SRI CHANDRASEKHARENDRA SARASWATHI VISWAMAHA VIDYALAYA

(University established under section 3of UGC Act 1956) (Accredited with 'A' Grade by NAAC)

CURRICULUM FOR PART TIME

M.E. (EMBEDDED SYSTEM TECHNOLOGIES)

(Applicable for the Students admitted from 2025-26 onwards)

CURRICULUM I TO VI SEMESTERS (PART TIME)

SEMESTER I

S.No:	COURSE CODE	COURSE NAME	L	T	P	С
1.		ADVANCED MATHEMATICS				
		FOR ELECTRONICS				
		ENGINEERS	4	2	0	4
2.		ADVANCED DIGITAL SYSTEM				
		DESIGN	4	2	0	4
3.		MICROCONTROLLER BASED				
		SYSTEM DESIGN & ANALYSIS	4	2	0	4
		TOTAL	12	6	0	12
		IOIAL	12	U	U	12

SEMESTER II

S.No:	COURSE CODE	COURSE NAME	L	T	P	С
1.		DESIGN OF EMBEDDED SYSTEMS	4	2	0	4
2.		EMBEDDED PROGRAMMING	4	2	0	4
3.		ELECTIVE- I	4	2	0	4
4.		EMBEDDED SYSTEM LABORATORY	0	0	3	2
		TOTAL	12	6	3	14

SEMESTER III

S.No:	COURSE CODE	COURSE NAME	L	Т	P	С
1.		REAL TIME OPERATING SYSTEM	4	2	0	4
2.		SOFTWARE TECHNOLOGY FOR EMBEDDED SYSTEMS	4	2	0	4
3.		EMBEDDED NETWORKING	4	2	0	4
		TOTAL	12	6	0	12

SEMESTER IV

S.No:	COURSE CODE	COURSE NAME	L	T	P	С
1.		EMBEDDED COMMUNICATION AND SOFTWARE DESIGN	4	2	0	4
2.		ELECTIVE –II	4	2	0	4
3.		ELECTIVE – III	4	2	0	4
		TOTAL	12	6	0	12

SEMESTER V

S.No:	COURSE CODE	COURSE NAME	L	Т	P	C
1.		ELECTIVE – IV	4	2	0	4
2.		ELECTIVE – IV	4	2	0	4
3.		ELECTIVE – VI	4	2	0	4
4.		PROJECT WORK PHASE-I	0	0	12	6
		TOTAL	12	6	12	18

SEMESTER VI

S.No:	COURSE CODE	COURSE NAME	L	T	P	С
1.		PROJECT WORK PHASE-II	0	0	24	12
		0	0	24	12	

Total Credit to be earned for the award of degree is: 80

LIST OF ELECTIVES

ELECTIVE I

S.No:	COURSE CODE	COURSE NAME		Т	P	С
1		ADVANCED DIGITAL SIGNAL PROCESSING	4	2	0	4
2		RISC PROCESSOR ARCHITECTURE AND PROGRAMMING	4	2	0	4
3		WIRELESS AND MOBILE COMMUNICATION	4	2	0	4
4		BIG DATA ANALYTICS	4	2	0	4

ELECTIVE II & III:

S.No:	COURSE CODE	COURSE TITLE	L	Т	P	С
1		ASIC DESIGN	4	2	0	4
2		ADVANCED EMBEDDED SYSTEMS	4	2	0	4
3		EMBEDDED LINUX	4	2	0	4
4		VLSI ARCHITECTURE AND DESIGN METHODOLOGIES	4	2	0	4
5		PROGRAMMING WITH VHDL	4	2	0	4
6		PRINCIPLE OF ROBOTICS	4	2	0	4
7		APPLICATION OF MEMS TECHNOLOGY	4	2	0	4
8		DIGITAL IMAGE PROCESSING	4	2	0	4

ELECTIVE IV, V & VI:

S.No:	COURSE CODE	COURSE TITLE		Т	P	C
1		EMBEDDED ANALOG INTERFACING	4	2	0	4
2		EMBEDDED AUTOMOTIVE NETWORKING WITH CAN	4	2	0	4
3		EMBEDDED SYSTEM DESIGN USING ARM PROCESSOR	4	2	0	4

4	DISTRIBUTED EMBEDDED COMPUTING	4	2	0	4
5	SMART METERS AND SMART GRID COMMUNICATION	4	2	0	4
6	SOFT COMPUTING TECHNIQUES	4	2	0	4

Course Code		L	T	P	С	IA	EA	TM	
Course Name	ADVANCED MATHEMATICS FOR ELECTRONIC ENGINEERS	4	2	0	4	40	60	100	
Course			Syllab	us Revis	sion			V.1.0	
Category									
Pre-requisite									

Course Objectives:

The course should enable the students -

- 1. To encourage students to develop a working knowledge of the central ideas of linear algebra.
- 2. To study and understand the concepts of probability and random variable of the various functions.
- 3. To understand the notion of a Markov chain, and how simple ideas of conditional probability and matrices can be used to give a thorough and effective account of discrete-time Markov chains.
- 4. To formulate and construct a mathematical model for a linear programming problem in real life situation.
- 5. Introduce the Fourier Transform as an extension of Fourier techniques on periodic functions and to solve partial differential equations.
- 6. To develop the use of matrix algebra techniques this is needed by engineers for practical applications.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understanding in the fields of linear algebra.
CO2	Develop knowledge and understanding in the fields of probability.
CO3	Develop knowledge and understanding in the fields stochastic process.
CO4	Develop knowledge and understanding in the fields of linear matrix.
CO5	Develop knowledge and understanding in the fields of Fourier transform.

UNIT-I	LINEAR ALGEBRA	12Hours				
Vector space	ces – norms – Inner Products – Eigen values using QR trans formations – C	QR factorization -				
generalized eigenvectors – Canonical forms – singular value decomposition and applications – pseudo						
inverse – le	east square approximations -Toeplitz matrices and some applications.					
UNIT-II	ONE DIMENSIONAL RANDOM VARIABLES	12 Hours				
Random va	ariables - Probability function - moments - moment generating func	tions and their				
properties -	- Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Norma	ıl distributions –				
Function of	f a Random Variable.					
UNIT-III	MATRIX THEORY	12 Hours				
Some impo	ortant matrix factorizations – The Cholesky decomposition – Q R factor	rization – Least				
squares me	thod – Singular value decomposition - Toeplitz matrices and some application	ons.				
UNIT-IV	QUEUEING MODELS	12 Hours				
	ocess – Markovian queues – Single and Multi-server Mode ls – Little's f	ormula - Machine				
Interferenc	e Model – Steady State analysis – Se lf Service queue.					
UNIT-V	FOURIER TRANSFORM FOR PARTIAL DIFFERENTIAL EQUATIONS	12 Hours				
Fourier tra	nsforms: Definitions, properties-Transform of elementary functions, Dirac I	Pelta functions —				
	n theorem – Parseval's identity – Numerical solution of partial differential					
	Wave equations, Laplace and Poison's equations.	equations. Heat				
equations,	wave equations, Laplace and 1 015011 5 equations.					
	Total Hours	60 Hours				
Text Book(s		oo nouis				
1.	Bronson, R.Matrix Operation, Schaum's outline series, Mc Graw Hill, Ne	w York (1989)				
2.	Oliver C. Ibe, "Fundamentals of Applied Probability and Random Proces					
_,	Press, (An imprint of Elsevier), 2010.					
3.	Taha H.A. "Operations Research: An introduction" Ninth Edit ion, Pears	on Education,				
	Asia, New Delhi 2012. ACC.NO: B120195					
4.	Sankara Rao, K. "Introduction to partial differential equations" Prentice	Hall of India,				
5.	pvt, Ltd, New Delhi, 1997. ACC.NO: B58352					
Andrews, L.C. and Philips.R.L. "Mathematical Techniques for engineering and						
	scientists", Printice Hall of India, 2006.					
6.						
	2007, cengage learning India private limited ACC.NO: B119035					
7.	Donald Gross and Carl M. Harris, Fundamentals of Queueing theory, 2nd	dedition John				
7.	Wiley and Sons, New York (1985). ACC.NO: B99276	redicion, john				

Course Code		L	Т	P	С	IA	EA	TM
Course Name	ADVANCED DIGITAL SYSTEM DESIGN	4	2	0	4	40	60	100
Course Category			Sylla	bus Re	visio	on	1	V.1.0
Pre-requisite								

Course Objectives:

The course should enable the students -

- 1. Basics on Synchronous & Asynchronous digital switching design.
- 2. Design & realisation of error free functional blocks for digital systems

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understanding in the basics on Synchronous & Asynchronous
	digital switching design.
CO2	Develop knowledge and understanding in the basics on Fault Diagnosis and
	Testability Algorithms
CO3	Develop knowledge and understanding in the basics on Synchronous Design Using
	Programmable Devices.
CO4	Develop knowledge and understanding in the basics on Synchronous & Asynchronous
	digital switching design, Design & realisation of error free functional blocks for digital
	systems and system design using hardware descriptive language.
CO5	Develop knowledge and understanding in the basics on Synchronous & Asynchronous
	digital switching design, Design & realisation of error free functional blocks for digital
	systems and system design using hardware descriptive language.

UNIT-I	SEQUENTIAL & ASYNCHRONOS CIRCUIT DESIGN	12 Hours				
Analysis of Clock	sed Synchronous Sequential Networks (CSSN) Modelling of CSSN	– State Stable				
Assignment and	Assignment and Reduction – Design of CSSN – Design of Iterative Circuits – ASM Chart – ASM					
Realization, Desig	Realization, Design of Arithmetic circuits for Fast adder- Array Multiplier. Analysis of Asynchronous					
Sequential Circuit	Sequential Circuit (ASC) – Flow Table Reduction – Race s in ASC – State Assignment – Problem and					
the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards – Data						
Synchronizers – Designing Vending Machine Controller – Mixed Operating Mode Asynchronous						
Circuits.		•				

UNIT-II	FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS	12 Hours
---------	--	----------

Fault Table Method – Path Sensitization Method – Boolean Difference Method – Kohavi Algorithm – Tolerance Techniques – The Compact Algorithm – Practical PLA's – Fault in PLA – Test Generation – Masking Cycle – DFT Schemes – Built-in Self Test.

UNIT-III	SYNCHRONOUS DESIGN USING PROGRAMMABLE DEVICES	12 Hours
----------	---	----------

Programming Techniques -Re-Programmable Devices Architecture- Function blocks, I/O blocks, Interconnects, Realize combinational, Arithmetic, Sequential Circuit with Programmable Array Logic; Architecture and application of Field Programmable Logic Sequence.

UNIT-IV	NEW GENERATION PROGRAMMABLE LOGIC DEVICES	12 Hours			
Fold back Architecture with GAL, EPLD, EPLA, PEEL, PML; PROM – Realization State machine using					
PLD – FPGA – Xil	linx FPGA – Xilinx 2000 - Xilinx 3000.				

UNIT-V	SYSTEM DESIGN USING VHDL	12 Hours
--------	--------------------------	----------

VHDL Description of Combinational Circuits – Arrays – VHDL Operators – Compilation and Simulation of VHDL Code – Modelling using VHDL – Flip Flops – Registers – Counters – Sequential Machine – Combinational Logic Circuits – VHDL Code for – Serial Adder, Binary Multiplier – Binary Divider – complete Sequential Systems – Design of a Simple Microprocessor.

	Total Hours 60 Hours
Text Book(s)	
1.	Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002. ACC.NO: B100970
2.	Mark Zwolinski, "Digital System Design with VHDL", Pear son Education, 2004.
3.	Stephen Brown and Zvonk Vranesic, "Fundamentals of Digital Logic with VHDL Deisgn", Tata McGraw Hill, 2002
4.	John M Yarbrough, "Digital Logic applications and Design", Thom son Learning, 2001
5.	Parag K Lala, "Digital System design using PLD", BS Publications, 2003
6.	Nripendra N Biswas, "Logic Design Theory", Prentice Hal l of India, 2001 ACC.NO: B130827
7.	Charles H. Roth Jr., "Fundamentals of Logic design", Thomson Learning, 2004. ACC.NO: B134442
8.	Navabi.Z. "VHDL Analysis and Modelling of Digital Systems, McGraw International, 1998.

Course Code		L	T	P	С	IA	EA	TM
Course Name	MICROCONTROLLER BASED SYSTEM DESIGN	4	2	0	4	40	60	100
Course Category			Sylla	bus Re	evisio	n		V.1.0
Pre-requisite								

Course Objectives:

The course should enable the students -

Basic understanding of embedded systems design. This includes system requirements specifications, architectural and detailed design, and implementation, focusing on real-time applications. Learning the concepts will be enforced by a Project to design and develop an embedded system based on a single-chip microcontroller.

Course Outcomes:

UNIT-I

On completion of the course, the student will be able to

	Description
Outcomes	
CO1	Develop knowledge and understanding on the system requirements specifications, architectural and detailed design, and implementation, focusing on real-time applications of 8051.
CO2	Develop knowledge and understanding on the system requirements specifications, architectural and detailed design, and implementation, focusing on real-time applications of 32 bit ARM 920
CO3	Understanding on the system requirements specifications, architectural and detailed design, and implementation of ARM Processor Organization.
CO4	Understanding on the system requirements specifications, architectural and detailed design, and implementation of Microcontroller Based Embedded Systems.
CO5	Learning the concepts will be enforced by a Project to design and develop an embedded system based on a single-chip microcontroller.

Introduction to Embedded System. Architecture, 8051- CPU Block diagram, Memory Organization, Program memory, Data Memory, Interrupts Peripherals: Timers, Serial Port, I/O Port Programming: Addressing Modes, Instruction Set, Programming Timing Analysis Case study with reference to 8-bit 8051 Microcontroller.

REVIEW OF 8051

UNIT-II INTRODUCTION FOR 32 BIT ARM 920 12 Hours

32- Bit ARM920T Processor Core -Introduction: RISC/ARM Design Philosophy, About the ARM920T Core,

Processor Functional Block Diagram. Programmers Model. Cache: Memory hierarchy and cache memory.

Memory Management Units: - ARM Instruction Set- Thumb Instruction Set. Interrupt Handling.

IINIT-III	ARM PROCESSOR ORGANIZATION	12 Hours

ARM9 Microcontroller Architecture-Block Diagram, Features, Memory Mapping Memory Controller (MC)-External Bus Interface (EBI)-External Memory Interface-Interrupt Controller-System Timer (ST- Real Time Clock (RTC) Parallel Input/output Controller (PIO).

12 Hours

UNIT-IV	PERIPHERALS OF ARM PROCESSOR	12 Hours						
AT91RM9200	PERIPHERALS -Universal Synchronous Asynchronous Receiver	r Transceiver (USART)-Block						
Diagram, Fun	ctional Description, Synchronous and Asynchronous Modes.							
UNIT-V	DEVELOPMENT & DEBUGGING TOOLS FOR	12 Hours						
	MICROCONTROLLER BASED EMBEDDED SYSTEMS							
Software and	Hardware tools like Cross Assembler, Compiler, Debugger, Simulat	or, In-Circuit Emulator (ICE),						
Logic Analyse	er.							
	Total Hours	60 Hours						
Text Book(s)								
1.	Intel Hand Book on "Embedded Microcontrollers", 1st Edition.							
2.	Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, "	The 8051 Microcontroller and						
2	Embedded Systems using Assembly and C", 2e, PHI.							
3.	ARM Company Ltd. "ARM Architecture Reference Manual— ARM D DI 0100E".							
4.	David Seal "ARM Architecture Reference Manual", 2001 Addiso	n Wesley, England; Morgan						
	Kaufmann Publishers.	1 10:1 5:1						
5.	Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Deve Optimizing System Software", 2006, Elsevier.	loper's Guide - Designing and						
6.	Ayala, Kenneth J "8051 Microcontroller - Architecture, Programmi	ng & Applications". 1 st Edition.						
0.	Penram International Publishing.	ng et rippineutions ; i Danion,						
7.	Steve Furber, "ARM System-on-Chip Architecture", 2 nd Edition, Pe	earson Education ACC.NO:						
	B129645.							
8.	Predko, Myke, "Programming and Customizing the 8051 Microcont	roller", 1st Edition, McGraw Hill						
0	International ACC.NO: B100892.	" 1 of E 1::: D						
9.	Schultz, Thomas W, "C and the 8051 Programming for Multitask ing Stewart, James W, Miao, Kai X, "8051 Microcontroller: Hardware,							
10.	Edition, Prentice Hall.	Software and interfacing, 2						
11.	Arnold. S. Berger, "Embedded Systems Design - An introduct	tion t o Processes, Tools and						
	Techniques", Easwer Press.	,						
12.	Raj Kamal, "Microcontroller - Architecture Programming Interfa	cing and System Design" 1 st						
	Edition, Pearson Education.							
13.	P.S. Manoharan, P.S. Kannan, "Microcontroller based System	Design", 1 st Edition, Scitech						
1.4	Publications ACC.NO: B113621. David Calcutt Fred Covern Hassen Parchizedeb "9051 Migra con	trollors An Application Land						
14.	David Calcutt, Fred Cowan, Hassan Parchizadeh, "8051 Micro con Introduction", Elsevier.	troners – An Application based						
15.	Ajay Deshmukh, "Microcontroller - Theory & Applications", Tata M	cGraw Hill.						
	,,,,,,,,,,,,							

Course Code		L	T	P	С	IA	EA	TM
Course Name	DESIGN OF EMBEDDED SYSTEMS	4	2	0	4	40	60	100
Course Category		Syllabus Revision		-	V.1.0			
Pre-requisite								

Course Objectives:

The course should enable the students -

- 1. Basics Embedded Design Cycle
- 2. Design & realization of system with testing process.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understanding on the basics of embedded systems design life
	cycle.
CO2	Develop knowledge and understanding on the basics of partitioning decision.
CO3	Develop knowledge and understanding on the basics of interrupt service routines.
CO4	Develop knowledge and understanding on the basics of in circuit emulators.
CO5	Develop knowledge and understanding on the basics embedded systems design and the
	Testing procedure to be done for the embedded applications.

Embedded Design life cycle – Product specification – Hardware / Software partitioning – Detailed hardware and software design – Integration – Product testing – Selection Processes – Microprocessor Vs Micro Controller – Performance tools – Bench marking – RTOS Micro Controller – Performance tools – Bench marking – RTOS availability – Tool chain availability – Other issues in selection processes.

TIMITE II	PARTITIONING DECISION	12 Hours
UNIT-II	PARTITIONING DECISION	12 Hours

Partitioning decision – Hardware / Software duality – co ding Hardware – ASIC revolution –

Managing the Risk – Co-verification – execution environment – memory organization –

System startup – Hardware manipulation – memory – mapped access – speed and code density.

UNIT-III	INTERRUPT SERVICE ROUTINES	12 Hours
01411-111	INTERROFT SERVICE ROUTINES	12 110uis

Interrupt Service routines – Watch dog timers – Flash memory Basic toolset – Host based debugging – Remote debugging – ROM emulators – logic Analyzer – Caches – Computer optimisation – Statistical profiling.

UNIT-IV	IN CIRCUIT EMULATORS	12 Hours						
In circuit emula	In circuit emulators – Buller proof run control – Real time trace – Hardware break points – Overlay							
memory – Timin	g constraints – Usage issues – Triggers.							
UNIT-V	TESTING	12 Hours						
Testing – Bug tra	acking – reduction of risks & costs – Performance – Unit testing – Regi	ression testing –						
Choosing test ca	ses - Functional tests - Coverage tests - Testing embedded software	- Performance						
testing – Mainte	nance.							
	Total Hours	60 Hours						
Text Book(s)								
1.	Arnold S. Berger – Embedded System Design CMP books, USA 2002.							
2.	Sriram Iyer, "Embedded Real time System Programming".							
3.	ARKIN, R.C., Behaviour-based Robotics, The MIT Press, 1998.							

UNIT-IV

SYLLABUS (2025-26) M.E (EMBEDDED SYSTEM TECHNOLOGIES)

Course Code		L	T	P	С	IA	EA	TM		
Course Name	EMBEDDED PROGRAMMING	4	2	0	4	40	60	100		
Course Category		Syllabus Revision V.1.0								
Pre-requisite										
Course Objectives:										
	enable the students -									
	impart the knowledge of the Embedde	_		_						
2. To	impart the knowledge in the Applicati	on with	Data	Struct	ures.					
Course Outcomes:										
On completion of	the course, the student will be able to									
Course Outcomes		Descrip	tion							
CO1	Develop knowledge and understandi the field of embedded.	ng on tl	ne var	ious p	rogra	mming	concept	ts used		
CO2	Develop knowledge and understanding on the various programming concepts used in the field of embedded OS fundamentals.									
CO3	Develop knowledge and understanding on the various programming concepts used in the field of embedded C programming.									
CO4	Develop knowledge and understanding on the various programming concepts used in the field of embedded applications using data structures.									
CO5	Develop knowledge and understandi the field of embedded java.	ng on tl	ne var	ious p	rogra	mming	concep	ts used		
UNIT-I	INTROD	JCTION	1				12	Hours		
Introduction – I	ssues in Real Time Computing – Strue	cture of	a Rea	l Tim	e Sys	stem – '	Task cla	sses –		
and Scheduling	easures for Real Time Systems – Estima – Classical uniprocessor scheduling a gnment – Mode changes and Fault Tole	lgorithn	ns – U	nipro			_			
UNIT-II	EMBEDDED OS FUN	IDAME	NTAL	S			12	Hours		
Introduction: O	perating System Fundamentals, Gener	al and	Unix (OS arc	hite	cture E	mbedde	d Linux		
Booting Process line arguments, l	in Linux GNU Tools: gcc, Conditional (Make files.	Compila	tion, I	Pre-pr	ocess	or direc	tives, Co	omman		
UNIT-III	EMBEDDED C PRO	GRAM	MING				12	Hours		
	types –scalar types-Primitive types-			types-	sub	ranges				
	-arrays- Functions introduction to					Ŭ		• •		
•	erfacing C with Assembly. Embedded							-		
-	sting embedded C programs.									

EMBEDDED APPLICATIONS USING DATA STRUCTURES

12 Hours

Linear data structures— Stacks and Queues Implementation of stacks and Queues- Linked List - Implementation of linked list, Sorting, Searching, Insertion and Deletion, Nonlinear structures.

Implement	tation of linked list, Sorting, Searching, Insertion and Deletion, Nonlinear structures.
UNIT-V	EMBEDDED JAVA 12 Hours
Introductio	on to Object Oriented Concepts. Core Java/Java Core- Java buzzwords, Overview of Java
programmi	ng, Data types, variables and arrays, Operators, Control statements. Embedded Java –
Understand	ling J2ME,Connected Device configuration, Connected Limited device configuration, Profiles,
	f MIDP applications, Advantages of MIDP.
1111400111) 0	- 11-21 upp-reasions, 114 (41-45)
	Total Hours 60 Hours
Text Book(s)	
1.	GNU/Linux application programming, Jones, M Tim, Dream tech press, New Delhi.
2.	Embedded / Real-Time Systems: concepts, Design and Programming -The Ultimate
	Reference, Prasad K.V.K.K, Dream tech Press, New Delhi.
3.	Beginning J2ME-From Novice to Professional-3 rd Edition , Sing Li and
	Jonathan Knudsen, Dreamtech Press, New Delhi
4.	The Complete reference Java2, 5th Edition, Herbert Schildt, TMH
5.	Data structures Through 'C' Language, Samiran Chattopadhyay, Debarata Ghosh Dastidar,
	Matangini Chattopadhyay, and DOEACC Society.
6.	C Programming Language, Kernighan, Brian W, Ritchie, Dennis M, PHI publications.
7.	C and the 8051 Programming Volume II, Building efficient applications, Thomas W
	Schultz, PHI.
Reference B	ook(s)
1	Unix Network Programming, Stevens, W Richard, PH, New Jersey ACC.NO: B126496
2.	Linux Device Drivers, 2nd Edition, By Alessandro Rubini & Jonathan Corbet, O'Reilly ACC.NO: B65039
3	Data Structures Using C- ISRD group, TMH
4.	Data structures –Seymour Lipschutz, Schaums Outlines
5.	Let us C, Yashwant Kanetkar ACC.NO: B113351
6.	C Programming for Embedded systems, Zurell, Kirk
7.	C and the 8051 Programming for Multitasking – Schultz, Thomas W
8.	C with assembly language, Steven Holzner, BPB publication ACC.NO : B59951
9.	C and the 8051: Hardware, Modular Programming and Multitasking Vol i – Schultz,
- •	Thomas W
10.	Art of C Programming, Jones, Robin, Stewart, Ian ACC.NO: B56037
11.	Kelley, A & Pohl, I;, " A Book on C", Addison – Wesley
12.	Advanced Linux Programming Mark Mitchell, Jeffrey Oldham, and Alex Samuel,
	Techmedia.
13.	Embedded/ real-time systems: concepts, design and programming black book, Prasad, K V
	V V Downstal and Nr. Dill.: ACC NO. D197000

Course Code	L	Т	P	С	IA	EA	TM

K K, Dreamtech press, New Delhi. ACC.NO: B127888.

Course Name	REAL TIME OPERATING SYSTEM	4	2	0	4	40	60	100
Course Category		Syllabus Revision V.1.0						
Pre-requisite								
Course Objectives:	:							
The course should	enable the students -							
	1. To expose the students to the fundamental	ental	s of in	teract	ion c	of OS wi	ith a co	mputer
	and User computation.							
	2. To teach the fundamental concepts of	of ho	ow pro	ocess a	are c	reated a	and cor	trolled
	with OS.							
	3. To study on programming logic of	mod	elling	Proce	ess b	ased on	range	of OS
	features.							
	4. To compare types and Functionalities is	in co	mmer	cial O	S.			
	5. To discuss the application development using RTOS.							
Course Outcomes	the course, the student will be able to Description	cript	ion					
CO1	Develop knowledge on the operating s and how to develop the application using	•		•	-	cess bas	sed on	the OS
CO2	Develop knowledge on the operating sy and how to develop the application using			lelling	pro	cess bas	ed on t	he OS
CO3	Develop knowledge on the operating system, modelling process based on the OS and how to develop the application using real time kernel.							
CO4	Develop knowledge on the operating system, modelling process based on the OS and how to develop the application using real time models and languages.							
CO5	Develop knowledge on the operating s and how to develop the application using	•		•			sed on	the OS
UNIT-I	REVIEW OF OPERATIN	IG S	YSTEM	IS			12 F	Iours
Basic Principles -	Operating System structures – System	Ca	lls – I	Files -	- Pro	cesses -	- Desig	n and
Implementation of	of processes – Communication between	pro	cesses	– Int	rodu	ction to	n Distri	buted

operating system – issues in distributed system: states, events , clocks-Distributed scheduling-Fault & recovery.

UNIT-II RTOS 12 Hours

Real-time concepts, Hard Real time and Soft Real-time, Differences between General Purpose OS & RTOS, Basic architecture of an RTOS, Scheduling Systems, Inter-process communication, Performance Matric in scheduling models, Interrupt management in RTOS environment, Memory management. File systems, I/O Systems, Advantage and disadvantage of RTOS. POSIX standards RTOS Issues - Selecting a Real Time Operating System, RTOS comparative study.

UNIT-III	REAL TIME KERNEL	12 Hours

10.

VxWorks Reference Manual.

SYLLABUS (2025-26) M.E (EMBEDDED SYSTEM TECHNOLOGIES)

VxWorks Scheduling and Task Management - Real-time scheduling, Task Creation, Intertask Communication, Pipes, Semaphore, Message Queue, Signals, Sockets, Interrupts I/O Systems - General Architecture, Device Driver Studies, Driver Module explanation, Implementation of Device Driver for a peripheral Case study using Vxworks.

memiceture, bev	ice Driver Studies, Driver Woulde explanation, implementation of Dev	THE DITTEL TOI
a peripheral Case s	study using Vxworks.	
UNIT-IV	REAL TIME MODELS AND LANGUAGES	12 Hours
Event Based – Pr	ocess Based and Graph based Models – Real Time Languages – RTC	S Tasks – RT
scheduling - Inter	rupt processing – Synchronization – Control Blocks – Memory Requirer	ments.
UNIT-V	RTOS APPLICATION DOMAINS	12 Hours
Case studies- RTC	S for Image Processing – Embedded RTOS for Network Communication	on – RTOS for
fault-Tolerant App	plications – RTOS for Control Systems.	
	Total Hours	60 Hours
Text Book(s)		
1.	Silberschatz, Galvin, Gagne "Operating System Concepts", 6th ed,	John. Wiley,
	2003 ACC.NO: B132752.	
2.	D.M.Dhamdhere," Operating Systems, A Concept-Based Approch,TM	H, <u>2008</u>
3.	Raj Kamal, "Embedded Systems- Architecture, Programming and	Design" Tata
	McGraw Hill, 2006. ACC.NO: B133063.	
4.	Herma K., "Real Time Systems - Design for distributed Embedded	Applications",
	Kluwer Academic, 1997.	
5.	Charles Crowley, "Operating Systems-A Design Oriented approa	ach" McGraw
	Hill,1997.	
6.	C.M. Krishna, Kang, G.Shin, "Real Time Systems", McGraw Hill, 1997	
7.	Raymond J.A.Bhur, Donald L.Bailey, "An Introduction to Real T	ime Systems",
	PHI1999.	
8.	Mukesh Sighal and N G Shi "Advanced Concepts in Operating Syste	em", McGraw
	Hill ACC.NO: B132360.	
9.	VxWorks Programmers Guide.	

Course Code	L	Т	P	С	IA	EA	TM
-------------	---	---	---	---	----	----	----

Course Name	SOFTWARE TECHNOLOGY FOR EMBEDDED SYSTEMS	4	2	0	4	40	60	100	
Course Category			Sylla	bus R	evisio	on	V.	1.0	
Pre-requisite		•	Ť				•		
Course Objectives									
	d enable the students -				_	_			
1.	Use of C language for embedded applic	ations	, conc	epts, c	o-des	sign met	thods.		
Course Outcomes	:								
-	f the course, the student will be able to								
Course	De	escript	ion						
Outcomes									
CO1	1 0 0	Develop knowledge in using of Programming Embedded Systems.							
CO2	Develop knowledge in using of C and Assembly .								
CO3	Develop knowledge in using of Embed	Develop knowledge in using of Embedded Program and Software Development							
	Process.								
CO4	Develop knowledge in using of C la	nguag	e and	UML	Lang	guage f	or a rea	al tim	
	application.								
CO5	Develop knowledge in using of web ar	chitect	ural f	ramew	vork f	or emb	edded s	ystem	
UNIT-I	PROGRAMMING EMBE	DDED	SYST	EMS			12 F	lours	
Embedded Progr	am – Role of Infinite loop – Compiling	, Link	ing ar	nd loca	ating	- dow	nloading	g and	
· ·	ulators and simulators processor – Ext		•		·		•	-	
Memory testing -	•					•		•	
, c	•								
UNIT-II	C AND ASSEN	MBLY					12 F	Iours	
Overview of Em	bedded C - Compilers and Optimizatio	n - Pr	ogran	nming	and	Asseml	oly –Re	gister	
usage convention	s - typical use of addressing options - i	instruc	tion s	equen	cing-	- Proced	dure cal	l and	
return – parame	ter passing – retrieving parameters –	everyt	hing	in pas	s by	value	– temp	orary	
variables.									

UNIT-III	EMBEDDED PROGRAM AND SOFTWARE DEVELOPMENT	12 Hours
	PROCESS	

Program Elements – Queues – Stack- List and ordered lists- Embedded programming in C++ - Inline Functions and Inline Assembly - Portability Issues - Embedded Java- Software Development process: Analysis – Design- Implementation – Testing – Validation- Debugging - Software maintenance.

UNIT-IV	UNIT-IV UNIFIED MODELLING LANGUAGE							
Object State Behaviour - UML State charts - Role of Scenarios in the Definition of Behaviour -								
Timing Diagrams -	Timing Diagrams – Sequence Diagrams – Event Hierarchies – Types and Strategies of Operations							

Architectural Design in UML Concurrency Design – Representing Tasks – System Task Diagram –
 Concurrent State Diagrams – Threads. Mechanistic Design – Simple Patterns.

UNIT-V	WEB ARCHITECTURAL FRAMEWORK FOR EMBEDDED	12 Hours
	SYSTEM	

Basics – Client/Server model- Domain Names and IP address – Internet Infrastructure and Routing – URL – TCP/IP protocols - Embedded as Web Client - Embedded Web servers - HTML - Web security - Case study: Web-based Home Automation system.

	Total Hours 60 Hours
Text Book(s)	·
1.	David E.Simon: "An Embedded Software Primer", Pearson Education, 2003 ACC.NO: B102775.
2.	Michael Barr, "Programming Embedded Systems in C and C++" Oreilly, 2003.
3.	H.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet a nd World Wide Web – How to Program" Third Edition, Pearson Education, 2001. ACC.NO: B111693.
4.	Bruce Powel Douglas, "Real-Time UML, Second Edition: Developing Efficient Object for Embedded Systems, 2nd edition, 1999, Addison-Wesley.
5.	Daniel W.lewis "Fundamentals of Embedded Software where C and Assembly meet" PHI 2002. ACC.NO: B100506.
6.	Raj Kamal, "Embedded Systems- Architecture, Programming and Design" TMH, 2006. ACC.NO: B133063.

Course Code		L	T	P	С	IA	EA	TM
Course Name	EMBEDDED NETWORKING							
		4	2	0	4	40	60	100
Course Category			Sylla	bus R	evisi	on		V.1.0
Pre-requisite								

Course Objectives:

The course should enable the students -

- 1. To impart knowledge on Serial and parallel communication protocols
- 2. Application Development using USB and CAN bus for PIC microcontrollers
- 3. Application development using Embedded Ethernet for Rabbit processors. Wireless sensor network communication protocols.

Course Outcomes:

UNIT-I

On completion of the course, the student will be able to

Course	Description					
Outcomes						
CO1	Develop knowledge in the protocols, embedded communication protocols.					
CO2	Develop knowledge in USB and CAN bus.					
CO3	Develop knowledge in controller area network.					
CO4	Develop knowledge in embedded ethernet.					
CO5	Develop knowledge in wireless embedded networking related application.					

Embedded Networking: Introduction–Serial / Parallel Communication–Seri al communication protocols -RS232 standard – RS485 – Synchronous Serial Protocols - Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I2C) – PC Parallel port programming -ISA/PCI Bus protocols – Firewire.

UNIT-II USB AND CAN BUS 12 Hours

USB bus - Introduction - Speed Identification on the bus - USB States - USB bus

EMBEDDED COMMUNICATION PROTOCOLS

USB Interface – C Programs –CAN Bus – Introduction - Frames –Bit stuffing –Types of errors –

Nominal Bit Timing – PIC microcontroller CAN Interface –A simple application with CAN.

UNIT-III CONTROLLER AREA NETWORK 12 Hours

Controller Area Network – Underlying Technology, CAN Overview – Selecting a CAN Controller – CAN development tools. Implementing CAN open Communication layout and requirements – Comparison of implementation methods – Micro CAN open – CAN open source code – Conformance test – Entire design life cycle.

UNIT-IV	EMBEDDED ETHERNET	12 Hours
Exchanging mess	ages using UDP and TCP – Serving web pages with Dynamic Da	ta – Serving web pages that

12 Hours

respond to user Input – Email for Embedded Systems – Using FTP – Keeping Devices and Network secure.							
UNIT-V	WIRELESS EMBEDDED NETWORKING	12 Hours					
Wireless sensor n	etworks – Introduction – Applications – Network Topology –	Localization – Time					
Synchronization	- Energy efficient MAC protocols –SMAC – Energy Efficient and ro	obust routing – Data Centric					
routing.							
Total Hours 60 Hours							
Text Book(s)							
1.	Frank Vahid, Givargis 'Embedded Systems Design: A Un	nified Hardware/ Software					
	Introduction', Wiley Publications						
2.	Jan Axelson, 'Parallel Port Complete', Penram publications.						
3.	Dogan Ibrahim, 'Advanced PIC microcontroller projects in C', Els	evier 2008.					
4.	Jan Axelson 'Embedded Ethernet and Internet Complete', Penram	publications.					
5.	Bhaskar Krishnamachari, 'Networking wireless sensors', Cambridg	e press, 2005.					
6.	Glaf P.Feiffer, Andrew Ayre and Christian Keyold, "Embedded 1	networking with CAN and					
	CAN open", Embedded System Academy 2005.	-					

Course Code		L	Т	P	С	IA	EA	TM
Course Name	EMBEDDED COMMUNICATION SOFTWARE DESIGN	4	2	0	4	40	60	100
Course Category			Sylla	bus Re	visio	n	V.	1.0
Pre-requisite								

Course Objectives:

The course should enable the students -

- 1. To know about the OSI Model for Embedded Communication.
- 2. To know about the software design for the communication.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understanding the various aspects of OSI reference model.
CO2	Develop knowledge and understanding the various aspects of software partitioning.
CO3	Develop knowledge and understanding the various aspects tables & other data structures.
CO4	Develop knowledge and understanding the various aspects of management software.
CO5	Develop knowledge and understanding the various aspects of multi board communication software design.

UNIT-I	OSI REFERENCE MODEL	12 Hours
Communication	Devices - Communication Echo System - Design Consideration -	- Host Based

Communication – Embedded Communication System – OS Vs RTOS.

UNIT-II	SOFTWARE PARTITIONING	12 Hours

Limitation of strict Layering – Tasks & Modules – Modules and Task Decomposition –Layer2 Switch

– Layer3 Switch / Routers – Protocol Implementation – Management Types – Debugging Protocols.

UNIT-III	TABLES & OTHER DATA STRUCTURES	12 Hours

Partitioning of Structures and Tables – Implementation – Speeding Up access – Table Resizing – Table access routines – Buffer and Timer Management – Third Party Protocol Libraries.

UNIT-IV MANAGEMENT SOFTWARE 12 Hours

Device Management – Management Schemes – Router Management – Management of Sub System Architecture – Device to manage configuration – System Start up and configuration.

UNIT-V	MULTI BOARD COMMUNICATION SOFTWARE DESIGN	12 Hours
Multi Board Arc	hitecture – Single control Card and Multiple line C and Architecture –	Interface for
Multi Board sof	ftware – Failures and Fault – Tolerance in Multi Board Systems	– Hardware
independent dev	elopment – Using a COTS Board – Development Environment – Test To	ools.
	Total Hours	60 Hours
Text Book(s)		
1.	Sridhar .T, "Designing Embedded Communication Software" CMP Boo	oks, 2003.
2.	Comer.D, "Computer networks and Internet", Third Edition, Prentice	Hall, 2001.

Course		т	т	P	С	IA	EA	TM
Code		L	1	Г	٦	IA	EA	1 1/1
Course	EMBEDDED SYSTEMS LABORATORY			_				100
Name	ENDEDDED STOTEND ELECTRICAL	0	0	3	2	40	60	100
Course		S	Syllabus Revision V.1.0			V.1.0		
Category								
Pre-		•				•	•	
requisite								

Course Objectives:

The course should enable the students -

- 1. To design 8051, PIC and 16 bit processors for I/O programming, serial port programming for PWM generation, motor control, LCD, RTC and Sensor interfacing.
- 2. To design and analyse wired/wireless networks using NS2 simulator.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Design 8-bit Microcontrollers.
CO2	Design 16-bit Microcontrollers.
CO3	Design ARM Processor.
CO4	Design Xilinx/Altera FPGA and CPLD.
CO5	Design Network Simulators.

LIST OF EXPERIMENTS

- 1. Design with 8 bit Microcontrollers 8051/PIC Microcontrollers.
 - i)I/O Programming, Timers, Interrupts, Serial port programming.
 - ii) PWM Generation, Motor Control, ADC/DAC, LCD and RTC Interfacing, Sensor Interfacing.
 - iii) Both Assembly and C programming.
- 2. Design with 16 bit processors. I/O programming, Timers, Interrupts, Serial Communication.
- 3. Design with ARM Processors. I/O programming, ADC/DAC, Timers, Interrupts.
- 4. Study of one type of Real Time Operating Systems (RTOS).
- 5. Electronic Circuit Design of sequential, combinational digital circuits using CAD Tools.
- 6. Simulation of digital controllers using MATLAB/LabVIEW.
- 7. Programming with DSP processors for Correlation, Convolution, Arithmetic adder, Multiplier, Design of Filters FIR based IIR based.
- 8. Design with Programmable Logic Devices using Xilinx/Altera FPGA and CPLD.
- 9. Design and Implementation of simple Combinational/Sequential Circuit
- 10. Network Simulators Simple wired/ wireless network simulation using NS2.
- 11. Programming of TCP/IP protocol stack.

Total	Hours	60 Hours

Course		т	Т	P	(IA	EA	TM
Code		ь	1	Г	٦	IA	EA	1 1/1
Course	ADVANCED DIGITAL SIGNAL							
Name	PROCESSING	4	2	0	4	40	60	100
Course		S	Syllal	bus Rev	risio	n	V.	1.0
Category								
Pre-		•				•		•
requisite								

Course Objectives:

The course should enable the students -

1. To make the student learn: theory of DSP, design of digital signal processing applications and an introduction to DSP processors.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge of discrete random signal used in the embedded system.
CO2	Develop knowledge of estimation and prediction techniques used in the embedded
	system.
CO3	Develop knowledge of digital signal processor used in the embedded system.
CO4	Develop knowledge of application of VLSI implementation techniques used in the
	embedded system.
CO5	Develop knowledge of VLSI implementation used in the embedded system.

UNIT-I DISCRETE RANDOM SIGNAL 12H

Discrete Random Processing – Expectations – Variance – Co-Variance – Scalar Product – Energy of Discrete Signals – Parseval's Theorem – Wiener Khintchine Relation – Power Spectral Density – Periodogram. Autocorrelation – Sum Decomposition Theorem – Spectral Factorization Theorem – Discrete Random Signal Processing by Linear Systems – Simulation of White Noise – Low Pass Filtering of White Noise.

UNIT-II ESTIMATION AND PREDICTION TECHNIQUES 12Hours

Discrete Random Processes – Ensemble averages, Stationary processes, Autocorrelation and Auto covariance matrices. Parseval's Theorem, Wiener-Khintchine Relation – Power Spectral Density . AR, MA, ARMA model based spectral estimation. Parameter Estimation, Linear prediction – Forward and backward predictions, Least mean squared error criterion – Wiener filter for filtering and prediction, Discrete Kalman filter.

UNIT-III	DIGITAL SIGNAL PROCESSOR					
Basic Arch	itecture - Computational building blocks, MAC, Bus Arc hitecture and	memory,				
Data Addr	essing, Parallelism and pipelining, Parallel I/O interface, Memory l	nterface,				
Interrupt, I	DMA.					

UNIT-IV	APPLICATION OF VLSI IMPLEMENTATION	12Hours			
Basics on	DSP system architecture design using VHDL programming, Mapping	of DSP			
algorithm onto hardware, Realization of MAC & Filter structure.					
UNIT-V	VLSI IMPLEMENTATION	12Hours			
Basics on	DSP system architecture design using VHDL programming, Mapping	of DSP			
algorithm o	onto hardware, Realization of MAC & Filter structure.				
	Total Hours	60Hours			
Text Book(s)					
1.	Bernard Widrow, Samuel D. Stearns, "Adaptive Signal Processing", Education, third edition, 2004. ACC.NO: B130380.	Pearson			
2.	Dionitris G. Manolakis, Vinay K. Ingle, Stepen M. Kogon,"Statistical & Adaptive signal processing, spectral estimation, signal modeling, Adaptive filtering & Array processing", McGraw-Hill International edition 2000.				
3.					
4.	John G. Proaks, Dimitris G. Manolakis, "Digital Signal Pr ocessing", Education 2002.	, Pearson			
5.	S. Salivahanan, A. Vallavaraj and C. Gnanapriya "Digital Signal Pr TMH,2000. ACC.NO: B124703	ocessing",			
6.	6. Avatar Sing, S. Srinivasan, "Digital Signal Processing- Implementation using DSP Microprocessors with Examples from TMS320C54xx", Thomson India, 2004.				
7.	Lars Wanhammer, "DSP Integrated Circuits", Academic pres s, 1999, New Y	York.			
8.	Ashok Ambardar,"Digital Signal Processing: A Modern Introduction",Thomson India edition, 2007.				
9.	Lars Wanhammer, "DSP Integrated Circuits", Academic pres s, 1999, New Y	ork.			

Course		L	Т	P	С	IA	EA	TM
Code								
Course	RISC PROCESSOR ARCHITECTURE AND							
Name	PROGRAMMING	4	2	0	4	40	60	100
Course		S	yllal	ous Rev	risio	n	V.	1.0
Category								
Pre-						•		
requisite								

Course Objectives:

The course should enable the students -

- 1. To teach the architecture of 8 bit RISC processor.
- 2. To teach the architecture and programming of 16 bit RISC processor.
- 3. To teach the implementation of DSP in ARM processor.
- 4. To discuss on memory management in RISC processor.
- 5. To teach the application development with ARM processor.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge in AVR microcontroller architecture and their implementation in various field.
CO2	Develop knowledge in 8 and 16 bit RISC processor and their implementation in various field.
CO3	Develop knowledge in ARM application development and their implementation in various field.
CO4	Develop knowledge in memory protection and management and their implementation in various field.
CO5	Develop knowledge in design with arm microcontrollers and their implementation in various field.

UNIT-I AVR MICROCONTROLLER ARCHITECTURE 12Hours

 $\label{eq:addressing} Architecture-memory organization-addressing modes-I/O Memory-EEPROM-I/O \\ Ports-SRAM-Timer-UART-Interrupt Structure-Serial Communication with PC-ADC/DAC Interfacing.$

UNIT-II ARM ARCHITECTURE AND PROGRAMMING 12Hours

Arcon RISC Machine – Architectural Inheritance – Core & Architectures, The ARM Programmer's model -Registers – Pipeline - Interrupts – ARM organization - ARM processor family – Co-processors. Instruction set – Thumb instruction set – Instruction cycle timings.

UNIT-III ARM APPLICATION DEVELOPMENT				
Introductio	n to DSP on ARM –FIR Filter – IIR Filter – Discrete Fourier transform – E	Exception		
Handling -	Interrupts – Interrupt handling schemes- Firmware and bootloader –	Example:		

Standalone - Embedded Operating Systems - Fundamental Components - Example Simple little Operating System.

UNIT-IV	MEMORY PROTECTION AND MANAGEMENT	12Hours

Protected Regions-Initializing MPU, Cache and Write Buffer-MPU to MMU-Virtual Memory-Page Tables-TLB-Domain and Memory Access Permission-Fast Context Switch Extension.

UNIT-V DESIGN WITH ARM MICROCONTROLLERS					
Assembler Rules and Directives- Simple ASM/C programs- Hamming Code- Division-Negation					
Simple Loops – Look up table- Block copy- subroutines					

	Total Hours 60Hours				
Text Book(s)					
1.	Steve Furber, 'ARM system on chip architecture', Addision Wesley.				
2.	Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield 'ARM System				
	Developer's Guide Designing and Optimizing System Software', Elsevier 2007.				
3.	Trevor Martin, 'The Insider's Guide To The Philips ARM7-Based Microcontrollers,				
	An Engineer's Introduction To The LPC2100 Series' Hitex (UK) Ltd.,				
4.	Dananjay V. Gadre 'Programming and Customizing the AVR microcontroller',				
	McGraw Hill 2001.				
5.	William Hohl, 'ARM Assembly Language' Fundamentals and Techniques.				
6.	ARM Architecture Reference Manual.				
7.	LPC213x User Manual.				

			T	Т		П	1	
Course		L	Т	P	С	IA	EA	TM
Code								
Course	WIRELESS AND MOBILE	4	2	0	4	40	60	100
Name	COMMUNICATION	4	2	0	4	40	60	100
Course		5	Syllal	bus Rev	/isio	n		V.1.0
Category								
Pre-								
requisite								
Course Object								
The course s	hould enable the students -							
	1. To expose the students to the fundamen	tals o	of wi	reless c	omi	nuni	catior	1
	technologies.							
	2. To teach the fundamentals of wireless me	obile	netv	work p	roto	cols.		
	3. To study on wireless network topologies.							
	4. To introduce network routing protocols.							
Course Outco	omes:							
On completion	on of the course, the student will be able to							
Course	Description							
Outcomes	_							
CO1	Develop knowledge in the basic of technologies, protocol and simulation software.							
CO2	Develop knowledge in the basic of technologies	and 1	mobi	le netv	vork	S.		
CO3	Develop knowledge in the basic of wireless netw	vorks						
CO4	Develop knowledge in the basic of routing.							
CO5	Develop knowledge in the basic of transport and	l app	licati	on laye	ers.			
UNIT-I	INTRODUCTION						1	2 Hours
Wireless Tra	ansmission – signal propagation – Free space ar	nd tv	vo ra	ay mod	lels	– sp	read s	spectrum –
Satellite Netv	works –Capacity Allocation –FDMA–TDMA-SDM	IA-D	AM	A.				
UNIT-II	MOBILE NETWORKS						1	2 Hours
Cellular Wi	reless Networks – GSM – Architecture – Pro	otoco	ols –	Conn	ecti	on E	stabli	shment –
Frequency Allocation – Handover – Security – GPRS.								
	22220, 2220.							
UNIT-III	WIRELESS NETWORKS	<u> </u>					1	2 Hours
			iner 1	I.AN R	Sluet	ooth		-
11 11 C1C99 11/11	11 11 11 002.11 Standard Pitchitecture Scrvices	, 11.	rper	L. 1. 1, D	ruct	.00111		
TINIUM TY	DOI IIIDIO						-	0.11
		_						
UNIT-IV	N – IEEE 802.11 Standard-Architecture – Services ROUTING SIP – DHCP – AdHoc Networks – Proactive and						1	2 Hours

Mobile IP- SIP – DHCP – AdHoc Networks – Proactive and Reactiv e Routing Protocols – Multicast

Routing - WSN routing - LEACH- SPIN- PEGASIS

UNIT-V	TRANSPORT AND APPLICATION LAYERS	12 Hours			
TCP over	TCP over Adhoc Networks – WAP – Architecture – WWW Programming Model – WDP – WTLS –				
WTP – W	$WTP-WSP-WAE-WTA\ Architecture-WML-WML\ scripts.$				
	Total Hours	60 Hours			
Text Book(s)				
1.	Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireles s Networks'				
	PHI/Pearson Education, 2003 ACC.NO: B122027.				
2.	C. Siva Ram Murthy and B.S. Manoj, Adhoc Wireless Networks: A1	rchitectures and			
	protocols, Prentice Hall PTR, 2004				
3.	Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, " Principles of				
	Mobile computing", Springer, New york, 2003. ACC.NO: B129477.				
4.	4. C.K.Toh, "AdHoc mobile wireless networks", Prentice Hall, Inc, 2002.				
5.	5. Charles E. Perkins, "Adhoc Networking", Addison-Wesley, 2001.				
6.	6. Jochen Schiller, "Mobile communications", PHI/Pearson Education, Second Edition, 2003				
	ACC.NO: B132742.				
7.	7. William Stallings, "Wireless communications and Networks", PHI/Pearson Education,				
	2002.				

Course Code		L	Т	P	С	IA	EA	TM
Course Name	BIG DATA ANALYTICS	4	2	0	4	40	60	100
Course Category			Syllab	ous Re	vision		V.	1.0
Pre- requisite								

Course Objectives:

The course should enable the students -

- 1. To understand big data analytics as the next wave for businesses looking for competitive advantage.
- 2. To understand the financial value of big data analytics.
- 3. To explore tools and practices for working with big data.
- 4. To understand how big data analytics can leverage into a key component .
- 5. To understand how to mine the data.
- 6. To learn about stream computing.
- 7. To know about the research that requires the integration of large amounts of data.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Identify the need for big data analytics for a domain.
CO2	Identify the need for Data analysis for a domain.
CO3	Contextually integrate and correlate large amounts of information automatically to gain
	faster insights.
CO4	Suggest areas to apply big data to increase business outcome.
CO5	Use Hadoop, Map Reduce Framework Apply big data analytics for a given problem.

UNIT-I INTRODUCTION TO BIG DATA 12 Hours

Analytics – Nuances of big data – Value – Issues – Case for Big data – Big data options Team challenge – Big data sources – Acquisition – Nuts and Bolts of Big data. Features of Big Data - Security, Compliance, auditing and protection - Evolution of Big data – Best Practices for Big data Analytics - Big data characteristics - Volume, Veracity, Velocity, Variety – Data Appliance and Integration tools – Green plum – Informatics.

UNIT-II	DATA ANALYSIS	12 Hours
---------	---------------	----------

Evolution of analytic scalability – Convergence – parallel processing systems – Cloud computing – grid computing – map reduce – enterprise analytic sand box – analytic data sets – Analytic methods – analytic tools – Cognos – Microstrategy - Pentaho. Analysis approaches – Statistical significance – business approaches – Analytic innovation – Traditional approaches – Iterative

UNIT-III	II STREAM COMPUTING 12 Hours						
Introduction to Streams Concepts – Stream data model and architecture - Stream Computing,							
Sampling data in a stream – Filtering streams – Counting distinct elements in a stream – Estimating							
moments - Counting oneness in a window - Decaying window - Real time Analytics Platform							
(RTAP) ap	(RTAP) applications IBM Infosphere – Big data at rest – Infosphere streams – Data stage – Statistical						
analysis – l	Intelligent scheduler – Infosphere Streams.						
UNIT-IV PREDICTIVE ANALYTICS AND VISUALIZATION 12 Hours							
Predictive Analytics - Supervised - Unsupervised learning - Neural networks - Kohonen models -							
Normal – Deviations from normal patterns – Normal behaviours – Expert options – Variable entry -							
Mining Free	juent item sets - Market based model – A priori Algorithm – Handling large	e data sets in					
Main memo	ory – Limited Pass algorithm – Counting frequent item sets in a stream	Clustering					

UNIT-V	FRAMEWORKS AND APPLICATIONS 12 Hou				
IBM for Big Data – Map Reduce Framework - Hadoop – Hive – Sharding – NoSQL Databases - S3 -					
Hadoop Distributed file systems - Hbase - Impala - Analyzing big data with twitter - Big data for					
ECommerc	e – Big data for blogs.				

Techniques – Hierarchical– K-Means – Clustering high dimensional data Visualizations -Visual data

analysis techniques, interaction techniques; Systems and applications. \\

	Total Hours 60 Hours	
Text Book((s)	
1	Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS	
	Business Series, 2012.	
2.	Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime	
	Analysis", Elsevier, 2007	
3.	Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.	
4.	Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge	
	University Press, 2012.	
5. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opport unities in Huge		
	Streams with Advanced Analytics", Wiley and SAS Business Series, 2012.	
6.	Paul Zikopoulos, Chris Eaton, Paul Zikopoulos, "Understanding Big Data : Analytics for	
	Enterprise Class Hadoop and Streaming Data", McGraw Hill, 2011.	
7.	Paul Zikopoulos, Dirk deRoos, Krishnan Parasuraman, Thomas Deutsch , James Giles,	
	David Corrigan, "Harness the Power of Big data – The big data plat form", McGraw Hill,	
	2012.	
8.	Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007	
9.	Pete Warden, Big Data Glossary, O'Reilly, 2011.	
10.	Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition,	
	Elsevier, Reprinted 2008.	

Course		L	т	P	С	IA	EA	TM
Code		F	1	P	٦	IA	LA	1 171
Course	ASIC DESIGN			_				
Name	ASIG DESIGN	4	2	0	4	40	60	100
Course		S	Syllabus Revision V.1.0				V.1.0	
Category								
Pre-								
requisite								

Course Objectives:

The course should enable the students -

- 1. To Develop knowledge in basic transistor logic.
- 2. To Develop knowledge in various programming platform like Altera, Xilinx.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge in Introduction TO ASICS, CMOS Logic and ASIC Library
	Design.
CO2	Develop knowledge in programmable ASICS, programmable ASIC logic cells and
	programmbale ASIC I/O cells.
CO3	Develop knowledge in programmable ASIC interconnect, programmable asic design
	software and low level design entry.
CO4	Develop knowledge in logic synthesis, simulation and testing.
CO5	Develop knowledge in ASIC construction, floor planning, placement and routing.

UNIT-I	INTRODUCTION TO ASICS, CMOS LOGIC AND ASIC	12 Hours
	LIBRARY DESIGN	

Types of ASICs – Design Flow – CMOS transistors, CMOS design rules – Combinational Logic Cell – Sequential logic cell – Data path logic cell – Transistors as Resistors – Transistor Parasitic Capacitance – Logical effort – Library cell design – Library architecture.

UNIT-II	PROGRAMMABLE ASICS, PROGRAMMABLE ASIC LOGIC CELLS	12 Hours
	AND PROGRAMMBALE ASIC I/O CELLS	

Anti fuse – static RAM – EPROM and EEPROM technology – PREP bench marks – Actel ACT – Xilinx LCA – Altera FLEX – Altera MAX DC & AC inputs and output s – Clock and power inputs – Xilinx I/O blocks.

UNIT-III	PROGRAMMABLE ASIC INTERCONNECT, PROGRAMMABLE ASIC	12 Hours
	DESIGN SOFTWARE AND LOW LEVEL DESIGN ENTRY	

Actel ACT – Xilinx LCA – Xilinx EPLD – Altera MAX 5000 and 7000 – Altera MAX 9000 Altera FLEX – Design systems – Logic Synthesis – Half Gate ASIC – Schematic entry – Low level design language – PLA tools – EDIF – CFI design representation.

UNIT-IV	LOGIC SYNTHESIS, SIMULATION AND TESTING	12 Hours
Verilog and	logic synthesis – VHDL and logic synthesis - Types of simulation – Boundar	ry scan test
– Fault simu	lation – Automatic test pattern generation.	
UNIT-V	ASIC CONSTRUCTION, FLOOR PLANNING, PLACEMENT	12 Hours
	AND ROUTING	
System par	tition – FPGA partitioning – partitioning methods – physical design flow –	global
routing – d	letailed routing – specific DRC. floor planning – placement – al routing – ci	ircuit
extraction.		
	Total Hours	60 Hours
Text Book(s)		
1.		
	M.J.S. SMITH, "Application – Specific Integrated Circuits" Addison-Wes	sley Longman
	Inc., 1997.	
2.	Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hill, 19	91.
2. 3.	Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hill, 19 S.D.Brown, R.J.Francis, J.Rox, Z.G.Uranesic, "Field Programmable Ga	91.
	Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hill, 19 S.D.Brown, R.J.Francis, J.Rox, Z.G.Uranesic, "Field Programmable Ga Kluever Academic Publishers, 1992.	91. te Arrays" –
	Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hill, 19 S.D.Brown, R.J.Francis, J.Rox, Z.G.Uranesic, "Field Programmable Ga Kluever Academic Publishers, 1992. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information	91. te Arrays" –
3.	Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hill, 19 S.D.Brown, R.J.Francis, J.Rox, Z.G.Uranesic, "Field Programmable Ga Kluever Academic Publishers, 1992.	91. te Arrays" –
3.	Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hill, 19 S.D.Brown, R.J.Francis, J.Rox, Z.G.Uranesic, "Field Programmable Ga Kluever Academic Publishers, 1992. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information McGraw Hill, 1994. S.Y. Kung, H.J.Whilo House, T.Kailath, "VLSI and Modern Signal Information Medical Programmable Gamenta Signal Information McGraw Hill, 1994.	91. te Arrays" –
3.	Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hill, 19 S.D.Brown, R.J.Francis, J.Rox, Z.G.Uranesic, "Field Programmable Ga Kluever Academic Publishers, 1992. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information McGraw Hill, 1994.	91. te Arrays" –
3.	Inc., 1997. Andrew Brown, "VLSI Circuits and Systems in Silicon", Mc Graw Hill, 19 S.D.Brown, R.J.Francis, J.Rox, Z.G.Uranesic, "Field Programmable Ga Kluever Academic Publishers, 1992. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information McGraw Hill, 1994. S.Y. Kung, H.J.Whilo House, T.Kailath, "VLSI and Modern Signal Information Medical Programmable Gamenta Signal Information McGraw Hill, 1994.	91. te Arrays" – Processing", Processing",

Course		т	Т	P	С	IA	EA	TM
Code		L	1	Г	١٦	I IA	EA	1 1/1
Course	EMBEDDED LINUX							
Name	EMBEDDED FILLOX	4	2	0	4	40	60	100
Course			 11-1	nua Dav		<u> </u>	17	1.0
		2	уша	ous Rev	1810.	11	٧.	1.0
Category								
Pre-								
requisite								
Course Obje	rtives:							

Course Objectives:

The course should enable the students -

1. To develop knowledge of usage of LINUX in Embedded Systems.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description		
Outcomes			
CO1	Understand how fundamentals of operating systems is used for embedded		
	application.		
CO2	Understand how linux fundamentals are used as an OS for embedded application.		
CO3	Understand how embedded linux is used as an OS for embedded application.		
CO4	Understand how board support package and embedded storage is used as an OS for		
	embedded application.		
CO5	Understand the how embedded drivers and application porting is used as an OS for		
	embedded application.		

12Hours UNIT-I FUNDAMENTALS OF OPERATING SYSTEMS

Overview of operating systems - Process and threads - Processes and Programs - Programmer view of processes - OS View of processes - Threads - Scheduling - Non preemptive and preemptive scheduling - Real Time Scheduling - Process Synchronization - Semaphores -Message Passing - Mailboxes - Deadlocks - Synchronization and scheduling in multiprocessor Operating Systems.

UNIT-II LINUX FUNDAMENTALS 12Hours

Introduction to Linux - Basic Linux commands and concepts - Logging in - Shell s -Basic text editing - Advanced shells and shell scripting - Linux File System -Linux Programming -Processes and threads in Linux - Inter process communication – Devi ces – Linux System calls.

UNIT-III	INTRODUCTION TO EMBEDDED LINUX	12Hours

Embedded Linux - Introduction - Advantages- Embedded Linux Distributions - Architecture -Linux kernel architecture - User space - linux startup sequence - GNU cross platform Tool chain.

5.

SYLLABUS (2025-26) M.E (EMBEDDED SYSTEM TECHNOLOGIES)

		ı	
UNIT-IV	BOARD SUPPORT PACKAGE AND EMBEDDED STORAGE	12Hours	
Inclusion of BSP in kernel build procedure - The boot loader Interface - Memory Map -			
Interrupt Management – PCI Subsystem – Timers – UART – Power Management – Embedded			
Storage - Flash Map - Memory Technology Device (MTD) -MTD Architecture - MTD Driver for			
NOR Flash – The Flash Mapping drivers – MTD Block and character dev ices – mtdutils package			
– Embedded File Systems – Optimizing storage space – Turning kernel memory.			
UNIT-V	EMBEDDED DRIVERS AND APPLICATION PORTING	12Hours	
Linux serial driver – Ethernet driver – I2C subsystem – USB gadgets – Watchdog timer – Kernel			
Modules - Application porting roadmap - Programming with threads - Operating System			
Porting Layer – Kernel API Driver - Case studies - RT Linux – uClinux.			
	Total Hours	60Hours	
Text Book(s)			
1.	1. Dhananjay M. Dhamdhere, 'Operating Systems A concept based Approach		
	Mcgraw-Hill Publishing Company Ltd.		
2.	Matthias Kalle Dalheimer, Matt Welsh, 'Running Linux', O'Reilly Pu	blications	
	2005.		
3.	Mark Mitchell, Jeffrey Oldham and Alex Samuel 'Advanced Linux Pro	gramming'	
	New Riders Publications.		
4.	P. Ragavan, Amol Lad , Sriram Neelakandan, 'Embedded Linux System I	Design and	
	Development', Auerbach Publications, 2006.		

Karim Yaghmour, 'Building Embedded Linux Systems', O'Reilly Publications 2003.

Course VLSI ARCHITECTURE AND DESIGN Name METHODOLOGIES	4	2					
			0	4	40	60	100
Course Category	S	Syllal	ous Rev	visio	n		V.1.0

Pre-requisite

Course Objectives:

The course should enable the students -

- 1. To have a knowledge in CMOS Design.
- 2. To Develop knowledge in PLD Devices.
- 3. To have in floor plan design in VLSI.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and the understanding about the various aspects involved in the
	CMOS design.
CO2	Develop knowledge and the understanding about the various aspects involved in the
	programable logic devices.
CO3	Develop knowledge and the understanding about the various aspects involved in the
	ASIC construction, floor planning, placement and routing.
CO4	Develop knowledge and the understanding about the various aspects involved in the
	analog VLSI design.
CO5	Develop knowledge and the understanding about the various aspects involved in the
	logic synthesis and simulation.

UNIT-I CMOS DESIGN 12 Hours

Overview of digital VLSI design Methodologies- Logic design with CMOS-transmission gate circuits-Clocked CMOS-dynamic CMOS circuits, Bi-CMOS circuits- Layout diagram, Stick diagram-IC fabrications – Trends in IC technology.

UNIT-II PROGRAMABLE LOGIC DEVICES 12 Hours

Programming Techniques-Anti fuse-SRAM-EPROM and EEPROM technology –

Re-

Programmable Devices Architecture- Function blocks, I/O blocks, Interconnects, Xilinx-XC9500,Cool Runner - XC-4000,XC5200, SPARTAN, Virtex - Altera MAX 7000-Flex 10KStratix.

UNIT-III	ASIC CONSTRUCTION, FLOOR PLANNING, PLACEMENT AND	12 Hours
	ROUTING	

System partition – FPGA partitioning – Partitioning methods- floor planning – placement physical design flow – global routing – detailed routing – special routing - circuit extraction – DRC

Page 37 of 56

UNIT-IV	ANALOG VLSI DESIGN	12 Hours
Introduction t	o analog VLSI- Design of CMOS 2stage-3 stage Op-Amp –High Speed and	l High
frequency op-	amps-Super MOS-Analog primitive cells-realization of neural networks.	
UNIT-V	LOGIC SYNTHESIS AND SIMULATION	12 Hours
Overview of	digital design with Verilog HDL, hierarchical modelling concepts,	dules and port
definitions, ga	ate level modelling, data flow modelling, behavioural modelling, task	& functions,
Verilog and l	ogic synthesis-simulation-Design examples, Ripple carry Adders, Carr	y Look ahead
adders, Multip	olier, ALU, Shift Registers, Multiplexer, Comparator, Test Bench.	
	Total Hours	60 Hours
Text Book(s)		
1.	M.J.S Smith, "Application Specific integrated circuits", Addition We	esley Longman
	Inc.1997.	
2.	Kamran Eshraghian, Douglas A.pucknell and Sholeh Eshraghian," Esse	entials of VLSI
	circuits and system", Prentice Hall India,2005.	
3.	Wayne Wolf, "Modern VLSI design" Prentice Hall India,2006. ACC.NC): B134477
4.	Mohamed Ismail, Terri Fiez, "Analog VLSI Signal and	information
	processing",McGraw Hill International Editions,1994.	
5.	Samir Palnitkar, "VeriLog HDL, A Design guide to Digital and Syntl	nesis" 2 nd Ed,
	Pearson,2005.	

Course	$L \perp$	Т	P	С	IA	EA	TM
--------	-----------	---	---	---	----	----	----

Code								
Course Name	PRINCIPLES OF ROBOTICS	4	2	0	4	40	60	100
Course			Sylla	bus Rev	risio	n	V.	1.0
Category								
Pre-								
requisite								
Carrana Oh								

Course Objectives:

The course should enable the students -

- 1. To have basic knowledge about robotics.
- 2. To develop knowledge in image processing and Vision.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Understanding the various aspects of robotics and how image and vision systems
	are processed.
CO2	Understanding the various aspects of kinematics.
CO3	Understanding the various aspects of differential motion & velocities.
CO4	Understanding the various aspects of robot control system.
CO5	Understanding the various aspects of image processing & vision systems.

UNIT-I INTRODUCTION AND TERMINOLOGIES 12Hours

Definition-Classification-History- Robots components-Degrees of freedom-Robot joints coordinates- Reference frames-workspace-Robot languages-actuators-sensors-Position, velocity and acceleration sensors-Torque sensors-tactile and touch sensors proximity and range sensors-social issues.

UNIT-II	KINEMATICS	12Hours
---------	------------	---------

Mechanism-matrix representation-homogenous transformation-DH representation- Inverse kinematics-solution and programming-degeneracy and dexterity.

Jacobian-differential motion of frames-Interpretation-calculation of Jacobian - Inverse Jacobian - Design - Lagrangian mechanics-dynamic equations-static force analysis.

UNIT-IV	ROBOT CONTROL SYSTEM	12Hours

Sensor characteristics- Hydraulic, Pneumatic and electric actuators-trajectory planning decentralised PID control- non-linear decoupling control.

UNIT-V	IMAGE PROCESSING & VISION SYSTEMS	12Hours
Two and th	ree dimensional images-spatial and frequency domain representation-n	oise and
edges-convo	lution masks-Processing techniques - thresholding - noise reduction	on edge
detection-seg	gmentation-Image analysis and object recognition.	
	Total Hours	60Hours
Text Book(s)		
1.	Saeed B. Niku ,"Introduction to Robotics ", Pearson Education, 2002	ACC.NO:
	B66274.	
2.	Fu, Gonzalez and Lee Mcgrahill, "Robotics", international ACC.NO: B135	132.
3.	R.D. Klafter, TA Chmielewski and Michael Negin, "Robotic Enginee	ering, An
	Integrated approach", Prentice Hall of India, 2003. ACC.NO: B19966.	

Course Name Course Category Pre- requisite Course Objectives: The course should enable the students - 1. To develop knowledge in the basic 2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course Outcomes	c of MEM ors in ME to escription	IS fal EMS.		0 ous Rev	4	40 n	60	100 V.1.0	
Name Course Category Pre- requisite Course Objectives: The course should enable the students - 1. To develop knowledge in the basic 2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course Course Develop Remains Technology Develop Remains Technol	c of MEM ors in ME to escription	S fal	yllab	ous Rev					
Category Pre- requisite Course Objectives: The course should enable the students - 1. To develop knowledge in the basic 2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course	to	IS fal EMS.			visio	n	, v	V.1.0	
Pre- requisite Course Objectives: The course should enable the students - 1. To develop knowledge in the basic 2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course Develop Republic Course Course Develop Republic Course Develop	to	EMS.	brica	tion.					
The course should enable the students - 1. To develop knowledge in the basic 2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course Course December 1. To develop knowledge about sense 2. To develop knowledge about sense 3. To develop knowledge about sense 4. To develop knowledge about sense 5. To develop knowledge 6. To develop knowledge 6. To develop knowledge 6. To develop knowledge 6. To develop knowledge 8. To devel	to	EMS.	brica	tion.					
Course Objectives: The course should enable the students - 1. To develop knowledge in the basic 2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course Course December 1. To develop knowledge about sense 2. To develop knowledge about sense 3. To develop knowledge 4. To develop k	to	EMS.	brica	tion.					
The course should enable the students - 1. To develop knowledge in the basic 2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course December 1. To develop knowledge about sense December 2. To develop knowledge about sense December 3. To develop knowledge about sense December 4. To develop knowledge about sense December	to	EMS.	brica	tion.					
To develop knowledge in the basic 2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course December 1. To develop knowledge in the basic 2. To develop knowledge about sense 2. To develop knowledge in the basic 2. To develop knowledge in the basic 2. To develop knowledge about sense 2. To develop knowledge 2. To develop knowledge about sense 2. To develop knowledge 2. To develop knowledge 3. To d	to	EMS.	brica	tion.					
2. To develop knowledge about sense Course Outcomes: On completion of the course, the student will be able Course De	to	EMS.	DITICA						
Course Outcomes: On completion of the course, the student will be able Course De	to escription								
On completion of the course, the student will be able Course Description	escription								
On completion of the course, the student will be able Course Description	escription								
Course De	escription								
Outcomes	AS: Micro	•							
CO1 Develop knowledge in basic of MEN		o-Fa	hrica	ntion	Mat	eriale	and	Flect	
Mechanical Concepts.	VIO. IVIICIO	U-ra	Ulica	111011,	IVIai	Cilais	anu	LICCL	
CO2 Develop knowledge in basic of electrost.	atic senso	nre at	nd ac	tuatio	n				
1 8	Develop knowledge in basic of Thermal Sensing and Actuation.								
1 0	Develop knowledge in basic of Piezoelectric Sensing and Actuation.								
CO5 Develop knowledge in Sensors used for									
	FF			r		-			
UNIT-I MEMS: MICRO-FABRICATION, M	ATERIAI	LS A	ND I	ELECT	RO		12	Hours	
MECHANICAL C	ONCEPTS	S							
Overview of micro fabrication – Silicon and other ma			abrio	ration	proc	esses	. – Co	ncents	
Conductivity of semiconductors-Crystal planes and					_			_	
bending analysis-torsional deflections-Intrinsic stress-	Tesonant	l Hec	quem	cy and	ı qua	iiity i	actor.	•	
UNIT-II ELECTROSTATIC SENSORS	S AND AC	CTU	ATIC	N			12	Hours	
Principle, material, design and fabrication of paralle					ctroc	etatic			
	i piate ca	ipaci	1015	as elec	Ctios	otatic	3C113C)15 a110	
actuators-Applications.									
TD		- A							
UNIT-III THERMAL SENSING AN								Hours	
Principle, material, design and fabrication of therma	l couples	s, the	erma	l bimo	orph	sens	ors, t	herma	
resistor sensors-Applications.									
UNIT-IV PIEZOELECTRIC SENSING	AND AC		ATIO	N			12	Hours	
Piezoelectric effect-cantilever Piezoelectric actuator					oiezo	elect			
Applications.	mouer p	P		P			111		

UNIT-V	CASE STUDIES	12 Hours				
Piezoresistive sensors, Magnetic actuation, Microfluidics applications, Medical applications, Optical						
MEMS.						
	Total Hours	60 Hours				
Text Book(s)						
1.	Chang Liu, "Foundations of MEMS", Pearson International Edition, 20	06. ACC.NO:				
	B127890.					
2.	Marc Madou , "Fundamentals of microfabrication", CRC Press, 199	7. ACC.NO:				
	B130141					
3.	Boston , "Micromachined Transducers Sourcebook", WCB McGraw Hill,	1998.				
4.	M.H.Bao "Micromechanical transducers :Pressure sensors, accelere	ometers and				
	gyroscopes", Elsevier, New york, 2000.					

Course		L	Т	P	С	IA	EA	TM
Code		L	1	r	٦	LA	EA	1 141
Course	DIGITAL IMAGE PROCESSING							
Name	DIGITAL IMAGE I ROCESSING	4	2	0	4	40	60	100
Course		Syllabus Revision V.1.0						
Category								
Pre-								
requisite								

Course Objectives:

The course should enable the students -

- To have a knowledge in basic of Image Processing.
- 2. To have a knowledge in various analysis of image.
- 3. To develop knowledge in application where image processing is used.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Develop knowledge and understanding the basic concepts of image processing,
	image analysis and the application fundamentals of image processing.
CO2	Develop knowledge and understanding the basic concepts image enhancement.
CO3	Develop knowledge and understanding the basic concepts image segmentation and
	feature analysis.
CO4	Develop knowledge and understanding the basic concepts multi resolution analysis
	and compressions.
CO5	Develop knowledge and understanding the basic concepts application of image
	processing.

UNIT-I		FUNDAMENTALS OF IMAGE PROCESSING							12Hours
Introduction	_	Steps	in	image	processing	systems –	Image	acquisition - Sam	pling and
Quantization	_	Pixel	rela	itionshi	ps – Color	fundament	als and	models, File form	ats, Image

operations - Arithmetic, Geometric and Morphological.

UNIT-II	IMAGE ENHANCEMENT	12Hours

Spatial Domain: Gray level Transformations – Histogram processing – Spatial filtering smoothing and sharpening. Frequency Domain: Filtering in frequency domain - DFT ,FFT, DCT -Smoothing and sharpening filters – Homomorphic Filtering.

UNIT-III	IMAGE SEGMENTATION AND FEATURE ANALYSIS	12Hours
----------	---	---------

Detection of Discontinuities - Edge operators - Edge linking and Boundary Detection -Thresholding – Region based segmentation – Morphological Watersheds – Motion Segmentation, Feature Analysis and Extraction.

UNIT-IV	MULTI RESOLUTION ANALYSIS AND COMPRESSIONS 12Hours						
Multi Resolution Analysis: Image Pyramids – Multi resolution expansion – Wavelet Transforms,							
Image compression: Fundamentals - Models - Elements of Information Theory - Error free							
compression – Lossy Compression – Compression Standards.							
UNIT-V	APPLICATION OF IMAGE PROCESSING						
Image classif	ication – Image recognition – Image understanding – Video motion analysis	_					
Image fusion	- Steganography - Digital compositing Mosaics - Colour Image Processing.						
	Total Hours	60Hours					
Text Book(s)							
1.	Rafael C.Gonzalez and Richard E.Woods, "Digital Image Processing", 2nd	Edition,					
	Pearson Education, 2003. ACC.NO: B134341.						
2.	Milan Sonka, Valclav Halavac and Roger Boyle, "Image Processing, Analy	ysis and					
	Machine Vision", 2nd Edition, Thomson Learning, 2001.						
3.	Anil K.Jain, "Fundamentals of Digital Image Processing" Pearson Education	n, 2003.					
	ACC.NO: B130746.						

	T		I								
Course Code		L	Т	P	С	IA	EA	TM			
Course											
Name	EMBEDDED ANALOG INTERFACING	4	2	0	4	40	60	100			
Course		S	yllal	ous Rev	isio	n	V.	1.0			
Category		·									
Pre-											
requisite											
Course Object											
The course s	hould enable the students -		1	:							
	1. To have a basic knowledge in measurement	•		_							
	2. To have a knowledge in Analog to Digital Converters.										
	3. To have a knowledge in Sensors used in into	ertac	ıng.								
Course Outc											
Course	on of the course, the student will be able to										
Outcomes	Description										
CO1	Develop knowledge and understanding measuren	nent	svste	m desi	σn.						
CO2	Develop knowledge and understanding in analog		•			s.					
CO3	Develop knowledge and understanding in sensors										
CO4	Develop knowledge and understanding in output				s.						
CO5	Develop knowledge and understanding in microc					Г					
	Develop miewieuge und understanding in mieroe				31112	·					
UNIT-I	MEASUREMENT SYSTEM DE	SIGN	1				12H	ours			
Characteristi	ics of Instrumentation – Measurement accuracy –	N	Ieası	ıremen	t	stan	dards	_			
Dynamic Ra	nge – Calibration – Bandwidth – Digital interfacin	g adv	anta	ges.							
<u> </u>	<u> </u>										
UNIT-II	ANALOG-TO-DIGITAL CONVE	RTE	RS				12H	ours			
Types of AI	DCs - ADC Comparison - Sample and Hold - AD	СТу	pes	- Flash	ı AI	OC -	Succe	essive			
Approximati	on ADC - Dual-Slope (Integrating) ADC - Sign	na -	Del	ta AD0	J -	Micr	oproc	essor			
Interfacing -	Clocked Interfaces - Serial Interfaces - Integrated	ADC	Em	bedded	Co	ntrol	lers.				
							T				
UNIT-III	SENSORS & PERIPHERAI	S					12H	ours			
Temperature Sensors - Optical Sensors - CCDs - Magnetic Sensor s - Motion/Acceleration Sensors											

Temperature Sensors - Optical Sensors - CCDs - Magnetic Sensor s - Motion/Acceleration Sensors - Strain Gauges - Solenoids - Heaters - Coolers - LEDs - DACs - Digital Potentiometers - Analog Switches - Stepper Motors - DC Motors.

UNIT-IV	OUTPUT CONTROL METHODS							
Measuring	Measuring Period versus Frequency - Voltage-to-Frequency Converters - Open-Loop Control -							
Negative I	Negative Feedback and Control - Microprocessor-Based Systems- On-Off Control - Proportional							
Control -	Control - Proportional, Integral, Derivative Control - Motor Control - Predictive Control -							
Measuring	g and Analyzing Control Loops.							
UNIT-V	MICROCONTROLLER INTERFACING	12Hours						
Standard I	nterfaces - IEEE 1451.2 - 4–20 ma Current Loop – Field bus - Microcontrol	ler Supply						
and Refere	ence - Resistor Networks - Multiple Input Control -AC Control - Voltage Mo	nitors and						
Supervisor	ry Circuits - Driving Bipolar Transistors/ MOSFET- Reading Negative Voltag	es – PWM						
based cont	crol.							
	Total Hours	60Hours						
Text Book	(s)							
1.	Stuart R. Ball, Analog Interfacing to Embedded Microprocessor Systems, Ne	wnes, 2nd						
	Edition, 2003.							
2.	John G. Webster, Handbook of measurement, Instrumentation, & sensors,	John Wiley						
	&Sons Inc, New York-1998.							
3.	Dogan Ibrahim, Microcontroller-Based Temperature Monitoring and Co	ontrol,						
	Newnes, 2nd Edition ,2002.							

Course		L	Т	P	С	IA	EA	TM		
Code		ш		1)	17.1	177.	1141		
Course	EMBEDDED AUTOMOTIVE NETWORKING									
Name	WITH CAN	4	2	0	4	40	60	100		
Course		Syllabus Revision V.1.0								
Category										
Pre-										
requisite										
Course Object										
The course s	hould enable the students -			-						
	1. To Develop knowledge in basic of data con			ion.						
2. To have a knowledge in Layers of CAN Network.										
Course Outc	omes:									
On completi	on of the course, the student will be able to									
Course										
Outcomes	-									
CO1	Develop knowledge and understand the basic of	data	comi	nunica	tion					
CO2	Develop knowledge and understand the basic of	CAN	data	link la	yer.					
CO3	Develop knowledge and understand the basic of				•					
CO4	Develop knowledge and understand the basic of CAN protocol controllers.									
CO5	Develop knowledge and understand the basic of	CAN	l hig	her lay	er p	rotoc	ols.			
UNIT-I	DATA COMMUNICATION BA	ASIC	S				12H	lours		
	nunication basics - Network communication pro			ledium	acc	ess c	ontro	nl –		
	king & control – Requirements & applications of									
of CAN.										
TINITE II							1011	•		
UNIT-II	CAN DATA LINK LAYER							lours		
	link layer – Principles of bus arbitration – Frame		iats -	- Error	dete	ectio	1 & e	rror		
handling –	Extended frame format – Time triggered multiples	xing.								
UNIT-III	CAN PHYSICAL LAYER						12H	lours		
Physical sign	ı naling – Transmission media – Network topology	- B	us m	edium	ассє	ess –	Physi	ical		
layer standar	= = =:						11170			
UNIT-IV	CAN PROTOCOL CONTROLLERS 12Hours									
CAN protoc	ol controllers – Functions of a CAN controller – M	[essa ₈	ge fil	tering	– Me	essag	e han	dling		
- Standalone	CAN controllers – Integrated CAN controller s – G	CAN	tran	sceiver	s.					
TINITE T	CANTITICITED LAYER PROTECT	COT	<u>. </u>				1077	r		
UNIT-V										
	CAN application layer - Protocol architecture - CAN message specification - Allocation of									
CAN appli	•	_	-							
CAN appli	cation layer – Protocol architecture – CAN mes entifiers – Network management – Layer manag – Device Net – SAEJ1939 – Time triggered CAN.	_	-							

	Total Hours 60Hours
Text Book(s)	
1.	Konrad Etschberger, Controller Area Network, IXXAT Automation GmbH, 2001.
2.	Wolfhard Lawrenz, CAN System Engineering: From Theory to Practical
	Applications, Springer,1997.
3.	Glaf P.Feiffer, Andrew Ayre and Christian Keyold "Embedded Networking with
	CAN and CAN open". Embedded System Academy 2005.
4.	Francoise Simonot-Lion, Handbook of Automotive Embedded Systems ,CRC
	Press,2007.
5.	http://www.can-cia.org/can/.
6.	http://www.semiconductors.bosch.de/en/20/can/3-literature.asp.

Course Code		L	Т	P	С	IA	EA	TM
Course Name	EMBEDDED SYSTEM DESIGN USING ARM PROCESSOR	4	2	0	4	40	60	100
Course Category		Syllabus Revision V.1.0					V.1.0	
Pre- requisite								

Course Objectives:

The course should enable the students -

- 1. To have a knowledge about ARM fundamentals.
- 2. To have a knowledge of writing codes.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description	Highest Bloom's		
Outcomes		Taxonomy		
CO1	Develop knowledge in the fundamentals of principles of embedded system.			
CO2	Develop knowledge in the fundamentals of ARM processor fundamentals.			
CO3	Develop knowledge in the fundamentals of caches and MMU.			
CO4	Develop knowledge in the fundamentals of optimized primitives.			
CO5	Develop knowledge in the fundamentals of ARM processor and un	derstand how to		
	write the assembly code in ARM.			

UNIT-I PRINCIPLES OF EMBEDDED SYSTEM 12 Hours

Introduction - Embedded systems description, definition, design considerations & requirements - Overview of Embedded system Architecture - Categories of Embedded Systems - Product specifications - hardware/software partitioning - iterations and implementation - hardware software integration - product testing techniques. Wired Communication Protocols: UART - Inter Integrated Circuit (I2C) - Serial Peripheral Interface (SPI) - Controller Area Network (CAN). Wireless communication Protocols: Zigbee Protocols - Bl ue tooth Protocols - IrDA.

UNIT-II ARM PROCESSOR FUNDAMENTALS 12 Hours

ARM core Introduction – Registers – Current Program Status Register – Pipeline – Exception – Interrupts – Vector Table – Core Extension – Architecture Revisions – ARM Processor Families – ARM Instruction Set – Thumb Instruction set – Thumb Register Usage – ARM – Thumb Interworking – Stack Instruction – Software Interrupt Instruction.

UNIT-III	CACHES AND MMU	12 Hours

The Memory Hierarchy and Cache Memory – Cache Architecture - Cache Policy – Co Processor and Caches – Flushing and Cleaning Cache Memory – Cache Lockdown – Caches and Software Performance. MMU: Moving from an MPU to an MMU – Virtual Memory – Details of ARM MMU – The Caches and Write Buffer – Co Processor and MMU configuration.

UNIT-IV	OPTIMIZED PRIMITIVES	12 Hours				
Double Pre	Double Precision Integer Multiplication - Integer Normalization and count Leading Zeros -					
Division – S	Square Roots – Transcendental Functions : Log,, exp, sin, cos – Endian Rev	ersal and Bit				
Operations	– Saturated and Rounded Arithmetic – Random Number Gene ration.					
UNIT-V	WRITING AND OPTIMIZING ARM ASSEMBLY CODE	12 Hours				
Writing Asse	embly Code – Profiling and Cycle Counting – Instruct ion Schedulir	ng – Register				
Allocation –	Conditional Execution – Looping Constructs – Bit Manipulation – Efficie	nt Switches –				
Handling Un	aligned Data.					
Total Hours 60 Hours						
Text Book(s)						
1.	Andrew N.Sloss, Dominic Symes, Chris Wright, "ARM System Development of the Company of the Compa	oper's Guide",				
	Morgan Kaufmann Series in Computer Architecture and Design, 2004.					
2.	Tammy Noergaard, "Embedded Systems Architecture", Newnes, 20	005. ACC.NO:				
	B127886					
3.	David Seal, "ARM Architecture Reference Manual", 2005.					
4.	Steve Furbe, "ARM System-on-Chip Architecture", Addison-Wesley Pro-	ofessional, 2nd				
	Edition, 2000, ACC.NO: B129645.					

Course Code		L	Т	P	С	IA	EA	TM
Course Name	DISTRIBUTED EMBEDDED COMPUTING	4	2	0	4	40	60	100
Course Category		S	Syllal	ous Rev	risio	n	V.	1.0
Pre- requisite								

Course Objectives:

The course should enable the students -

- 1. To have a knowledge of the Hardware Infrastructure.
- 2. To have a knowledge the concept of Internet.
- 3. To have a knowledge of the using of JAVA in Distributed Embedded Computing.
- 4. To have a knowledge of embedded computing architectures.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description			
Outcomes				
CO1	Develop knowledge and understand the concept of hardware infrastructure.			
CO2	Develop knowledge and understand the concept of internet concepts.			
CO3	Develop knowledge and understand the concept of distributed computing using			
	java.			
CO4	Develop knowledge and understand the concept of embedded agent.			
CO5	Develop knowledge and understand the concept of embedded computing			
	architecture.			

UNIT-I	THE HARDWARE INFRASTRUCTURE	12Hours
--------	-----------------------------	---------

Broad Band Transmission facilities – Open Interconnection standards – Local Area Networks – Wide Area Networks – Network management – Network Security – Cluster computers.

UNIT-II INTERNET CONCEPTS	12Hours
---------------------------	---------

Capabilities and limitations of the internet – Interfacing Internet server applications to corporate databases HTML and XML Web page design and the use of active components.

UNIT-III	DISTRIBUTED COMPUTING USING IAVA	12Hours
UNIT-III		IZHOUTS

IO streaming – Object serialization – Networking – Threading – RM I – multicasting – distributed databases – embedded java concepts – case studies.

UNIT-IV	EMBEDDED AGENT	12Hours
01411-14		IZIIUUIS

Introduction to the embedded agents – Embedded agent design criteria – Behaviour based, Functionality based embedded agents – Agent co-ordination mechanisms and benchmarks embedded-agent. Case study: Mobile robots.

UNIT-V	EMBEDDED COMPUTING ARCHITECTURE	12Hours
Synthesis of	the information technologies of distributed embedded systems - analog/d	igital co-
design – op	timizing functional distribution in complex system design - validation	and fast
prototyping	of multiprocessor system-on-chip – a new dynamic scheduling algorithm	for real-
time multipr	ocessor systems.	
	Total Hours	60Hours
Text Book(s)		
1.	Dietel & Dietel, "JAVA how to program", Prentice Hall 1999. ACC.NO: BI	112846
2.	Sape Mullender, "Distributed Systems", Addison-Wesley, 1993.	
3.	George Coulouris and Jean Dollimore, "Distributed Systems - con ce	pts and
	design",Addison – Wesley 1988.	
4.	"Architecture and Design of Distributed Embedded Systems", edited b	oy Bernd
	Kleinjohann C-lab, Universitat Paderborn, Germany, Kluwer Academic Pu	ıblishers,
	Boston, April 2001.	

Course		L	Т	P	С	IA	EA	TM
Code		1	-	•)			11/1
Course	SMART METERS AND SMART GRID							
Name	COMMUNICATION OBJECTIVES	4	2	0	4	40	60	100
	·							
Course		5	Syllal	ous Rev	isio	n		V.1.0
Category								
Pre-								
requisite								

Course Objectives:

The course should enable the students -

- 1. To teach the fundamentals of automated meters and Grids.
- 2. To teach on functional components of Smart meters.
- 3. To discuss on need of smart grid for power systems.
- 4. To teach the significance of microgrid and its needs.
- 5. To teach the communication and protocols for power system.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description
Outcomes	
CO1	Understandable knowledge in the automated grid and meters fundamental, significance
	of micro grid and the protocols used for the communication as well as power system.
CO2	Understandable knowledge in the smart meters.
CO3	Understandable knowledge in the smart grid and applications.
CO4	Understandable knowledge in the microgrids.
CO5	Understandable knowledge in the information and communication technology for smart
	grid and meters.

UNIT-I INTRODUCTION 12 Hours

Introduction to Smart grid and metering technology- Smart energy management technical architecture-Functions of Smart Grid and smart meters, Opportunities and challenges- Difference between conventional and smart grid-meters, Concept of Resilient and Self Healing Grid, recent developments and International policies in Smart Grid. IEC 61850 protocol standards.

UNIT-II SMART METERS 12 Hours

Smart metering-Smart Meters types- hardware architecture- software architecture requirements-communication protocols- Real Time Prizing, Smart Appliances, Automatic Meter Reading-MEMS, Smart Sensors- Smart actuators- Advanced metering infrastructure- spectrum analyzer.

UNIT-III SMART GRID AND APPLICATIONS 12 Hours

Outage Management System, Plug in Hybrid Electric Vehicles, Vehicle to Grid, Home and Building Automation- Smart Substations, Substation Automation, Feeder Automation-Geographic Information System(GIS), Intelligent Electronic Devices and their application for monitoring and protection-Smart city- Wide Area Measurement System, Phase Measurement Unit- Power Quality and EMC in

Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring and Power Quality Audit.

UNIT-IV MICROGRIDS 12 Hours

Concept of microgrid, need and applications of microgrid, formation of microgrid, Issues of interconnection, protection and control of microgrid. Plastic and Organic solar cells, Thin film solar cells, Variable speed wind generators, fuel cells, microturbines, Captive power plants, Integration of renewable energy sources.

UNIT-V	INFORMATION AND COMMUNICATION TECHNOLOGY FOR	12 Hours
	SMART GRID AND METERS	

Home Area Networks for smart grid - IEEE 802.15.4 - ITU G.hn-IEEE 802.11, Field Area Networks - power-line communications- IEEE P1901 / Home Plug, RF mesh, Wide-area Networks for Smart Grid-Fiber Optics, Wi-MAX, sensor networks, Information Management in Smart Grid -SCADA, CIM. Networking Issues in Smart Grid -Wireless Mesh Network- Cloud Computing -Security and Privacy in Smart Grid and smart meters -Broadband over Power line.

Total Hours 60 Hours		
Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable		
Energy in Electric Power Systems", Wiley.		
Stuart Borlase, "Smart Grid: infrastructure, technology and Solutions", 2012 CRC. Press		
Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama,		
"Smart Grid: Technology and Applications", Wiley.		
Jean Claude Sabonnadière, Nouredine Hadjsaïd, "Smart Grids", Wiley Blackwell.		
Peter S. Fox Penner, "Smart Power: Climate Changes, the Smart Grid, and the Future of		
Electric Utilities", Island Press; 1 edition 8 Jun 2010.		
S. Chowdhury, S. P. Chowdhury, P. Crossley, "Microgrids and Active Distribution		
Networks." Institution of Engineering and Technology, 30 Jun 2009.		
Stuart Borlase, "Smart Grids (Power Engineering)", CRC Press.		
ook(s)		
Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving		
Sustainability: 1", Artech House Publishers July 2011.		
James Northcote, Green, Robert G. Wilson "Control and Automation of Electric Power		
Distribution Systems (Power Engineering)", CRC Press.		
Mladen Kezunovic, Mark G. Adamiak, Alexander P. Apostolov, Jeffrey George Gilbert		
"Substation Automation (Power Electronics and Power Systems)", Springer.		
R. C. Dugan, Mark F. McGranghan, Surya Santoso, H. Wayne Beaty, "Electrical Power		
System Quality", 2nd Edition, McGraw Hill Publication.		
Yang Xiao, "Communication and Networking in Smart Grids", CRC Press.		

Course		т	Т	P	С	IA	EA	TM
Code		-	1	r	0	IA	EA	1 1/1
Course	SOFT COMPUTING TECHNIQUES							
Name	BOIT GOWN OTHER TECHNIQUES	$\mid 4 \mid$	2	0	4	40	60	100
Course		5	Syllabus Revision				V.1.0	
Category								
Pre-								
requisite								

Course Objectives:

The course should enable the students -

- 1. To review the fundamentals of ANN and fuzzy set theory.
- 2. To make the students understand the use of ANN for modeling and control of non-linear system and to get familiarized with the ANN and FLC tool box.
- 3. To make the students to understand the use of optimization techniques.
- 4. To familiarize the students on various hybrid control schemes, P.S.O and get familiarized with the ANFIS tool box.

Course Outcomes:

On completion of the course, the student will be able to

Course	Description		
Outcomes			
CO1	Develop knowledge and understand the various aspects of soft computing techniques.		
	overview of artificial neural network (ANN) & fuzzy logic.		
CO2	Develop knowledge and understand the various aspects of neural networks for		
	modelling and control.		
CO3	Develop knowledge and understand the various aspects of fuzzy logic for modelling		
	and control.		
CO4	Develop knowledge and understand the various aspects of genetic algorithm.		
CO5	Develop knowledge and understand the various aspects of hybrid control schemes.		

UNIT-I	OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN) & FUZZY	12 Hours
	LOGIC	

Review of fundamentals - Biological neuron, Artificial neuron, Activation function, Single Layer Perceptron - Limitations - Multi Layer Perceptron - Back propagation algorithm (BPA); Fuzzy set theory - Fuzzy sets - Operation on Fuzzy sets - Scalar cardinality, fuzzy cardinality, union and intersection, complement (yager and sugeno), equilibrium points, aggregation, projection, composition, decomposition, cylindrical extension, fuzzy relation - Fuzzy membership functions.

UNIT-II	NEURAL NETWORKS FOR MODELLING AND CONTROL	12 Hours

Modeling of non linear systems using ANN- NARX,NNSS,NARMAX - Generation of training data - optimal architecture — Model validation- Control of non line ar system using ANN Direct and Indirect neuro control schemes- Adaptive neuro controller — Case study - Familiarization of Neural Network Control Tool Box.

UNIT-III	NIT-III FUZZY LOGIC FOR MODELLING AND CONTROL 12 He			
Modeling of non linear systems using fuzzy models (Mamdani and Sugeno) – TSK model -Fuzzy				
Logic contro	Logic controller – Fuzzification – Knowledge base – Decision making logic – Defuzzification-			
Adaptive fuz	zy systems - Case study - Familiarization of Fuzzy Logic Tool Box.			
UNIT-IV	GENETIC ALGORITHM	12 Hours		
Basic concep	ot of Genetic algorithm and detail algorithmic steps, adjustment of fre	e parameters.		
Solution of	typical control problems using genetic algorithm. Concept on some	other search		
techniques li	ke Tabu search, Ant-colony search and Particle Swarm Optimization.			
UNIT-V	HYBRID CONTROL SCHEMES	12 Hours		
Fuzzification and rule base using ANN–Neurofuzzy systems - ANFIS – Optimization of membership				
function and	l rule base using Genetic Algorithm and Particle Swarm Optimization	- Case study–		
Introduction to Support Vector Regression – Familiarization of ANFIS Tool Box.				
	Total Hours	60 Hours		
Text Book(s)				
1.	1. Laurene V.Fausett, "Fundamentals of Neural Networks, Architecture, Algorithms, and Applications", Pearson Education, 2008.			
2.	Timothy J.Ross, "Fuzzy Logic with Engineering Applications", Wiley.			
3.	George J.Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall, First Edition, 1995. ACC.NO: B132844			
4.	David E.Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning", Pearson Education, 2009.			
5.	W.T.Miller, R.S.Sutton and P.J.Webrose, "Neural Networks for Control", MIT Press, 1996.			
6.	6. C.Cortes and V.Vapnik, "Support-Vector Networks, Machine Learning", 1995.			