.							

Course Objectives:

The course should enable the students

- ❖ To teach the fundamentals of automated meters and Grids.
- ❖ To teach on functional components of Smart meters.
- ❖ To discuss on need of smart grid for power systems.
- ❖ To teach the significance of microgrid and its needs.
- ❖ To teach the communication and protocols for power system.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description			
Outcomes				
CO1	Understandable knowledge in the automated grid and meters fundamental, significance of micro grid and the protocols used for the communication as well as power system.			
CO2	Understandable knowledge in the smart meters.			
CO3	Understandable knowledge in the smart grid and applications.			
CO4	Understandable knowledge in the microgrids.			
CO5	Understandable knowledge in the information and communication technology for smart grid and meters.			

UNIT-I INTRODUCTION 12 Hours

Introduction to Smart grid and metering technology- Smart energy management technical architecture-Functions of Smart Grid and smart meters, Opportunities and challenges- Difference between conventional and smart grid-meters, Concept of Resilient and Self Healing Grid, recent developments and International policies in Smart Grid. IEC 61850 protocol standards.

UNIT-II SMART METERS

12 Hours

Smart metering-Smart Meters types- hardware architecture- software architecture requirements-communication protocols- Real Time Prizing, Smart Appliances, Automatic Meter Reading-MEMS, Smart Sensors- Smart actuators- Advanced metering infrastructure- spectrum analyzer.

UNIT-III SMART GRID AND APPLICATIONS

12 Hours

Outage Management System, Plug in Hybrid Electric Vehicles, Vehicle to Grid, Home and Building Automation- Smart Substations, Substation Automation, Feeder Automation-Geographic Information System(GIS), Intelligent Electronic Devices and their application for monitoring and protection- -Smart city- Wide Area Measurement System, Phase Measurement Unit- Power Quality and EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring and Power Quality Audit.

UNIT-IV MICROGRIDS

12 Hours

Concept of microgrid, need and applications of microgrid, formation of microgrid, Issues of interconnection, protection and control of microgrid. Plastic and Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel cells, microturbines, Captive power plants, Integration of renewable energy sources.

UNIT-V INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID AND METERS

12 Hours

Home Area Networks for smart grid - IEEE 802.15.4 - ITU G.hn-IEEE 802.11, Field Area Networks -power-line communications- IEEE P1901 / Home Plug, RF mesh, Wide-area Networks for Smart Grid- Fiber Optics, Wi-MAX, sensor networks, Information Management in Smart Grid -SCADA, CIM. Networking Issues in Smart Grid -Wireless Mesh Network- Cloud Computing -Security and Privacy in Smart Grid and smart meters -Broadband over Power line.

	Total Hours 60 Hours
Reference Boo	ok(s)
1.	Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley.
2.	Stuart Borlase, "Smart Grid: infrastructure, technology and Solutions", 2012
3.	Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley.
4.	Jean Claude Sabonnadière, Nouredine Hadjsaïd, "Smart Grids", Wiley Blackwell.
5.	Peter S. Fox Penner, "Smart Power: Climate Changes, the Smart Grid, and the Future of Electric Utilities", Island Press; 1 edition 8 Jun 2010.
6.	S. Chowdhury, S. P. Chowdhury, P. Crossley, "Microgrids and Active Distribution Networks" Institution of Engineering and Technology, 30 Jun 2009.
7.	Stuart Borlase, "Smart Grids (Power Engineering)", CRC Press.

Reference Book(s)				
1	Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability: 1", Artech House Publishers July 2011.			
2.	James Northcote, Green, Robert G. Wilson "Control and Automation of Electric			
	Power Distribution Systems (Power Engineering)", CRC Press.			
3	Mladen Kezunovic, Mark G. Adamiak, Alexander P. Apostolov, Jeffrey George			
	Gilbert "Substation Automation (Power Electronics and Power Systems)",			
	Springer.			
4.	R. C. Dugan, Mark F. McGranghan, Surya Santoso, H. Wayne Beaty, "Electrical			
	Power System Quality", 2nd Edition, McGraw Hill Publication.			
5.	Yang Xiao, "Communication and Networking in Smart Grids", CRC Press.			

Course Code		L	Т	P	С	IA	EA	TM
Course Name	SOFT COMPUTING TECHNIQUES	4	2	0	4	40	60	100
Course Category	Elective Course –IV / V / VI	S	yllal	ous Re	visi	on	1	V.1.0
Pre- requisite	Basic Knowledge on Neural Networks						l	

Course Objectives:

The course should enable the students

- ❖ To review the fundamentals of ANN and fuzzy set theory.
- ❖ To make the students understand the use of ANN for modeling and control of non-linear system and to get familiarized with the ANN and FLC tool box.
- ❖ To make the students to understand the use of optimization techniques.
- ❖ To familiarize the students on various hybrid control schemes, P.S.O and get familiarized with the ANFIS tool box.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understand the various aspects of soft computing
	techniques, overview of artificial neural network (ANN) & fuzzy logic.
CO2	Develop knowledge and understand the various aspects of neural networks for
	modelling and control.
CO3	Develop knowledge and understand the various aspects of fuzzy logic for modelling
	and control.
CO4	Develop knowledge and understand the various aspects of genetic algorithm.
CO5	Develop knowledge and understand the various aspects of hybrid control schemes.

UNIT-I OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN) & 12 Hours FUZZY LOGIC

Review of fundamentals - Biological neuron, Artificial neuron, Activation function, Single Layer Perceptron - Limitations - Multi Layer Perceptron - Back propagation algorithm (BPA); Fuzzy set theory - Fuzzy sets - Operation on Fuzzy sets - Scalar cardinality, fuzzy cardinality, union and intersection, complement (yager and sugeno), equilibrium points, aggregation, projection, composition, decomposition, cylindrical extension, fuzzy relation - Fuzzy membership functions.

UNIT-II	NEURAL NETWORKS FOR MODELLING AND CONTROL	12 Hours

Modeling of non linear systems using ANN- NARX,NNSS,NARMAX - Generation of training data - optimal architecture – Model validation- Control of non line ar system using ANN Direct and Indirect neuro control schemes- Adaptive neuro controller – Case study - Familiarization of Neural Network Control Tool Box.

UNIT- FUZZY LOGIC FOR MODELLING AND CONTROL 12 Hours

Modeling of non linear systems using fuzzy models (Mamdani and Sugeno) – TSK model - Fuzzy Logic controller – Fuzzification – Knowledge base – Decision making logic – Defuzzification-Adaptive fuzzy systems - Case study - Familiarization of Fuzzy Logic Tool Box.

UNIT-IV GENETIC ALGORITHM

12 Hours

Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other search techniques like Tabu search, Ant-colony search and Particle Swarm Optimization.

UNIT-V HYBRID CONTROL SCHEMES

12 Hours

Fuzzification and rule base using ANN–Neurofuzzy systems - ANFIS – Optimization of membership function and rule base using Genetic Algorithm and Particle Swarm Optimization - Case study–Introduction to Support Vector Regression – Familiarization of ANFIS Tool Box.

	Total Hours 60 Hours
Reference	e Book(s)
1.	Laurene V.Fausett, "Fundamentals of Neural Networks, Architecture, Algorithms, and Applications", Pearson Education, 2008.
2.	Timothy J.Ross, "Fuzzy Logic with Engineering Applications", Wiley.
3.	George J.Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall, First Edition, 1995. ACC.NO: B132844
4.	David E.Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning", Pearson Education, 2009.
5.	W.T.Miller, R.S.Sutton and P.J.Webrose, "Neural Networks for Control", MIT Press, 1996.
6.	C.Cortes and V.Vapnik, "Support-Vector Networks, Machine Learning", 1995.